Serena Bonaretti
www . learnpythonwithjupyter.com

Dear coder,

Thanks for your interest in Learn Python with Jupyter! | hope it will help you learn computational think-
ing and coding in Python!

The writing of Learn Python with Jupyter is awork in progress. | release a new chapter every 4-6 weeks,
as | write the book around working hours. That is why it is taking a bit of time.

Learn Python with Jupyter is open and free and it will remain open and free. Upon completion of the
book, | might publish a printed copy. That would have a (low) cost to cover printing and distribution.

You can find some information about the construction of Learn Python with Jupyter in this Jupyter Blog
post: https://blog.jupyter.org/introducing-learn-python-with- jupyter-112
14f152159. | will write more extensively about linguistic, pedagogical, and psychological aspects
behind Learn Python with Jupyter in a future post.

If you have any comments or questions, please email me at serena.bonaretti.research@gmail.com,
and | will be happy to reply.

Thank you for learning with me,
Serena

https://blog.jupyter.org/introducing-learn-python-with-jupyter-11214f152159
https://blog.jupyter.org/introducing-learn-python-with-jupyter-11214f152159

Learn Python with Jupyter

Serena Bonaretti

www . learnpythonwithjupyter.com

www.learnpythonwithjupyter.com

For the free ebook:
Text license: CC BY-NC-SA. Code license: GNU-GPL v3

For the future printed copy:

Copyright ©202x by Serena Bonaretti. All rights reserved.

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, or otherwise without the prior written
permission of the author.

While the author has used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the author disclaims all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use or reliance of this
work. Use of the information and instructions contained in this work is at your own risk. If any code
samples or other technology this work contains or describes is subject to open source licenses or
the intellectual property rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

Cover design by Federica Dias (www.behance.net/federicadias)
Editing and proofreading by John Batson

www.learnpythonwithjupyter.com

https://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.gnu.org/licenses/gpl-3.0.en.html
www.learnpythonwithjupyter.com

Eccoci nuovamente insieme per imparare a leggere e a scrivere.

lo direi, pero, di pit: per imparare a conoscere meglio il mondo e noi stessi.
Here we are again together to learn how to read and write.

Actually, | would go further: to learn to better understand the world and ourselves.

—Alberto Manzi, Non & mai troppo tardi, It’s never too late

Simple is better than complex.

—Tim Peters, The Zen of Python

Content

About this book

p. xi

Introduction

What we need to learn when learning coding

p. xv

The Jupyter/Python environment

p. 3
Downloading the book material
p.8

Getting ready

Chapter

1. Text, questions, and art
p. 11

2. Events and favorites
p. 18

Part 1:
Syntax
m Strings
m Built-in functions

input() and print()

m Assignment symbol

Concatenation symbol

Creating the basics

Computational thinking

m Getting information from a
user
m Printing to the screen

m Creating variables

m Assigning values to
variables

m Concatenating strings

In more depth

Our fingers have memory
p. 16

Dealing with NameError and
SyntaxError
p.21

Chapter

3. Inabookstore
p. 25

4. Grocery shopping
p. 30

5. Customizing the burger
menu
p. 36

6. Traveling around the world
p. 41

7. Senses, planets, and a house
p. 50

Part 2:

Syntax

Lists

if/else construct
Membership operator in
Indentation

List methods
.append() and
.remove()

List methods . index (),
.pop(),and .insert()

Three-srule
Plus one rule and minus one
rule

Keyword del

Introduction to lists and if/else

Computational thinking

m List as acollection
datatype

m Executing command based
on binary conditions

® Methods as functions for a
specific datatype

® Adding and removing
elements to/from a list
based on conditions

m Associating a list element
to an index

Finding an element index
Adding and removing
elements to/from a list
based on index

m Slicing to extract elements
from alist

m Slicing using positive and
negative indices, and in
direct and reverse order

® Omitting indices

m Replacing, adding, and

removing elements using

list slicing

List concatenation

Deleting a variable vs. its

content

®m Transitioning from list
methods to slicing

In more depth
Let’s give variables meaningful

names!
p. 28

Why do we print so much?
p. 34

We code in English!
p. 39

Why the plus one rule?
p. 47

What is a Jupyter Notebook ker-
nel?
p. 56

<

Part 3. Introduction to the for loop

Chapter

8. My friends’ favorite dishes
p. 61

9. At the zoo
p. 69

10. Where are my gloves?
p. 76

11. Cleaning the mailing list
p. 85

12. What a mess at the
bookstore!
p. 921

Syntax

m forloop
® Built-in functions
range()andstr()

Comparison operator ==
Built-in function 1en()
for commands
Abbreviating index with
i

m Comparison operators !=,
> >= < <=

m String methods
.lower(), .upper(),
.title(),
.capitalize()

m Special character "\n"

Computational thinking

m Forloop to repeat
commands

m For loop to automatically
slice a list

m Binary conditionin
command repetition
m Code commenting

m Searchinganelementina
list based on element
length or position, by
combining for loop and
if/else construct

®m Usingvariables in place of
hard-coded values

m Changing list elementsin a
for loop with reassignment

m Creatinglists in afor loop

String slicing

m Multiple consecutive
slicing

In more depth

Dealing with IndexError and In-
dentationError
p. 66

Dealing with TypeError
p.73

Let’s use keyboard shortcuts!
p. 82

In what list am | changing the el-
ement?
p. 88

Append or concatenate. Don't
assign!
p. 96

Part 4. Numbers and algorithms

Chapter

13. Implementing a calculator

p. 101

14. Playing with numbers
p. 110

15. Fortune cookies
p. 116

16. Rock paper scissors
p. 121

vi

Syntax

m Arithmetic operators

® Built-in functions int (),
float(), type()

m Keywordelif

(no new syntax)

= Keyword import

m random module functions
.randing(a,b) and
.choice(list)

(no new syntax)

Computational thinking

® Number variables as
strings, integers, or floats

m Testing multiple variable
valuesusingelif

m Combining code in a code
unit

m Changing numbers based
on conditions

m Separating numbers based

on conditions
® Finding the maximumin a
list of numbers

® Module as a unit
containing specific
functions

® Importing a module

® Randomness in coding

m Testing, debugging, paral-
lelism, divide and conquer,

algorithm

In more depth

Solving arithmetic expressions
p. 108

Don’t name variables with re-
served words!
p. 113

What if | don’t use the index in a
for loop?
p. 119

Why do we say Debugging,
Divide and conquer, and Algo-
rithms?
p. 127

Part 5. The while loop and conditions

Chapter

17. Do you want more candies?
p. 131

18. Animals, unique numbers,
and sum
p. 137

19. And, or, not, not in
p. 150

20. Behind the scenes of
comparisons and conditions
p. 157

Syntax
m Keywordwhile

(no new syntax)

m The logical operators and,
or,and not

m The membership operator
not in

m Booleans

Computational thinking

® While loop to ask for
unknown number of inputs

m Counter

m Initializing and changing
for the variable in the
condition

m Identifying various kinds of
conditions

m Problem solving using
divide and conquer

m Merging conditions
m Reversing conditions

m Booleans as outcomes of
single or several conditions

® Truthtables

m Booleans as flags in while
loops

In more depth

Writing code is like writing an
email!

p. 135

Don’t confuse the while loop
with if/else!
p. 147

What is GitHub?
p. 155

What is the difference between
GeeksforGeeks and Stack Over-
flow?

p. 162

Part 6. Recap of lists and for loops

Chapter

21. Overview of lists
p. 167

22. More about the for loop
p. 180

23. Lists of lists
p. 192

Syntax

m List methods: .clear(),
.copy(),.count(),
.extend(),
.reverse(), .sort()

m Builtin functions
list() and
enumerate()

® (no new syntax)

Part 7.

Computational thinking

= Arithmetic operations on
list elements

m List concatenation and
replication

m List assignment

m Adding and removing list
elements

m List sorting and searching

m For loop as arepetition of
commands

m For loop through indices,
elements, and indices and
elements

m List comprehension

m Tuples

m Nested for loop

m Lists of lists

m Slicing lists of lists

m Forloop to browse lists of
lists

m Flattening lists of lists

Dictionaries and overview of strings

In more depth

Why not use a for loop to remove
list elements?
p. 176

Basics of Markdown
p. 189

Lists of lists and images
p. 196

Chapter

24. Inventory at the English
bookstore
p. 201

Syntax
m Dictionaries

m Dictionary methods:
.items(), .keys(),

.values(), .update(),

-pop()

Computational thinking

m Dictionary items, keys, and
values

m Slicing dictionary values

® Modifing dictionary values

m Adding and removing
dictionary items

In more depth

Lists of dictionaries
p. 205

25. Trip to Switzerland m Dictionary method m |Initializing an empty Dealing with KeyError
p. 210 .get() dictionary p. 214
m List method . format () m Four ways to modify a
dictionary value that is a
list
m For loop to browse
dictionaries
m Use of comma separation
or .format() in

print()
26. Counting, compressing, m Dictionary method m Counting elements Remaining dictionary methods
and sorting .get(key, initial = Compressing information p. 222
p. 217 value) m Sorting dictionaries
m Built-in function according to keys or values
sorted()
27. Overview of strings m String methods m “Arithmetic” operations on Escape characters
p. 224 .count(),.find(), strings p. 234
.join(), .replace(), m Replacing or removing
.split(),and substrings
.swapcase() m Searching and counting
®m Built-in function round () substrings

m Converting strings to a list
and vice versa

m f-strings

® Rounding numbers

Part 8. Functions

Chapter Syntax Computational thinking In more depth
28. Printing Thank you cards m Function definition m Function as a unit of code Why is function documentation
p. 241 m Keyword def m Calling a function important?
m Function inputs: m Function inputs p. 248
parameters and
arguments, and default
values

m Docstrings for function
definition and parameters
in Numpy style

m Function call

29. Login database for an m Keyword return ®m Function outputs What is None?
online store m Docstrings for function ® Modularization: Main p. 259
p. 251 returns function and satellite
m Tuples functions
30. Free ticket at the museum ®m Built-in function m Use of if/else construct to How can | avoid interrupting the
p. 262 isinstance() raise an error flow?
m Typesstr,int,list, m Creation of conditions to p. 269
dict check variable types and
® Keyword raise values
m Exceptions m Returnbased on
TypeExrror() and conditions
ValueError() ® Returnvalues
m Example in docstring
definition
m Docstring for returned
values

viii

31. Factorials
p. 271

32. How can | reuse functions?
p. 277

33. Birthday presents
p. 291

34. What's more in Python?
p. 301

(no new syntax)

m Keywords as and from

® Module sys and its
command
sys.path.append()

m Jupyter extension
autoreload

m Keywordwith

® Built-in function
open () withthe
parameters "r" and "w"

®m Variable file with its
methods . read () and
write()

® Built-in functionsmin(),
max(),and sum()

m Tuple methods
.count() and .index()

m Sets and their methods
.union() and
.intercesection()

m Keyword lambda

m Built-in functions map ()

m Function . seed() from
the module random

® Module time andits
function . time()

Iterative vs recursive
functions

Recursive thinking
Base case and recursive
case

Function reuse
Creating, modifying, and
structuring a module
Various ways to import a
module

Package as a group of
modules

IPython as a coding engine
Using complementary
tools when coding (IDE,
Jupyter Notebook, and
terminal)

Opening and reading a text
file

Creating and writing a text
file

Calculating basic statistics
Organizing functions in
pipelines

Using sets as
intermediators for list
operations

Creating anonymous
functions

Reproducing random
numbers

Calculating computational
time

__hame

When do we use recursive func-
tions?
p. 275

What is:

“«

*_main_"?

p. 286

How do | organize folders and
files?
p. 299

Swapping variables
p. 309

ix

What will I learn in this book? In this book, you will learn to code in Python using Jupyter Notebook.
Even more importantly, you will develop computational thinking, which is the way we think when
coding.

What makes this book different? The topic progression in this book is designed according to com-
putational thinking development while focusing on syntax and strategies, rather than listing discon-
nected language characteristics with isolated examples.

Is this book for me? If you have never coded before, if you are following online courses or videos but
feel you can’t quite grasp them, or if you need to better structure your Python and coding knowledge,
this book is for you. Also, if you are training to become a scientist but are not very strong in coding, if
you are transitioning to the Python/Jupyter environment from another programming language, or if
you are a teacher looking for material, this book can be for you.

How is this book structured? The book is divided in 11 parts. The first part introduces the computa-
tional environment—that is, the Jupyter/Python environment. The following ten parts cover compu-
tational thinking and Python syntax. Each part contains two to five chapters, for a total of thirty-eight
chapters.

How are chapters structured? Each chapter starts with one or more coding examples embedded in
narrative and enriched with detailed explanations. In addition, each contains several theoretical and
coding exercises. And they all finish with a recap to summarize the chapter’s main concepts, and a In
more depth section, with coding strategies or curiosities.

Why is code embedded in narratives? Stories provide context and allow long-term memorization.
They are extensively used in learning foreign languages. And, in many respects, a programming lan-
guage is a foreign language.

Why is there code pronunciation? When we code, we pronounce or mumble code within ourselves,
and occasionally aloud with a colleague. Although coding has a strong vocal component, there is no
defined standard for code pronunciation. The pronunciation proposed in this book is the optimized
result of hours of one-on-one interaction with students of various mother tongues.

What kinds of exercises are in the book? In this book, you will find both theory exercises and cod-
ing exercises. Theory exercises are meant to strengthen code comprehension and syntax precision.
Coding exercises are meant to make you practice and thus learn by doing.

What is on the website? On www.learnpythonwithjupytexr.com, you can find Jupyter Note-
books associated with each chapter, so you can test and experiment while learning. You can also find
a community, with solutions to both theory and coding exercises. You can ask questions and propose
alternative solutions, to deepen your knowledge.

How do | use this book? Start with the first part, Getting ready, to install and learn the computational
environment. Then, proceed with the chapters. For each chapter, download the corresponding note-
book at www . learnpythonwithjupyter.com. Make sure you understand the syntax, play with the

x1i

www.learnpythonwithjupyter.com
www.learnpythonwithjupyter.com

code, and do the theoretical exercises. Read the recap and the In more depth sections, which will give
you useful hints. Finally, do the coding exercises and compare your solutions with the ones you find in
the community portal. Obviously, looking at a solution before completing an exercise weakens your
chance of learning. If you do not understand questions or solutions, ask in the community portal. Take
your time to solve each exercise. Missing the understanding of one chapter might compromise your
understanding of the chapters that follow it.

How is the language used in this book? The language is colloquial and simple—but precise. There are
clear definitions and careful explanations. | directly talk to you, but | use we when explaining syntax.
We are in this together! Also, | use the first person when | want to share some hints | learned along
the way.

xii

INTRODUCTION

Inthis part, we will briefly talk about coding environments, language syntax, and computational think-
ing. If you are eager to start coding, just skip it and come back later!

What do we need to learn when learning coding?

Codingis a lot about telling a computer what to do. We, human beings, need to write commands that
computers understand, and to do so, we need to learn to think differently. We have to start from
scratch and master a new way of communicating, made of concise and logical instructions. Practically
speaking, we have to learn at least three things: a coding environment, language syntax, and compu-
tational thinking. Let’s see what these are!

A coding environment is a program where we can write and execute code. There are several envi-
ronments to code in Python. In this book, we will use the Jupyter/Python environment, which since
its release in 2015 has become used increasingly both in industry and academia (Figure 1.1). It allows
integrating code with narrative, and it is ideal for creating reports, draft code, and learning to code.
Other very common coding environments are the integrated development environments (IDEs). For
Python, popular IDEs are PyCharm, Visual Studio, and Spyder (Figure 1.2). IDEs typically embed var-
jous components, such as a script editor, a variable environment panel, and a console wherein code
is tested and executed. In Chapter 32, you will get familiar with one of them, Spyder, which is com-
monly used for scientific coding. And finally, the most basic environment is the Python IDLE, which
is included in the Python installation. It consists of a shell—which looks very similar to a terminal—
where one can type and execute commands (Figure 1.3).

Figure 1. Three IDEs to code in Python: (1) the Jupyter environment, (2) Spyder, and (3) the Python IDLE.

A language syntax is a set of rules defining how to write commands. You are already very famil-
iar with at least one syntax, which is your native language syntax. In your mother tongue, you know
words, punctuation, and how to arrange these elements in sentences to create paragraphs and entire
texts. In coding, the pattern is similar. We have to know data types and operators, as well as how
to arrange them in if/else constructs and loops to create functions and classes. In Table 1, you can
see a schematic summary of elements and syntax you will learn in this book. Don’t worry if you do
not understand most of it—everything will become more and more clear as we progress through the
book.

XV

Introduction

Data types Operators Constructs and Unit of code Software
(words) (punctuations) loops (paragraphs) (texts)
(sentences)

string, list, assignment, if/felse construct, functions classes (object-
integer, float, membership, for loop, oriented pro-
Boolean, tuple, arithmetic, while loop gramming)
dictionary, set comparison,

logical

Finally, computational thinking is the way we think when coding. Every time we approach a new
subject, we need to learn how to think in that subject and develop specific skills. Some of the abilities
you will develop in this book are:

e Creating algorithms, which means conceiving and implementing a series of sequential instructions
to solve a problem

e Divide and conquer, which consists of decomposing problems in sub-problems, and then combining
the sub-problem solutions to obtain the main problem solution

e Patternrecognition, which means recognizingin a new problem features of a previously solved prob-
lem so that you can apply a similar solution

e Solution generalization, which consists of generalizing solutions from specific cases to broader situ-
ations

As is the case for any subject, developing a way of thinking comes with studying and exercising. Thus,

thinking computationally comes with learning syntax and practicing coding. We will start building

these abilities in Chapter 1. In the next part, Getting ready, you will download, install, and learn how

to use the Jupyter/Python environment.

XVi

GETTING READY

In this part, we will set up the Jupyter/Python environment and learn how to use it. Let’s start this
exciting journey!

The Jupyter/Python environment

An easy way to think about the Jupyter/Python environment is to consider it as a Russian doll—those
wooden dolls of decreasing size nested one inside another (Figure 2). The largest doll is JupyterLab,
which is aweb-based environment in which we can open, organize, and work on files of various types.
In JupyterLab, there is Jupyter Notebook, which is a web-based application where we can write code
with narrative. Jupyter Notebook supports several programming languages, one of which is Python.
And finally, Python is enriched by an extraordinary amount of modules and packages that allow us to
add useful functionalities to code. Let’s install the Jupyter/Python environment and see how it works!

Web-based
environment
Web-based app for
code with narrative
Programming

language
Modules

and packages

-
Jupyter
JupyterLab o~
Notebook

Figure 2. The Jupyter/Python environment represented as a Russian doll,
where each component is included in the previous one.

Installing the Jupyter/Python environment

You can install JupyterLab, Jupyter Notebook, Python, and its scientific packages all at once through
Anaconda, acommonly used distribution for scientific computing. Go to the Anaconda website, http
s://www.anaconda.com/products/individual, and click download. It might take a few minutes.
Once downloaded, install Anaconda like any other software: click next when required, and leave the
default options (unless you have specific requirements). The installation might take a few minutes
too. When Anaconda is installed, open the Anaconda Navigator by double-clicking its icon, which
looks like the one in Figure 3, box 1. Once opened, you will see all the software contained in Anaconda,
including JupyterLab (Figure 3, box 2), Jupyter Notebook (Figure 3, box 3), and Spyder (Figure 3, box
4). Inthis book, we will code in Python using JupyterLab as a working environment. So let’s learn how

3

https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual

Getting ready

o0 0 D Anaconda Navigator
£ JANACONDA NAVIGATOR © veoracerow [T
Applications on | base (root) v chamnels Refresh
@ Environments
L]]] L]] o
L -2
ot a & G TP
& N
2% Community Datalore 1BM Watson Studio Cloud JupyterLab Notebook PyCharm Community QtConsole
2300 20193
Online Data Analysis Tool with smart coding 1BM Watson Studio forinteractive | | Web-based, interactive computing notebook An IDE by JetBrains for pure Python PYQLGUI that supports inline figures, proper
assistance by JetBrains. Edit and run your & | and reproducible computing, based on the t. Edit and run human-readable ts code completion, highiighting,
Pyth Jupyter d Architects i analysis. liting, and debugging. graphical calltps, and more.
them wi
,,,,, h Launch Launch Launch Launch Launch
L]]] L]]
ANACONDA w,
‘ P
Qg <7
JoinNow
Spyder Glueviz Orange 3 PyCharm Professional RStudio
" A a1s 100 3260 11456
Discover premium data
c tbased data mining framework. Afullfledged DE by JetBrains for both Aset of ntegrated tools designed to help
fils. Explore d data analysis tfic and you be more p R Includes R
related datasets i U5, and SQL. essentials and notebooks.
Documentation with a arge toolbox.
Anaconda Blog Install nstall Instal Install
You
’ @

JupyterLabis an environment where we can code in an organized and efficient way. Openiit by clicking
the Launch button in the JupyterLab tile in Anaconda (Figure 3, box 5). You will see something similar
to Figure 4. Below are the most relevant features of JupyterLab and some suggestions on how best
touseit.

e JupyterLab is a web-based environment. When you launch JupyterLab, the first thing you'll notice is
that it starts in the browser. However, its address contains localhost (Figure 4, box 1), which means
that you are actually working locally, that is, on your computer. In other words, you do not need to
be connected to the internet to use JupyterLab.

e Top bar (Figure 4, box 2). The items in the top bar, such as File, Edit, View, etc., are quite intuitive and
similar to many other software. We will describe the most relevant items throughout the book, but
go ahead and start exploring them! For now, just notice that when clicking some top bar buttons
(for example, File), some of the items that appear might be light gray because they are disabled (for
example, Save As..). This is because they refer to Jupyter Notebook, which we will open in the next
section. Finally, a fun feature of JupyterLab is that you can set a dark theme. If you want that, go to
Settings, then JupyterLab themes, and click on JupyterLab Dark.

e Browsing and opening files. On the left side of JupyterLab, you can find a panel with some vertical
tabs (Figure 4, box 3). The first tab contains anicon representing a folder, and, for now, we will focus
only onthis one. The folder tab opens a panel oniits right, which contains a few features. The first is
atop bar (Figure 4, box 4), containing a symbol, +, which allows us to start a launcher (Figure 4, box
7); anicon representing a folder containing a +, to create a new folder; a vertical arrow pointing up,
toupload anewfile; and acircular arrow, to refresh the content of the current directory—in coding,

Getting ready

® [] o lipyterLab x + v
T
&« localhost:8888/lab/book/notebooks; i+ 1}) 7 » & \Update
Z [Fle_Edit View Run Kemel Tabs Settings _Help
_
* cC 4 Launcher X N
nal Q
™ / book / notebooks / [7] Notebook
— ||Name - Last Modified
- W Applications 2 years ago
“ I data a year ago '
B8 Desktop seconds ago
Python 3
B Documen ts 2 months ago
8 Downloads amonth ago
6 Console
Python 3
Other
. — A 4 E
Terminal Text File Markdown File Show
Contextual Help
Simple 1 [48 @& Saving completed English (American) Launcher

Figure 4. JupyterLab interface, containing: (1) local URL, (2) top bar, (3) lateral tabs, (4) folder browser top
bar, (5) folder browser, (6) folder content, (7) launcher, and (8) Jupyter Notebook launch button.

we often say directory instead of folder. Right below, there is a box to search for files. Then, there
is the path of the working directory (Figure 4, box 5)—that is, the folder where we are currently
opening and saving files. And below, there is a list of the directory content (Figure 4, box 6). In
JupyterLab, you can open an existing file only from this panel, and not by double-clicking the file in
your computer folder. Therefore, you need to know how to navigate folders from JupyterLab. To
go back to a previous folder, click on a folder name in Figure 4, box 5 (for example, to go back to the
previous folder in this screenshot, you would click on book). To go into a sub-folder—a folder in the
current folder—just double-click on the sub-folder listed in the folder panel (Figure 4, box 6). Last
thing: when clicking on the folder icon (Figure 4, box 3), the whole file browser panel toggles out,
meaning it disappears. When re-clicking, the whole panel toggles back in, so it reappears. Toggling
out can be convenient if you have a small screen.

e Launching tools. The launcher is the place where you can open new notebooks, consoles, terminals,
text files, etc. (Figure 4, box 7). As an alternative, you can open new files and tools from the top bar
(Figure 4, box 2) by clicking on File, then New, and then selecting the file type you want. It’s time to
open a Jupyter Notebook!

Getting ready

Jupyter Notebook

To open a Jupyter Notebook, go to the launcher and click the Notebook icon (Figure 4, box 8). A new
Notebook opens in the launcher area (Figure 5, box 2), and it is visible as Untitled.ipynb in the browser
panel (Figure 5, box 1). Notebooks have the extension .ipynb, which stands for interactive python
notebook. To give the Notebook an appropriate name, right-click on Untitled.ipynb in the browser
panel (Figure 5, box 1). Then, click Rename, and change it to any name you want—for example, practic-
ing_cells.ipynb. As you might have noticed, by right-clicking on the file name, you can perform several
other actions, such as delete, cut, copy, duplicate, and more.

Let’s now focus on a Notebook content. A Jupyter Notebook is essentially a file containing a sequence
of cells, that is, grey rectangles like the ones you see in Figure 5, box 4. Each cell can contain code
or narrative, as we will see in a bit. The blue bar on the left side of a cell (Figure 5, box 5) indicates
that the current cell is the active cell. In the presence of multiple cells, we can make a cell active by
clicking on the square brackets [] on the cell left side. When a cell is active, we can perform several
operations in various ways, either by keyboard commands or via the Notebook top bar (Figure 5, box
3, enlarged in Figure 6), the JupyterLab top bar (Figure 4, box 2), or by right-clicking in the cell! This
might sound redundant, but it is conceived to help coders with different habits—some prefer using
keyboard commands, others prefer clicking on the screen—conveniently perform the cell operations
they need. If there are too many options for you, then just choose one way and stick to that! Below
are some useful cell operations and some of the possible ways to perform them.

Z JupyterLab x + v

. K - N
((D localhost:8888/lab/tree/Dropbox/book/notebooks/practicing_cells.ipynb] Y}) f? - KUpdaxe)
: File Edit View Run Kernel Tabs Settings Help
» 1t c [%] practicing_cells.ipynb X D*
IE + X [[» m C » Code vg!’t Python3 O
Filter files by name Q
o B/ --- /book /[notebooks / I [1:
.— Name - Last Modified

- [practicing_cells.i... seconds ago

Simple 1 10 & Python 3| Idle Saving completed Mode: Command & Ln1,Col1 English (American) practicing_cells.ipynb

Figure 5. A Jupyter Notebook opened in JupyterLab. (1) Notebook in the folder browser, (2) Jupyter
Notebook, (3) Jupyter Notebook top bar, (4) cells, (5) currently active cell.

Getting ready

e Creating a cell: To create a new cell below the active cell, press B, for below, or the plus buttonin the
Notebook top bar (Figure 6, item 2). The newly created cell becomes the active cell. We can also
create a new cell above the active cell by pressing A, for above (there is no corresponding top bar
button).

e Deleting a cell: To delete the active cell, press D twice, or click on the scissor button (Figure 6, item
3).

e Copying a cell: To copy the active cell, first press C and then V (without command or control!), or item
4 to copy, and then item 5 to paste (Figure 6).

e Undoing or redoing cell operations: To undo a cell operation (for example, if you have deleted a cell by
mistake), press Z, or in JupyterLab top bar (Figure 4, box 2), go to Edit, and then Undo cell operation.
Similarly, to redo a cell operation, simultaneously press shift and Z, or in JupyterLab top bar, go to
Edit and then Redo cell operation.

e Moving cells: Left-click on the square brackets [] of the active cell, and while holding down the
mouse button, move the cell up or down. When you reach the position you want to move the cell
to, release. As an alternative, you can go to Edit in the JupyterLab top bar (Figure 4, box 2) and then
click on Move Cells Up or Move Cells Downs.

e Add line numbers. Line numbers are very useful when coding—you’ll come to realize this starting in
Chapter 1. To add line numbers, go to View in the JupyterLab top bar (Figure 4, box 2), and then
click Show Line Numbers.

e Other operations. You can split or merge cells, enable or disable scrolling for output, etc. by going
to the JupyterLab top bar (Figure 4, box 2), and then see the options in Edit, or by right-clicking in a
cell and browsing the options that appear. Just explore them!

B + X O » m C » Code v

What about the remaining buttons in Figure 6? The first button representing a floppy disk—yes, once
upon a time we saved data on floppy disks!—is to save the Notebook. The buttons 6 to 9 are used to
execute code, and you will learn how to use them in Chapter 1 (button 6) and Chapter 7 (buttons 7 to
9).

And finally, time to talk about cell content! As we mentioned before, a cell can contain two things:
code or narrative. By default, Jupyter Notebook cells are code cells. To transform a cell into a text cell,
press M on the keyboard, or click the drop-down menu in the Jupyter Notebook top bar (Figure 6,
item 10), and select Markdown. Markdown is a simplified version of HTML, the coding language used
to create websites. This is why the Jupyter environment is web-based: to use the rich features of web
browsers! Writing the narrative in a Notebook is fundamental to embedding code into explanations
that make workflows easy tounderstand. You can learn how to write in Markdown in the In more depth

7

Getting ready

session in Chapter 22. And last but not least, cells can contain code. The remainder of the book will
be about that! So, it’s time to start coding, but before doing that, one last bit: you need to download
the Jupyter Notebooks associated with this book.

Throughout the rest of the book, you will find 38 chapters. For each chapter, there is a Jupyter Note-
book, whose file name includes the corresponding chapter number. Each Notebook contains the ex-
amples discussed in the text so that you can practice and understand while reading. Download the
Notebooks at www.learnpythonwithjupyter.com. | highly recommend that you save the Note-
books in a new folder—not in the Download folder—so that you don’t mix them up with other files you
download for other purposes. If you feel like going a step further, | really recommend that you create
this folder in a cloud service, so that you do not lose your files in case your computer breaks or has is-
sues (yes, computers are machines and they break!). As for cloud services, you can use Google Drive
(https://www.google.com/drive), Dropbox (https://www.dropbox.com), or any others that
you prefer. Using these tools is very easy. Download the program that installs the system on your
computer. After the installation, you will see a new folder. Just create the folder that is going to con-
tain the Notebooks in the newly created cloud folder, and all your files will always be automatically
synchronized and saved.

Finally, in each chapter of the book, you will find coding exercises. | recommend that you create a sep-
arate folder called Exercises, or something similar, and inside this folder, create a Jupyter Notebook
for the exercises of each book chapter. Creating Notebooks yourself will strengthen your organiza-
tional skills and will allow you to become even more familiar with the Jupyter/Python environment.

At this point, we are really ready. Let’s start coding!

www.learnpythonwithjupyter.com
https://www.google.com/drive
https://www.dropbox.com

PART 1
CREATING THE BASICS

It’s time to start coding! In this part, you will learn the basic elements that we will use throughout the
whole book. You will learn about strings — that is, a data type that contains text — and the concate-
nation operation, used to combine strings. You will also learn how to ask questions and how to print
out information. And most importantly, you will learn what a variable is. Let’s get started!

Programming languages are written languages, and the core of written communication is text. How
is text represented in Python? How can we ask a question to a person? And how can we provide
information to a person? To answer these questions, let’s open Jupyter Notebook 1 and start!

In coding, we use the word string to refer to text. We can define strings as follows:

Strings are text in between quotes

Let’s look at the two examples below. On the left side, we see the code asit is in Jupyter Notebook 1.
On the right side, we see how to pronounce the code. Let’s read the code out loud:

"This is a string" This is a string
'Everything you write between quotes is a Everything you write between quotes
string' is a string

Now let’s consider the following statements. Are they true or false?

1. Astring contains text T F
2. Astringisingreen in Jupyter Notebook T F
3. Quotes can be either single or double T F

Let’s analyze the code above in detail! In each cell, there is a string. As we can see, a string is just
some text in between quotes. By text, we mean any character we can type on the keyboard: letters,
numbers, symbols, and even the space! Quotes can be double quotes " ", like in the top example, or
single quotes ' ', like in the bottom example. Quotes that start a string are called opening quotes,
whereas quotes that end a string are called closing quotes. When writing a string in Python, we can
use either double or single quotes; we just have to make sure we do not mix them up. In other words,
if we start writing a string with an opening double quote, we must finish the string with a closing double
quote. Similarly, if we start writing a string with an opening single quote, we must finish the string with
aclosing single quote. Strings are a Python data type, which means that they are one of the core parts
of the Python language (see Table 1 at page 4). In Jupyter Notebook, Python strings are in red.

11

Part 1. Creating the basics

Let’s run the first cell. Running a cell means executing the code in that cell. In the Notebook, position
the mouse anywhere inside the cell. If you haven’t done it already, click the mouse left button. The
cursor will become a blinking vertical bar. Then, move to the keyboard. If you are on a MacQOS, press
shift and return at the same time. If you are on a Windows, press shift and enter at the same time (if
not explicitly written on any key, enter is the key on the right side of the keyboard depicting an angled
arrow). As an alternative, you can click the start button in the Jupyter Notebook top bar (Figure 6,
icon 6, at page 9).

This is how the first cell looks when we run it:

"This is a string" This is a string
'This is a string'
When we run a cell, two things occur. First, a number appears in between the square brackets on the
left side of the cell. Inthis case, the numberis 1 because this is the first cell we ran. Second, we execute
the code. Inthis case, we get to see the content of the cell; thatis, ' This is a string'. Jupyter Note-
book shows the string in between single quotes, even when the string is written in between double
guotes. As mentioned above, single and double quotes are equivalent.

Let’s run the second cell. Like before, left-click anywhere inside the cell. Then, press shift and return if
on MacOS, or shift and enter if on Windows, or click the start button in the Jupyter Notebook top bar.
Here is what we get:

'"Everything you write between quotes is a Everything you write between quotes

string' is a string

'"Everything you write between quotes is a string'

Two things occurred again. First, the number 2 appeared in between the square brackets on the left
side of the cell, showing that this is the second cell we ran. As is becoming clear, the number on the
left side between square brackets indicates the order of execution of the cells. Second, we can see
the string contained in the cell: 'Everything you write between quotes is a string'.

In all programming languages there are ways to ask questions to a person, whom we usually call the
user. This is a very important feature because it allows the interaction between a computer and a
human being. What does this mean? Let’s look at the code! Read the two cells below out loud (pro-
nunciation on the right):

input ("What's your name?") input what's your name?

input ("Where are you from?") input where are you from?

What does the code inside the cells do? Get a first hint by solving the following exercise.

12

Chapter 1. Text, questions, and art

1. what's your name? is a. itis colored green

2. input () is a built-in function and b. by round brackets

3. When running a cell containing input () c. astring

4. A built-in function is always followed d. we can answer a question

Let’s understand how these lines of code work! Let’s run the first cell. We will get a text box:

input ("What's your name?") input what's your name?

What's your name? | l

Type your name in the rectangle (I will write mine!):

input ("What's your name?") input what's your name?

What's your name? l Serena ‘

And now press return or enter on the keyboard. You will see the following (you will see your name, of

course!):
input ("What's your name?") input what's your name?
What's your name? Serena
'Serena’

A few key things have happened here! First, the number on the left side of the cell turned to 3 as
expected. But while answering the question, instead of the number 3, there was astar symbol (*). This
indicates that a cell has started to run but has not finished yet. To complete the cell run and execute
the code, we have to press return or enter after typing the answer. If the cell run is not completed,
the code in the cell does not get executed, and in addition, we will not be able to run the following
cells. Now, let’s look at the code. We know that "What's your name?" is astring, becauseitistextin
between quotes and it is colored red. What about input()? input () allows us to ask a question to a
user. In Jupyter Notebook, input () creates a text box (a white rectangle) where we can insert some
text. input () performs a specific task and is called a built-in function.

A built-in function is a command that performs a specific task

We canrecognize if a code element is a built-in function by two characteristics. First, in Jupyter Note-
book built-in functions are always green. Second, built-in functions are always followed by parenthe-
ses (). Inthis book, instead of parentheses, we will call them round brackets, to differentiate from other
types of brackets that we will encounter in the chapters that follow. In between the round brackets,
we often write an argument, which for input () is a string containing the question we want to ask.
Built-in functions are very useful, as they contain code written by the creators of a programming lan-
guage to facilitate ease-of-use when coding.

13

Part 1. Creating the basics

Let’s run the next cell:

input ("Where are you from?") input where are you from?
Where are you from? | |

Similarly to before, now enter your country of origin in the text box (I will type mine!):

input ("Where are you from?") input where are you from?

Where are you from?’ Italy ‘

Now press return or enter on the keyboard. You will see an output similar to the following (you will see
your country of origin!):

input ("Where are you from?") input where are you from?
Where are you from? Italy
'Italy'

What happened here is similar to the previous cell. Let’s summarize it: the number on the left of
the cell turned to 4 because this is the fourth cell we ran. The built-in function input () created a text
box in Jupyter Notebook in which we could answer the question contained in the string we gave as
an argument. Too concise? Let’s try again: when we run the cell, the built-in function input () shows
us the question, which we put in between the round brackets as a string, and it creates a text box in
which we can type the answer. After typing the answer, we press return or enter to complete the code
execution.

At this point we can ask ourselves: where do we see input () in action in everyday life? Every time we
are asked to type something on a device, there is a function similar to input () behind it! For exam-
ple, this is the case when we write our names to open a new account, enter the amount we want to
withdraw from an ATM, or fill out an online form.

Finally, it is important to mention that when we write code, we wear two hats — that is, we have two
roles: we are at the same time programmer and user! When writing code, we wear the programmer
hat: we create code to perform a task, design code structure, and define user messages. When test-
ing code, we wear the user hat: we check whether the code does what expected, is easy to use, and
whether the user interaction is pleasant. When coding, we switch hats continuously!

We now know how to ask a question to a user, but how do we provide them a piece of information? We
use the built-in functionprint ()! There are several ways to learn about print (), and the following one
isindeed a lot of fun. It involves a type of digital art called ASCII art, by which images can be created
using the symbols on a keyboard. Let’s have a look at the following cell:

print ("/_/\)
print (">A.A<)
print (" / \)
print ("(__)__")

14

Chapter 1. Text, questions, and art

What are we going to print to the screen? The answer is straightforward, but before running the cell,
let’s quickly analyze the code by completing the following exercise.

1. print()isastring T F
2. print() canhave astring as an argument T F
3. Incoding, we print row by row T F

Let’s finally run the cell. Here is what we get:

print ("/_/\)
print (">A.A< M)
print (" / \)
print ("(__)__")
IN_/\
SN A<
/\

(—)—

The little cat we created using keyboard symbols gets displayed to the screen. To do so, we used a
new built-in function: print (). print() displays on screen the argument we provide — in this case a
string. You might ask: But when we ran the cells 1 and 2, we could see the content of the strings; why
do we need print()? The fact that we could see the strings from cells 1 and 2 is a feature of Jupyter
Notebook. After running a cell, Jupyter Notebook displays the content of the last line but not that
of the previous lines. If we delete the print () function from the code in cell 5, it will display only the
very last string:

"IN_/\
"SA A<

VA

TR

Y

There are a few more things to point out by observing the code in cell 5. In a Jupyter Notebook cell,
we can write several lines of code. The lines will get executed sequentially. In other words, when we
run a cell, Python first executes line number 1, then line number 2, and so on, until the last line of the
cell is reached. In addition, in a string, spaces matter. Spaces are characters, so a space is an element
of a string and it takes its own place. However, spaces do not matter between code elements. For
example, the two lines below are equivalent:

print ("(__)_")

print("(__)_")

)
)

15

Part 1. Creating the basics

When writing code with some repetition, it is good practice to keep some parallelism between the
lines of code. Compare the code writtenin cell 5 as we did above,

print ("/_/\ ")
print (">A.A< M)
print (" / \ ")
print ("(__)__")

to the same code written without aligning closing quotes and closing round brackets, as below:

print ("/_/\")
print (">A.A<")
print (" /\")
print ("(__)__")

We can see that in the second case the code looks somehow more confusing. Instead, when we align
quotes, brackets, and other symbols — as you will see in the following chapters — we create code that
is more readable and less prone to errors. We will also talk quite a bit about tricks to minimize the
amount of possible errors that we might introduce in code.

One more question before the recap: where do we see the function print () inactionin everyday life?
Every time we see a message on a device! For example: ‘Registration completed’, or ‘Thank you for
your purchase’, or ‘Logout successful’ In the underlying code, there is a function similar to print()!

e The type string is text in between quotes
e input() is a built-in function to ask a user to enter a value
e print() is a built-in function to display a value to screen

When learningtocode, itis veryimportant to type every single command, resisting the tempta-
tion of copying/pasting. Typing helps us memorize commands in at least two ways. First, when
typing a command we mentally spell it, so we repeat it in our minds, and thus we memorize it.
Second, our fingers can memorize typing patterns. For example, when typing print (), our fin-
gers will automatically remember to type the round brackets right after print. Similarly to a
pianist who does not look at the keyboard but at the sheet music while playing, we want to look
not at the keyboard but at the screen while coding. This way of typing is called touch typing
(or blind typing). It helps us be faster and minimize the amount of errors we make because we
do not have to keep moving our eyes between the keyboard and the screen. How can we learn
touch typing? It is very easy; it just requires some practice. The idea is that each finger presses
some specific keys of the keyboard, as in Figure 1.1. We position the left index finger on the
letter F and the right index finger on the letter J — the two little bumps on these keys define
the starting point. The remaining fingers will go on the keys in the same row. For the left hand,
the middle finger will go on the letter D, the ring finger on S, and the small finger on A. Similarly,

16

Chapter 1. Text, questions, and art

for the right hand, the middle finger will go on the letter K, the ring finger on L, and the small
finger on the semicolon. What about the letters G and H that are in between? When needed,
the left index finger will move from F to G, and the right index finger from J to H. The fingers
will then move upward and downward for the other letters, maintaining the same reciprocal

positions.

—

Caps Lock

Shift G

There are plenty of websites to learn touch typing in a fun way, such as www . typing. comand
www . typingclub.com. They are free, and creating an account is not compulsory. They pro-

vide gradual exercises starting from typing single letters, to syllables, to words, up to whole

sentences. Give it atry?

Ready for some coding exercises? Create a new Notebook and solve the following exercises below. If
you do not remember how to create a new Notebook or new cells, have a look at pages 8 and 9.

1. Writing strings. Write a string using double quotes. Then, run the cell and observe what happens.
Then write a string using single quotes. Run the cell and observe what happens.

2. Asking questions. Write two questions using the built-in function input () and then answer them.

3. ASCIl art. Reproduce at least one of the following pieces of ASCI|I art:

N
(0 o)
|~ 000~ () v |

/7
/A .
\\/ / /_/\ | Write |
—/ 0\ ') | your favorite |
\) Vvvv MM ywvV | sentence here |
! / |~nmmmnnnnnnnn000~ |
H [—1—I
I
- - (—) 000 Ooo
b Q) @eee Oel)
I l— - ca)ee iy ()N _
['\ @eee (__) |/ \)/
| (! \ | ()
\ | 7 _. /
REN N/ WA

17

www.typing.com
www.typingclub.com

2. Events and favorites

Variables, assignment, and string concatenation

Let’s continue building our basics by learning about variables and string concatenation. What are they?
Let’s find out together using Notebook number 2! Read the example below aloud and try to under-
stand what the code does:

1. Organizing an event

e You are organizing an event, and you have created the following registration form for the partici-
pants:

REGISTRATION FORM

first_name

last_name

Figure 2.1. Registration form for the event participants.

e The first participant comes in and you fill out the form:

first_name = "Fernando" first name is assigned Fernando
last_name = "Pérez" last name is assigned Pérez

e Thenyou print out what you entered in the registration form:

print (first_name) print first_name
print (last_name) print last_name

What does the code in these cells do? Let’s get some hints by completing the following exercise.

True or false?

1. Thecommand first_name = "Fernando" assigns the string "Fernando" to the variable T F
first_name

2. Thecommand print(first_name) will print out Fernando T F

3. Thecommand print(last_name) will print out 1ast_name T F

18

Chapter 2. Events and favorites

Any guesses about what happens? Let’s run the first cell:

first_name = "Fernando" first name is assigned Fernando

last_name = "Pérez" last name is assigned Pérez
At line 1 we create a variable called first_name. To the variable first_name we assign the string
"Fernando", which is the value. Similarly, at line 2 we create a variable called 1ast_name, to which
we assign the string "Pérez" as a value. In general, we can assign any value to a variable. For example,
we can register our second guest, Guido van Rossum, by writing:

first_name = "Guido" first name is assigned Guido

last_name = "van Rossum" last name is assigned van Rossum
Asyou cansee, the variablenames remain the same (first_name and 1ast_name), whereas the assigned
values can be different ("Fernando" or "Guido", "Pérez" or "van Rossum"). We can define variables as
follows:

A variable is a label assigned to a value

In Python, variables are lowercase. When composed of multiple words, these are connected by under-
score, like in first_name. In Jupyter Notebook, variables are black. The symbol = is called assignment
operator. This has nothing to do with the equals we learned in math! equals has a different symbol in
coding, which we will see in Chapter 9. In coding we use the symbol = to assign a value to a variable,
and we pronounce it as is assigned. This is a very important concept to remember, and it’s one of the
most counter-intuitive! Symbols are colored purple in Jupyter Notebook.

Let’s now run the second cell:

print (first_name) print first_name
print (last_name) print last_name
Fernando
Pérez

As you might expect, at line 1 we print to the screen the value assigned to the variable first_name,
which is Fernando. At line 2 we print the value assigned to the variable 1ast_name, which is Pérez.
Who is Fernando Pérez? The creator of Jupyter Notebook! And Guido van Rossum? The creator of
Python!

Time to put together what we have learned so far! Let’s read the following code:

name = input ("What's your name?") name is assigned input what's your name?
favorite_food = input ("What's your favorite_food is assigned input what's
favorite food?") your favorite food?

19

Part 1. Creating the basics

print ("Hi! My name is " + name) print Hi! My name is concatenated with
name

print ("My favorite food is " + print My favorite food is concatenated

favorite_food) with favorite_food

print (name + "'s favorite food is " + print name concatenated with 's favorite

favorite_food) food is concatenated with favorite_food

What happens in this code? Let’s get some hints by completing the following exercise!

True or false?

—
T

1. The answer to the question What’s your name? is assigned to the variable name

—
n

2. The question What's your favorite food? is asked before the question What’s your name?

3. If the answer to the first question is Terry and the answer to the second questionis T F
mango, then the third print will show Terry’s favorite food is pizza

4. The symbol + can combine a string and a variable containing a string T F

Computational thinking and syntax

Let’s run the first cell:
name = input ("What's your name?") name is assigned input what's your name?
What's your name? Serena

The name we enter in the text box will be assigned to the variable name.

Let’s run the second cell:

favorite_food = input ("What's your favorite_food is assigned input what's
favorite food?") your favorite food?
What's your favorite food? pasta

Similarly to the above example, what we enter in the text box will be assigned to the variable

favorite_food.

Let’s now run the last cell of this Notebook. What do we expect the prints to be?

print ("Hi! My name is " + name) print Hi! My name is concatenated with
name

print ("My favorite food is " + print My favorite food is concatenated

favorite_food) with favorite_food

print (name + "'s favorite food is " + print name concatenated with 's favorite

favorite_food) food is concatenated with favorite_food

Hi! My name is Serena

My favorite food is pasta

Serena's favorite food is pasta
At line 1, we print out the union of the string "Hi! My name is " and the value assigned to the vari-
able name. When dealing with strings, the symbol + is called a concatenation symbol, not plus! Con-
catenating simply means chaining together. + allows us to merge strings, and we can pronounce it as
concatenated with.

20

Chapter 2. Events and favorites

We have now learned the very basics on which we will build our coding skills and knowledge. Now
let’s take just a few minutes to complete the following exercise, which will help us summarize clearly
the syntax we have learned so far!

Fill in the gaps by inserting what each word is and its color in Jupyter Notebook. See the example in

the first sentence:

1. input()isa built-in function and is colored green

2. Alsoprint()isa and is colored

3. nameisa and is colored

4, "My favorite food is"isa and is colored

5. =isthe and is colored

6. +isthe and is colored too.

¢ In coding, we assign values to variables

e The symbol = is the assighment operator (and not the equals symbol!), and it can be pronounced is
assigned

e The symbol +isthe concatenation symbol when dealing with strings (and not the plus symbol!), and
it can be pronounced concatenated with

When we write code, we inevitably make mistakes, and we get error messages. Getting error
messages is hormal when coding. It’s important to learn how to read error messages so that we
can fix errors quickly and keep coding. There are different kinds of errors, and we'll learn how
to fix them over the course of the book. This is an example of an error:

NameExrror Traceback (most recent call last)
<ipython-input-6-a0c307bd3f14> in
———=> 1 print ("Hi! My name is " + ame)

2 print ("My favorite food is " + favorite_food)

3 print (name + "'s favorite food is " + favorite_food)
NameError: name 'ame' is not defined

When encountering an error, we have to perform two steps:

1. Read the last line of the message, which tells us what type of errors we have made
2. Look for the green arrow, which shows us the line where the error is.

21

Part 1. Creating the basics

In this case we are dealing with a Name error. The last line of the message says: NameError:
name 'ame' is not defined . Thisisavery common error message. It means that there is not
variable 'ame' in your code. This error message usually pops up in two cases: when we misspell
a variable name, or when we have not run a previous Jupyter Notebook cell containing the ini-
tialization (or creation) of the variable. In this example we have misspelled the variable 'name".
This variable is present at lines 1 and 3. Which line should we look at? The arrow pointing at
line number 1 shows us that the erroris at line 1, where we can see that we typed 'ame' instead
of 'name'. So we can correct the typo, rerun the cell, and quickly move on with coding! Another
very common error message is the following:

"<ipython-input-1-daed5bd3bl7e>" 1
print ("Hi! My name is " name)
A

SyntaxError: invalid syntax

In this case we have made a syntax error. The last line of the message says: SyntaxError:
invalid syntax, which means that we have forgotten some symbol or punctuation. Where is
the error? For syntax errors, we look at two lines in the message: at the end of the very first
line, we see that we made the error at line 1; after the line of code, we see a hat symbol * that
shows us the part of the command where there is something missing.

Ready to exercise? Let’s go!

22

. At the gym. You are the manager of a gym and you have to register a new person. What vari-
ables would you create? Write three variables, assign a value to each of them (make sure they

are strings!), and print them out.

. At a bookstore. You are the owner of a bookstore and you want to create a book catalog. You start
with the first book: Code Girls by Liza Mundy. You create two variables, book title and author, assign
them the actual title and author, and print them out. Then, pick a book of your choice, create the

two variables again, assign the corresponding values, and print them out.

. Where are you from? Ask a person what country they come from and where they live. Then print

out three sentences like in cell 5 of the code in this chapter.

. What's your favorite song? Ask a person their favorite song and favorite singer. Then print out three

sentences like in cell 5 of the code in this chapter.

PART 2

INTRODUCTION TO
LISTS AND IF/ELSE
CONSTRUCTS

In this part, you will learn about lists, which are simply lists of elements of various types—for example,
strings. You will also learn how to manipulate them, that is, how to add, remove, or replace one or
more elements. And finally, you will learn if/else constructs, which allow for executing code based on

conditions. Ready? Let’s go!

3. In a bookstore

Lists and if... in... / else...

What does a list look like? And how do we use if/else conditions? To answer these questions, let’s
open Jupyter Notebook 3 and begin! Read the following example aloud and try to understand it:

e You are the owner of a bookstore. On the programming shelf there are:
books = ["Learn Python", "Python for all", "Intro books is assigned Learn Python,

to Python"] Python for all, Intro to Python
print (books) print books

e A new customer comes in, and you ask what book she wants:
wanted_book = input("Hi! What book would you like wanted book is assigned input Hi!
to buy?") What book would you like to buy?

print (wanted_book) print wanted book

e You check if you have the book, and you reply accordingly:

if wanted_book in books: if wanted book in books
print ("Yes, we sell it!") print Yes, we sell it!
else: else
print ("Sorry, we do not sell that book") print Sorry, we do not sell that
book

What does the code above do? Get some hints by completing the following exercise.

True or false?

1. Onthe programming shelf there are 2 books T F
2. Ifthe customer wants a book that is in the programming shelf, you print: Yes, we sellit! T F
3. The if/else block allows us to execute commands based on conditions T F

Computational thinking and syntax

Let’s analyze the code line by line, starting with the first cell:

books = ["Learn Python", "Python for all", "Intro books is assigned Learn Python,
to Python"] Python for all, Intro to Python
print (books) print books

['Learn Python', 'Python for all', 'Intro to Python']

On line 1 there is a variable called books, to which we assign a sequence of elements of type string:
"Learn Python","Python for all",and"Intro to Python". Theelements are separated by commas
and they are in between square brackets. A variable with this syntax is called list. In our code, books is
a variable of type list whose elements are of type string. In other words, we can say that books is a list
of strings. A list is defined as follows:

25

Part 2. Introduction to lists and if/else constructs

Alist is a sequence of elements separated by commas ,
and in between square brackets [1]

As its name says, a list is literally a list of elements, similar to a shopping list or a to-do list. It can
contain elements of various types, such as strings, numbers, etc. For now, we will consider only lists
of strings.

Let’s run the second cell:

wanted_book = input("Hi! What book would you like wanted book is assigned input Hi!
to buy?") What book would you like to buy?
print (wanted_book) print wanted book

Hi! What book would you like to buy? Learn Python

Learn Python

You are now familiar with the code in this cell. Briefly summarized, on line 1 we created a variable
called wanted_book, which contains the user’s answer to the question: Hi! What book would you
like to buy? Then,on line 2, we printed the value contained in the variable wanted_book.

Let’s run the third cell:

if wanted_book in books: if wanted book in books
print ("Yes, we sell it!") print "Yes, we sell it!"
else: else
print ("Sorry, we do not sell that book") print "Sorry, we do not sell that
book"

Yes, we sell it!

Here, we finally meet the if/else construct. Let’s learn how it works by starting from lines 1 and
2. These lines say if wanted_book, which is "Learn Python", is in books, which is ["Learn Python",
"Python for all", "Intro to Python"] (line 1), print "Yes, we sell it!" (line 2). In line 1, we
check whether the value assigned to the variable wanted_book is one of the elements of the list books.
If that is the case, then we move to line 2 and print out a positive answer to the user.

What if wanted_book is not in the list? Let’s rerun cell 2 and enter a book that is not in the list:

wanted_book = input("Hi! What book would you like wanted book is assigned input Hi!
to buy?") What book would you like to buy?
print (wanted_book) print wanted book

Hi! What book would you like to buy? Basic Python

Basic Python

In this case, what do you expect when running the cell below? Let’s run it:

if wanted_book in books: if wanted book in books
print ("Yes, we sell it!") print Yes, we sell it!
else: else
print ("Sorry, we do not sell that book") print Sorry, we do not sell that
book

Sorry, we do not sell that book

26

Chapter 3. 1In a bookstore

We start again from line 1, where we read if wanted_book, which now is "Basic Python",isin books,
whichis ["Learn Python", "Python for all", "Intro to Python"].Butthistime, "Basic Python"
isnotinthe list books. So we skip line 2, go directly to line 3—where there is else—and proceed to line
4, where we print the string "Sorry, we do not sell that book".

As you can deduce from the example above, in an if/else construct, code is executed depending on
the truthfulness of acondition. If the conditionin the i f lineis met, or true, we execute the underlying
code. Otherwise, if the condition in the if line is not met, or false, then we execute the code under
else. Therefore, we can define the if/else construct as follows:

An if/else construct checks whether a condition is true or false,
and executes code accordingly:
if the condition is met, the code under the if condition is executed;
if the condition is not met, the code under else is executed.

Let’s now focus on the syntax. An if/else construct is composed of four parts, explained below:

e if condition (line 1) contains a condition that determines code execution. It is made up of three
components: (1) the keyword if, colored bold green in Jupyter Notebook, (2) the condition itself,
and (3) the punctuation mark colon:

e Statement (line 2) contains the code that gets executed if the condition at line 1 is met

e else (line 3) implicitly contains the alternative to the condition on line 1. This line is always com-
posed of the keyword else followed by the colon:

e Statement (line 4) contains the code that gets executed if the condition at line 1 is not met

Note: else and its following statements are not mandatory. There are cases when we do not want to
doanythingif the conditions are not met. Some examples of this scenario are provided in the following
chapters.

Before concluding, let’s zoom even more into these lines and focus on two more aspects: membership
conditions and indentation. In coding, we can use various types of conditions, and you will see these
throughout the book. In this case, we have a membership condition: wanted_book in books (line 1),
where we check whether a variable contains one of the elements of a list. In a membership condition,
we write: (1) variable name, (2) in, and (3) the list in which we want to find the element. in is a mem-
bership operator. In Jupyter Notebook, this is colored bold green, like keywords. In general, make
sure not to confuse keywords, in bold green, with built-in functions, in fainter green.

Finally, notice that the statements under the if condition (line 2) and under the else (line 4) are al-
ways indented, which means shifted toward the right. An indentation consists of 4 spaces, or 1 tab.
In Jupyter Notebook, when pressing enter or return after writing the if or else lines, the cursor is
always automatically placed at the right indented position. Under an if or an else condition, we can
write as many commands as we want, but they must be indented correctly to be executed.

27

Part 2. Introduction to lists and if/else constructs

Up to this point, you have already learned quite a lot of syntax. Complete the following table by using
the example in the first row to summarize the syntax you know so far.

Code element What it is What it does

books A variable of type list It contains a sequence of strings

wanted_book

"Learn Python"

if

in

else

input()

print()

Lists are a Python type that contain a sequence of elements (for example, strings) separated by
commas, and in between square brackets []
The if/else construct allows us to execute code based on conditions

e The membership operator in verifies whether an elementisin a list
In Python, we use indentation for statements below if or else

One of the fundamental criteria when writing code is readability. It is important to write code
that is easy to read both for our future selves and for others. One of the ways to make code
readable is to create meaningful variable name. As an example, let’s consider the code we an-
alyzed in this chapter. On line 1 of cell 2 we created the variable wanted_book:

wanted_book = input("Hi! What book would you like answer is assigned input
to buy?") Hi! What book would you
like to buy?

Instead of wanted_book, we could have named the variable answer:

answer = input("Hi! What book would you like to answer is assigned input
buy?") Hi! What book would you
like to buy?

28

Chapter 3. 1In a bookstore

The name answer is logically consistent because this variable contains the answer to the ques-
tion "Hi! What book would you like to buy?". However, answer is not the best choice be-
cause it is a very generic variable name. Variable names should be pertinent, representing the
information they contain. Consider having 10 input () commands in the code. What do we call
the corresponding variables? We don’'t want to call them answer_1, answer_2, ..., answer_10; it
would be hard to remember what we assigned to answer_7, for example. Or, if we later decide
to reshuffle some questions, then we will have to rename the variables to make sure the num-
bers increase consistently. This would generate a lot of confusion and increase the possibility
of errors.

Back to the previous example, the name answer would also not be meaningful in the following
line of code from cell 3:

if answer in books: if answer in books

It does not make much sense to look for an answer in a list of books! But it makes more sense
to look for a wanted book in a list of books:

if wanted_book in books: if wanted book in books

For each of the following scenarios, create code similar to that presented in this chapter.

1.

In an art gallery. You are the owner of an art gallery. Write a list of some paintings you sell. A new
customer comes in, and you ask what painting she wants to buy. You check whether you have that
painting and reply accordingly.

. Inatravel agency. You are the owner of a travel agency. Write a list of some travel destinations you

sell tickets for. A new customer comes in, and you ask where he wants to go. You check whether
you offer that travel destination and reply accordingly.

. In a chemical lab. You are the manager of a lab. On a shelf there some jars containing chemicals.

Write a list containing the names of the chemicals. One of the lab members comes to you and you
ask what chemical she wants. You check in your system whether you have that chemical and reply
accordingly.

Inatearoom. You are the owner of atearoom. Write alist of teas you offer. Anew customer comes
in, and you ask what tea he wants. You check on the menu whether you serve that tea and reply
accordingly.

29

4. Grocery shopping

List methods: .append() and .remove()

What are methods? Andwhatdo . append() and . remove () do? Toanswer this questions, open Jupyter
Notebook 4 and follow along. Let’s start with the following example:

e You are going to a grocery store where you have to buy some food:

shopping_list = ["carrots", "chocolate", "olives"] shopping list is assigned
carrots, chocolate, olives
print (shopping_list) print shopping list

e Right before leaving home, you ask yourself if you have to buy something else. If the item is not in
the list, you add it:

new_item = input ("What else do I have to buy?") new item is assigned input What
else do I have to buy?
if new_item in shopping_list: if new item in shopping list
print (new_item + " is/are already in the print new item concatenated with
shopping list") is/are already in the shopping
list
print (shopping_list) print shopping list
else: else
shopping_list.append(new_item) shopping list dot append new item
print (shopping_list) print shopping list

e Finally, you ask yourself if you have to remove an item. If so, you remove the item from the list:

item_to_remove = input ("What do I have to item to remove is assigned input
remove?") what do I have to remove?
if item_to_remove in shopping list: if item to remove in shopping
list
shopping_list.remove(item_to_remove) shopping list dot remove item to
remove
print (shopping_list) print shopping list
else: else
print (item_to_remove + " is/are not in the print item to remove concatenated
shopping list") with is/are not in the shopping
list
print (shopping_list) print shopping list

To get a better idea of what happens in this code, match the sentence halves in the following exercise.

30

Chapter 4. Grocery shopping

Match the sentence halves

1. Thevariable shopping_list contains

If the new item is not in the shopping list
If the item to remove is in the shopping list
The method . append() allows us

. we remove it from the shopping list

. to remove an element from a list
"carrots", "chocolate",and "olives"
. we add it to the shopping list

A wwbd
oo n T w

The method . remove () allows us . to add an element at the end of alist

Computational thinking and syntax

Let’s dig into the code by running the first cell:

shopping_list = ["carrots", "chocolate", "olives"] shopping list is assigned
carrots, chocolate, olives
print (shopping_list) print shopping list
['carrots', 'chocolate', 'olives']

We start with a list called shopping_1list, which contains three strings: "carrots", "chocolate", and
"olives" (line 1). Then, we print the shopping list to the screen (line 2).

What does . append() do? Let’s run the second cell:

new_item = input ("What else do I have to buy?") new item is assigned input What
else do I have to buy?
if new_item in shopping_list: if new item in shopping list
print (new_item + " is/are already in the print new item concatenated with
shopping list") is/are already in the shopping
list
print (shopping_list) print shopping list
else: else
shopping_list.append(new_item) shopping list dot append new item
print (shopping_list) print shopping list

What else do I have to buy? carrots

carrots is/are already in the shopping list

['carrots', 'chocolate', 'olives']
Inthis cell, we ask the user to input a new item to buy, and the answer is saved in the variable new_item
(line 1). Then, we act according to the value contained in new_item. If new_item is already in
shopping_list (line 2), we print out a message saying that the item is already in the shopping list (line
3). To make the message more precise, we concatenate the string in new_item with the string "is/are
already in the shopping list". Then,we print out the shopping list to check that the item is actu-
ally in the list (line 4).

31

Part 2. Introduction to lists and if/else constructs

What if the item is not in the shopping list? Let’s rerun the cell and enter an item that is not in the list:

new_item = input ("What else do I have to buy?") new item is assigned input What
else do I have to buy?
if new_item in shopping_list: if new item in shopping list
print (new_item + " is/are already in the print new item concatenated with
shopping list") is/are already in the shopping
list
print (shopping_list) print shopping list
else: else
shopping_list.append(new_item) shopping list dot append new item
print (shopping_list) print shopping list
What else do I have to buy? apples
['carrots', 'chocolate', 'olives', 'apples']

This time, we entered apples in the text box created by input () (line 1). Because apples is not in the
shopping list (line 2), we skip the commands at lines 3 and 4 and jump directly to the else (line 5) to
execute the commands below. We add the new item to the list (line 6), and we print out the list to
check whether we added the element correctly (line 7).

How do we add a new element to a list? Let’s have a closer look at line 6. Here, the method . append ()
adds the element new_itemto the shopping_list. Note that . append() always adds an element at the
end of a list. As we said, .append() is a method. But what is a method? A preliminary definition (we'll
redefine it when we talk about object-oriented programming, at the end of the book) is as follows:

A method is a built-in function for a specific variable type

You can recognize that methods are functions because they are followed by round brackets. How-
ever, a method has its own syntax, which is composed of four elements: (1) variable name, (2) dot,
(3) method name, and (4) round brackets. In the round brackets, there can be an argument, such as
new_item in this case. Different data types have different methods. For example, .append() can be
used for lists but not for strings. Lists have a total of eleven methods, and we will learn all of them
throughout this book. Methods are colored blue in Jupyter Notebook.

32

Chapter 4.

Grocery shopping

Finally, what does . remove() do? Let’s run the last cell:

item_to_remove = input ("What do I have to
remove?")
if item_to_remove in shopping list:

item to remove is
what do I have to

if item to remove

assigned input
remove?
in shopping

list
shopping list dot remove item to
remove

shopping_list.remove(item_to_xremove)

print (shopping_list)
else:

print shopping list
else

print (item_to_remove + " is/are not in the
shopping list")

print item to remove concatenated
with is/are not in the shopping
list

print (shopping_list) print shopping list

What do I have to remove? olives

['carrots', 'chocolate', 'apples']

This time, we ask the user what item they want to remove (line 1). If the item to remove is in the
shopping list (line 2), then we remove the item (line 3) and print out the resulting list (line 4). How do
we remove an item? We use .remove(), which is the list method to remove an item from a list. The
syntax is the same as for .append() and any other method: list name followed by dot, method name,
and round brackets, which can contain an argument. As an argument, . remove () takes the element to
be removed from the list.

What if we answer the question "What do I have to remove?" withanelementthatisnotinthelist?
Let’s have a look:

item_to_remove = input ("What do I have to item to remove is assigned input

remove?") what do I have to remove?
if item_to_remove in shopping list: if item to remove in shopping
list
shopping_list.remove(item_to_remove) shopping list dot remove item to
remove

print (shopping_list)
else:

print shopping list
else

print (item_to_remove + is/are not in the

shopping list")

print item to remove concatenated
with is/are not in the shopping
list

print (shopping_list) print shopping list
What do I have to remove? grapes

grapes is/are not in the list

['carrots', 'chocolate', 'apples']

In the text box created by input (), we entered grapes (line 1), which is not in shopping_list (line 2).
Therefore, we skip lines 3 and 4 and jump to the else at line 5. There, we print out a message saying
that item_to_remove is not in the shopping list (line 6) and print out the shopping list for final check
(line 7).

33

Part 2. Introduction to lists and if/else constructs

In Python, we use a lot of punctuation marks. Sum up what you have seen so far by completing the
following table, using the example in row 1.

Punctuation symbol What it's called What it does
"tor"" Single quotes or double quotes They contain a strings

()
[]

e The method .append() adds an element at the end of a list
e The method .remove() removes an element from a list

When coding, it is important to keep control of variable’s values. And particularly when learn-
ing to code, every time we create or modify a variable, it's important to make sure the code
does what itis intended to do. Printing is an easy way to check that variable modifications cor-
respond to our intentions. As an example, consider the code in cell 4, and let’s focus on the
if condition and its statements (lines 2-4). Let’s rewrite it without the printing command:

item_to_remove = input ("What do I have item to remove is assigned input
to remove?") what do I have to remove?
if item_to_remove in shopping list: if item to remove in shopping list
shopping_list.remove(item_to_remove) shopping list dot remove item to
remove

What do I have to remove? olives

How do we know that the code actually worked correctly? That is, how do we know whether
‘olives' was actually removed from shopping_list? We can assume that it happened, but
we cannot be sure until we see it with our eyes. So, we need to print. Let’s rewrite the

34

Chapter 4. Grocery shopping

code by adding print () back to line 4:

item_to_remove = input ("What do I have item to remove is assigned input
to remove?") what do I have to remove?
if item_to_remove in shopping list: if item to remove in shopping list
shopping_list.remove(item_to_remove) shopping list dot remove item to
remove
print (shopping_list) print shopping list
What do I have to remove? olives
['carrots', 'chocolate', 'apples']

Because we printed, we can make sure that 'olives' isnotinthe shopping_list. Therefore, our
code accomplished what we intended. Always print extensively when coding; you can always
remove the print () function later on.

1. For each of the following scenarios, create code similar to the one presented in this chapter.

a. Organizing an event. You are organizing an event. Write a list of what you need to buy. Then
ask your co-organizer what else you have to buy. If the item is not in the list, add it. Finally,
ask your co-organizer if there is anything you need to remove from the list. If so, remove the
item from the list.

b. Favorite cities. Write a list containing names of cities. Ask a friend their favorite city. If the
cityis notinthe list, add it. Then, ask your friend if they do not like one of the cities you listed.
If so, remove the city from your list.

2. Shoe store. You are the owner of a shoe store, and you have to place a new order for the next sum-
mer season. You go to the storage room, and you create a list of the remaining shoes: sneakers,
boots, ballerinas. You know that in summer your customers will want sandals, so you add them to
the list. However, they are not going to buy boots, so you remove them from the list. After you
get the new supplies, a new customer comes in. You ask what shoes he wants to try, and he replies
that he'd like to try sandals. You check in your list and reply accordingly. Then you ask if he wants
to have a look at something else, and he replies that he'd like to try boots. You check in your list
again and reply accordingly.

3. Currency exchange office. You work at a currency exchange office. The available currencies are
Euros, Canadian Dollars, and Yen, whereas the Swiss Francis unavailable, so you will have to order
it. Create alist of available currencies and a list of currencies to order. A new customer comes in;
you ask what currency she wants. After she replies, you check in the list of available currencies. If
the currency she wants is available, you tell her that you have it, remove the currency from the list
of available currencies, and add the currency to the list of currencies to order. If the currency she
wants is not available, you tell her that you do not have that currency, and add the currency to the
list of currencies to order.

35

5. Customizing the burger menu

List methods: .index(), .pop(), and .insert()

Let’s learn three more list methods: .index (), .pop(),and .insert (). Open Jupyter Notebook 5, and
read the following example aloud.

e You are at a food court, ready to order. Today’s menu includes a burger, a side dish, and a drink:

todays_menu = ["burger", "salad", "coke"] today's menu is assigned burger, salad,
coke
print (todays_menu) print today's menu

e You are happy with burger and coke, but you want to change the side dish from salad to fries. To do
SO, you:

1. Look at the position of the side dish in the menu:
side_dish_index = todays_menu.index("salad") side dish index is assigned today's
menu dot index of salad
print (side_dish_index) print side dish index

2. Remove salad from the side dish position:

todays_menu.pop(side_dish_index) today's menu dot pop side_dish_index
print (todays_menu) print today's menu

3. Add fries to the side dish position:

todays_menu.insert(side_dish_index, "fries") today's menu dot insert at side dish
index fries

print (todays_menu) print today's menu

What happens in this code? Get some hints by completing the following exercise.

True or false?

—
M

1. Themethod .index() gives us the position of an elementin a list

—
M

2. The position of saladis 2

3. We remove the element in position side_dish_index and insert a new elementinthe T F
same position

4. .index(), .pop(),and .insert() are three string methods T F

36

Chapter 5. Customizing the burger menu

Let’s analyze the details of the code! Let’s run the first cell:

todays_menu = ["burger", "salad", "coke"] today's menu is assigned burger, salad,
coke
print (todays_menu) print today's menu
['burger', 'salad', 'coke'l

We create a list called todays_menu containing three elements of type string—"burger", "salad", and
"coke" (line 1)—and we print it out (line 2).

In the second cell, we meet the new list method . index (). What does it do? Let’s run the cell:

side_dish_index = todays_menu.index("salad") side dish index is assigned today's
menu dot index of salad

print (side_dish_index) print side dish index
1
The method .index() looks for the element "salad" in the list todays_menu and tells us its position.
More technically, we say that .index() takes the argument "salad" and returns its index. The posi-
tion of "salad" is then assigned to the variable side_dish_index (line 1), which we print out (line 2).
Note that in coding, we use the two synonyms index and position interchangeably.

Why is "salad" in position 1 and not 2? This is because in Python we count elements starting from O,
as you can see in Figure 5.1: "burger" is in position O, "salad" in position 1, and "coke" in position 2.

todays_menu = "burger" "salad" "coke"

Finally, note that an element position is a number. In Python, zero, positive, and negative whole num-
bers are called integers, abbreviated as int. In our example, the variable side_dish_index contains
the number 1, and it is of type integer.

Let’s discover what .pop() does by running the next cell:

todays_menu.pop(side_dish_index) today's menu dot pop side_dish_index
print (todays_menu) print today's menu
['burger', 'coke']

The method .pop() removes the element in position side_dish_index from the list todays_menu. In
other words, .pop() takes side_dish_index as an argument and removes the element at that index,
which is "salad". In the previous chapter, we saw another method that deletes an element from a
list: .remove (). What is the difference between the two methods? The method . remove () deletes an
element of a certain value, whereas .pop () deletes an element in a specific position.

37

Part 2. Introduction to lists and if/else constructs

And finally, let’s learn the method .insert (). Let’s run the last cell:

todays_menu.insert(side_dish_index, "fries") today's menu dot insert at side dish
index fries
print (todays_menu) print today's menu
['burger', 'fries', 'coke']

The method .insert() allows us to add an element at a specific index. It takes two arguments: (1)
the index where we want to insert the new element and (2) the value of the new element. In this case,
we want to insert at position side_dish_index, whichis position 1, the string "fries". Similarly, in the
previous chapter we saw another method to add an element to a list: .append(). What's the differ-
ence? The method . append () adds an element at the end of a list, whereas .insert () adds an element
in a specific position of a list.

Finally, when dealing with lists, we must always be aware of that each element has a position. In some
cases, it is more convenient to work directly on the elements and use methods like . append()

and .remove(). In other cases, it is more appropriate to work on elements’ positions, so we use meth-
ods such as .index(), .pop(),and .insert (). Note that .append(), .remove(), .pop(),and .insert()
modify the list. On the other side, . index () gives us some information about the list, and we can save
this information in a separate variable. Lastly, .append(), .remove(), .index(), and .pop() take only
one argument, whereas .insert () takes two arguments, which are position and new element.

So far you have learned five list methods. Summarize what they do by completing the following table.

List method What it does
.append()

.remove()

.index ()

-pop()

.insexrt()

e The method .index() returns the position of an elementin alist

e The method .pop() removes an element in a certain position from a list

e The method .insert () adds an element in a certain position to a list

¢ Indices (or positions) of elements start from 0 and increase in increments of one unit; they are of
type integer

38

Chapter 5. Customizing the burger menu

During a coffee break, a colleague once told me, “Isn’t it crazy that when English speaking peo-
ple code, they actually do it in their own mother tongue? | mean, when they say if, they actually
mean if!” | had never thought about it. For me, an Italian mother tongue, if was just a key-
word composed of two symbols. Reading if book in books or ab book in books was exactly
the same. | had learned to look at keywords and variable names as abstract symbols with no
intrinsic meaning; they were just entities with a specific function. After that conversation, |
mentally translated keywords and variable names into my mother tongue, and everything ac-
qguired much more meaning and made so much more sense! | grasped the importance of vari-
able names (they actually have a meaning in English!), and thus, | started writing commands
like if book in books, instead of if variable_1 in list_1. Now, when | code, | mainly think
in English. But that translation process helped me acquire more awareness and make my code
much more readable. In Chapters 4 and 5, we learned five list methods. Their names actually
have a meaning in English. Remove, insert, and index are pretty straightforward. To remember
that append adds new elements at the end of a list, one can think of the appendix of a book,
which is always at the end, or of the appendix in the intestine, which is somewhere at the end
of the abdomen. To remember pop, one can think of making popcorn, like little explosions, that
here remove elements from a certain position. Whether English is your native tongue or not,
remember that we code in English!

1. For each of the following scenarios, create code similar to that presented in this chapter:

a. Getting a new bike. You go to a bike store to buy your new bike. There you find a bike you like:
it is blue, electric, and has gears. Write a list with these characteristics. You are happy with
the bike being electric and having gears, but you would like to change its color. To do so, you
(1) look at the position of the blue color in the bike option list, (2) remove the blue color, and
(3) add the color you want.

b. Ordering a T-shirt online. You are ordering a new T-shirt online. You find a T-shirt you like,
which is red, with a round neck, and with a print add your text here. Write a list with these
characteristics. Now you want to add your own text to the T-shirt. To do so, you (1) look at
the position of add your text here, (2) remove add your text here, and (3) add the text you want
to be printed on your T-shirt. After completing the exercise, can you think of an alternative
way to change the T-shirt print?

2. Steve Jobs. Given the following list:
steve_jobs = ["somebody", "learn", "use", "a computer", "it teaches us"]

Find out a famous quote by Steve Jobs by doing the following:

a. Add the new string "think" at the end of the list.
b. Add "should" in position 1.

39

Part 2.

Introduction to lists and if/else constructs

c. Add "how to" in position 3. Then also add it in position 7.

d.

Replace "use" with "program".

e. Add "because" after "a computer".

f.

Replace "somebody" with "everybody".

g. Add " - Steve Jobs" attheend.

3. Grace Hopper. Do you know why we say debugging in coding? Let’s find out! Given the following

40

list:
grace_hopper = ["In 1946", "a moth", "caused", "a malfunction", "in an early",
"electromechanical", "computer"]

Modify it by doing the following:

a.

S @ 0 20 T

Replace "In 1946" with "From then on".

Add "we said" after "computer".

Remove the string in position 5(6th element) and add "with a" in the same position.
Remove the string in position 3(4th element).

Substitute (or replace) "a moth" with "when anything".

Remove "in an early".

Add "it had bugs in it" atthe end of the list.

Substitute "caused" with "went wrong".

Add " - Grace Hopper" at the end of the list.

In the previous two chapters, you learned five methods to manipulate lists: .append(), .remove(),
.index(), .pop(), and .insert(). These list methods are very convenient and easy to remember;
however, they can make code quite cumbersome. In Python, thereis an alternative and more compact
way to change, add, and remove list elements, which you will see in the next chapter. This alternative
method is based on slicing; therefore, in this chapter, we will focus on this topic. Ready to get to know
everything about slicing? Open Jupyter Notebook 6 and follow along! First of all, what is slicing?

Slicing means accessing list elements through their indices

If you have a sweet tooth, the word “slicing” immediately reminds you of a slice of cake. And in fact,
there is quite a similarity between slicing a cake and slicing a list! In the first case, you “extract” one
or more cake slices for your guests—and yourself! In the second case, you extract one or more list
elements for subsequent lines of code.

e Let’s meet the list we will slice:

cities = ["San Diego", "Prague", "Cape Town", "Tokyo", cities is assigned San
"Melbourne"] Diego, Prague, Cape
Town, Tokyo, Melbourne
print (cities) print cities
['San Diego', 'Prague', 'Cape Town', 'Tokyo', 'Melbourne']

In this cell, there is a list called cities containing five strings: "San Diego", "Prague", "Cape Town",
"Tokyo",and "Melbourne" (line 1), and we print it out (line 2).

How are we going to slice cities? The syntax for slicing is very easy. It consists of the list name fol-
lowed by opening and closing square brackets, like this: cities[]. In between the square brackets,
we write the positions of the elements we want to slice. For this reason, it’s crucial to be aware of the
positions of each element within a list. In the list cities, the elements have the following positions:

cities = "San Diego" "Prague" "Cape Town" "Tokyo" "Melbourne"

Now, how do we write element positions in between the square brackets? There are various rules
depending on how many elements we want to slice, where they are, and in which direction we want
to extract them. We are going to learn all these rules in the coming pages.

A last note before starting: to better learn about slicing, | suggest this method. Every time youread a
slicing task (for example: Slice "Prague"), cover the following code with a piece of paper. Try to guess

41

Part 2. Introduction to lists and if/else constructs

the code, and compare your guess with the solution. Then carefully read the explanation. Make sure
you fully understand the current example before proceeding to the next one. Enough words, time to
slice!

1. Slice "Prague":

print (cities[1]) print cities in position one
'Prague’
Inthis cell, we slice (or access) "Prague”, whichis in position 1,and we printit. As you can see, whenwe
slice one single element from a list, we write the position of the element itself in between the square
brackets. Thus, we can summarize this syntax as 1ist_name[element_position], and we can read it
as list name in position element position.

Note: For simplicity, in this example and those that follow, we just print the sliced elements. However,
one could assign a sliced element to a variable, like this:

sliced_city = cities[1] sliced_city is assigned cities in position
one
print (sliced_city) print sliced_city
'Prague’

We will assign sliced list elements to variables in the following chapters. For now, let’s focus on un-
derstanding how slicing works!

2. Slice the cities from "Prague" to "Tokyo":

print (cities[1:4]) print cities in positions from one to four
['Prague', 'Cape Town', 'Tokyo']

Inthis cell, we slice and print three consecutive elements—"Prague", "Cape Town",and "Tokyo"— that
are at positions 1, 2, and 3, respectively. In between the square brackets, we write two numbers,
separated by a colon :. The first number is the position of the first element we want to slice, and we
call it start. In this case, the start is 1, which corresponds to "Prague". The second number is the
position of the last element we want to slice, to which we must add 1. We call it stop. The stop always
follows the plus one rule, which simply says that we must add 1 to the position of the last element
we want to slice (you can learn the reasoning behind this rule in the In more depth section at the end
of this chapter). In this example, the position of the last element (" Tokyo") is 3, to which we must add
1 because of the plus one rule, so the stop is 4. We can summarize the syntax to slice consecutive
elements as 1list_name[start:stop], and we can read it as list name in positions from start to stop.

3. Slice "Prague" and "Tokyo":

print (cities[1:4:2]) print cities in positions from one to four
with a step of two
['Prague', 'Tokyo']
Inthis case, we want to slice and print two non-consecutive elements—"Prague" and "Tokyo"— which
are at positions 1 and 3, respectively. In the code above, you might recognize that 1 is the start, 4 is
the stop (because of the plus-one rule), and 2? That is the step! As you can see, "Tokyo" is positioned

42

Chapter 6. Traveling around the world

2 steps after "Prague": thereis 1 step from "Prague" to "Cape Town",and 1step from "Cape Town" to
"Tokyo",for atotal of 2 steps. Therefore, the syntax to slice non-consecutive elementsis an extension
of the rule we saw in the example above: list_name[start:stop:step], which you can read as list
name from start to stop with step. We can call it the three-s rule, where the three s’s are the initials of
start, stop, and step, respectively.

The most convenient aspect of the three-s rule is that we can simplify it in several situations. For
example, you might wonder: why didn’t we write the step in the example 2, where we sliced the cities
from "Prague" to "Tokyo"? Because when elements are consecutive, the step is 1—"Cape Town"is 1
step after "Prague", and "Tokyo" is 1 step after "Cape Town"—and when the step is 1 we can simply
omit it. Obviously, we could have written the code specifying the step as follows:

print (cities[1:4:1]) print cities in positions from one to four

with a step of one
['Prague', 'Cape Town', 'Tokyo']

However, adding the step here is a redundancy, so we simply avoid it.

4. Slice the cities from "San Diego" to "Cape Town":

print (cities[0:3]) print cities in positions from zero to three
['San Diego', 'Prague', 'Cape Town']
Here we have to slice consecutive elements. So, we specify the start, which is @ for "San Diego", and
the stop, whichis 3 for "Cape Town", but we can omit the step because it is 1. Interestingly, in this case
we can simplify the three-s rule even more! Because the start coincides with the first element of the
list, we can simply omit it:
print (cities[:3]) print cities from the beginning of the list

to position three
['San Diego', 'Prague', 'Cape Town']

5. Slice the cities from "Cape Town" to "Melbourne":

print (cities[2:5]) print cities in positions from two to five
['Cape Town', 'Tokyo', 'Melbourne’]
Again, we have to slice consecutive elements. Therefore, we specify the start, which is 2 for "Cape
Town", and the stop, which is 5 (because of the plus-one rule) for "Melbourne", but we omit the step
because it is 1. And once more, we can simplify the three-s-rule! How? The stop coincides with the
last element of the list, so we can just omit it:

print (cities[2:]) print cities from position two to the end of
the list

['Cape Town', 'Tokyo', 'Melbourne']

So far, we have seen the three-s rule applied in its entirety (example 3), and without start (example
4), stop (example 5), and step (example 2). How else can we simplify it? Let’s look at the following
example. How do you think the code will look?

43

Part 2. Introduction to lists and if/else constructs

6. Slice "San Diego", "Cape Town",and "Melbourne":

print (cities[0:5:2]) print cities in positions from zero to five
with a step of two
['San Diego', 'Cape Town', 'Melbourne']

Thistime, the elementstoslice are not consecutive. We start at @, whichis the position of "San Diego",
we stop at 5 (because of the plus-one rule) for "Melbourne", and we specify the step, which is 2, be-
cause we are slicing every second element. However, as you might have guessed, because the start
coincides with the beginning of the list, and the stop coincides with the last element of the list, we can
omit both, and rewrite the code above as follows:

print (cities[::2]) print cities from the beginning to the end

of the list with a step of two
'San Diego', 'Cape Town', 'Melbourne']

You have now mastered the three-s rule and learned how to simplify it. How else can we play with it?
Let’s look at this further representation of the list cities:

cities = "San Diego" "Prague" "Cape Town" "Tokyo" "Melbourne"

negative indices

In Python, each element of alist can be identified by a positive or a negative index. We use positive in-
dices when we consider elements from left to right and negative indices when we consider elements
from right to left. Positive indices start from O and increase of 1 unit (0, 1, 2, etc.). Negative indices
start from -1 and decrease of 1 unit (-1, -2, -3, etc.). Note that negative indices do not start from O to
avoid ambiguity: the element in position O is always the first element of the list starting from the left
side. When are negative indices convenient? For example, when we are dealing with a very long list.
In that case, it would be tedious to count through all elements starting from 0. So we can just count
backwards starting from the last element!

How do we use negative indices in slicing? Let’s have a look!

7. Slice "Melbourne":
print (cities[4]) print cities in positions 4

Melbourne

In this example, we extracted "Melbourne" as we learned in example 1: by writing its positive index,
whichis 4,in between the square brackets. However, "Melbourne" is the last element of the list; there-
fore, it is much more convenient to use its negative index to slice it, like this:

44

Chapter 6. Traveling around the world

print (cities[-1]) print cities in position minus one
Melbourne
The advantage of using the negative index is that we do not need to count through all the list elements
to get to know the position of "Melbourne". Since "Melbourne" is the last element of the list, we can
just write -1. This saves us time and eliminates possible errors due to miscounting.

8. Slice all the cities from "Prague" to "Tokyo" using negative indices:

print (cities[-4:-1]) print cities in positions from minus four to

minus one

['Prague', 'Cape Town', 'Tokyo']

This is in an alternative to example 2. There, we extracted the cities from "Prague" to "Tokyo" using
positive indices, whereas here we want to use negative indices. It might look intimidating, but the
reasoning is always the same. The first element we want to extract is Prague, which is in position -4,
therefore the start is -4. The last element we want to extract is Tokyo, which is in position -2, thus the
stopis -1 because of the plus onerule. Like in the previous example, using negative indices can be very

convenient when extracting elements from the end of a long list.

In this example, we saw how to use negative indices for the start and the stop. What about the step?
A negative step allows us to slice elements in reverse order, which means from the right to the left.
Negative steps can be used with both positive or negative start and stop. This might sound confusing,
but we'll clarify it the next three examples. Slicing in reverse order is is a very powerful feature, and
it's the last thing you need to know to master slicing. Let’s have a look!

9. Slice all the cities from "Tokyo" to "Prague" using positive indices (reverse order):

print (cities[3:0:-1]) print cities in positions from three to zero
with a step of minus one
['Tokyo', 'Cape Town', 'Prague']

When slicing—and coding, in general—it is extremely important to be aware of the result we expect.
When slicing in reverse order, having the result in mind can really avoid confusion. So, let’s start from
there. We want to print out "Tokyo", "Cape Town",and "Prague". The first element is "Tokyo", which
is in position 3, so the start is 3. The last element is "Prague", which is in position 1. When we slice
in reverse order, instead of the plus-one rule, we have to use the minus one rule, which says that we
must subtract 1 from the position of the last element we want to slice. Why? This is very intuitive.
As we know, for the stop, we always want to take the next position. When slicing in direct order, the
next positionis ontheright side of the last element. Therefore, we add 1toitsindex. Onthe other side,
when slicing in reverse order, the next position is on the left side of the last element. Therefore, we
subtract 1 from its index. Now, back to our example. The last element is "Prague", whichis in position
1. And because of the minus one rule, the stop is @. Finally, we need to define the step. Because the
elements are consecutive, the step should be 1, but because we are going in reverse order, we have
to put a minus in front of it, so the step becomes -1.

In summary, when slicing in reverse order, we have to: (1) make sure we have the first and the last
elements clearly in our minds, (2) apply the minus one rule to the stop, and (3) use a negative step.

Let’s raise the bar even more now! Look at the next example.

45

Part 2. Introduction to lists and if/else constructs

10. Slice all the cities from "Tokyo" to "Prague" using negative indices (reverse order):

print (cities[-2:-5:-11) print cities in positions from minus two to
minus five with a step of minus one
['Tokyo', 'Cape Town', 'Prague']

When using negative indices for the start and the stop, the rules are exactly the same as when using
positive indices. The first element we want to slice is "Tokyo", which is in position -2, so the start is
-2. The last element is "Prague”, which is in position -4. Because of the minus one rule, we have to
subtract 1 from -4, therefore the stop is -5. And finally, because we are slicing consecutive elements
inreverse order, the stepis -1. As you can now imagine, using negative indices can be very convenient
when slicing elements at the end of a very long list in reverse order.

11. Slice all the cities (in reverse order):

print (cities[::-11) print from the beginning of the list to the
end of the list with a step of minus 1
['Melbourne', 'Tokyo', 'Cape Town',
'"Prague', 'San Diego']

The first element to slice is "Melbourne", which is the last element of the list. Therefore, we can omit
the start. The last element to slices is "San Diego", which is the first element of the list. Therefore,
we can omit the stop too. We just must write the step, which is -1 because we are slicing consecutive
elements in reverse order. Easy to remember!

Last note. Learning slicing might feel overwhelming at first because of all the rules, the use of posi-
tive and negative indices, and thinking of lists in direct and reverse order. However, learning slicing
properly is fundamental not only because it is often used in coding, but also because it allows you to
exercise your brain and strengthen your logical thinking. Take your time to learn the rules and do the
exercises below. You will greatly benefit from it in the following chapters!

Complete the following table to create an overview of slicing in your own words:

Slicing syntax What it does
list_name[index]
list_name[start:stop:step]
list_name[:stop:step]
list_name[start::step]
list_name[start:stop]
list_name[negative_index]
list_name[::negative_step]

list_name[::-1]

46

Chapter 6. Traveling around the world

To slice one element, we use the rule: 1ist_name[element_position]

To slice multiple elements, we use the three-s rule: 1ist_name[start:stop:step], where:

m We can omit: start when we slice from the first element of a list; stop when we slice to the last
element of a list; and step when we slice consecutive elements of a list

m The stop follows the plus one rule when slicing from left to right (direct order), and the minus one
rule when slicing from right to left (reverse order)

The values of element_position, start, stop, and step can be:

m Positive: when considering elements from left to right (direct order)

m Negative: when considering elements from right to left (reverse order)

Negative steps are used to invert lists

So far, we have learned that each list element is associated with an index or position. However,
in Python, each element is actually considered between two positions, as represented in Figure
6.3.

cities = "San Diego" "Prague" "Cape Town" "Tokyo" "Melbourne"

Let’s re-consider example 2, where we extracted the cities from "Prague" to "Tokyo":

print (cities[1:4]) print cities in positions from one
to four
['Prague', 'Cape Town', 'Tokyo']
Using the representation above, we can see that the start is 1 because that is the index that
precedes "Prague"”, the first element to slice. And the stop is 4 because that is the index that
follows "Tokyo", the last element to slice.

For many people, considering elements in-between indices is pretty straightforward. For other
people, considering that elements have one single index—as we have done so far—is easier. My
recommendation is to pick one representation and stick to that. In this book, we will continue
to represent list elements with one single index.

47

Part 2. Introduction to lists and if/else constructs

1. Fruits and veggies. Given the following list:

fruits_and_veggies = ["peppers", "apricots", "carrots", "apples", "zucchini",

"grapes", "cabbage", "oranges", "asparagus", "pears"]

Use slicing to extract:
a. The produce between apples and grapes (included)
b. All the vegetables
c. All the fruits
d. The vegetables between carrots and asparagus (included)
e. The fruits between apples and oranges (included)

2. Clothes, stationery, and electronics. Given the following list:

objects = ["mobile", "t_shirt", "pencil", "laptop", "hat", "ruler", "tv", "pants",

"pen"]

Use slicing to extract:
a. All the clothes
b. All the stationery
c. All the electronics
d. The second and the last stationery items
e. The first and the last electronics items
f. The first and the second clothing items

3. Interior design. Given the following list: interior_design = ["sofa", "curtain", "lamp",

"table", "carpet", "plant", "armchair", "blanket", "vase"]

Use slicing to extract the following elements in direct order (from left to right), once using positive
indices and once using negative indices:

a. All furniture

b. All textiles

c. All decorative elements

d. The pieces composed of 5 letters (count them by hand, no coding required)

4. Botanic garden. Given the following list:

botanic_garden = ["tulip", "pine", "poppy", "palm", "rose", "oak", "daisy",

"eucalyptus"]

Use slicing to extract the following elements, once in direct order (from left to right) and once in
inverse order (from right to left):
a. All flowers
All trees
All flowers and trees starting with p (find them by hand, no coding required)

"pine", "rose",and "eucalyptus"

Q0 T

All flowers and trees

48

Chapter 6. Traveling around the world

5. Travel agency. You are the owner of a travel agency and these are the destinations you offer:

destinations = ["Boston", "Madrid", "Shanghai", "Cairo", "Mexico City", "Copenhagen",
"Seoul", "Casablanca", "Lima", "Vienna", "Bangkok", "Nairobi", "Buenos Aires",
"Athens", "Manila", "Cape Town"]

You also have a list containing additional destinations you want to offer in the future:

future_destinations = ["Tunis"]

a. A new customer comes in and you ask where he would like to go. He replies: Berlin. You
check whether Berlin is part of the destination list. If Berlin is part of the list, you say that
you sell tickets for Berlin. If Berlin is not part of the destination list, you: (1) tell the customer
that you do not sell tickets for Berlin; (2) tell him what European cities are in the destination
list; and (3) add Berlin to the list of future destinations.

b. Because tickets for Berlin are not available, your customer is now thinking about going to
Asia. So you tell him the destinations in Asia. He tells you that he forgot the last two Asian
places you mentioned; so you tell them again. Then, he says he would have enjoyed going to
Hong Kong. But Hong Kong is not an available destination, so you add it to the list of future
destinations.

c. Now you ask your customer if he is interested in going to the American continent, and he
replies: Toronto. You check whether Toronto is part of the list. Similarly to what you did
for Berlin, if Toronto is part of the list, you say that you sell tickets for Toronto. If Toronto
is not part of the destination list, you: (1) tell your customer that you do not sell tickets for
Toronto, (2) tell him what cities on the American continent are in the destination list, and (3)
add Toronto to the list of future destinations.

d. Thecustomer isstillundecided. You think he might be interested in atrip to Africa, so you tell
him all the destinations in Africa. He finally tells you that he wants to go to Cape Town! So you
replace Cape Town fromthe list of destinations with Tunis from the list of future destinations,
and remove Tunis from the future destination list.

e. The customer is finally gone, and you want to create a flyer with all the destinations you of-
fer. To do so, you add the three new future destinations to the list of current destinations (in
what order?), and you print out the destinations you offer for each continent. While doing so,
you notice that Africa only has four destinations. So you add one African destination to the
destination list before printing out the African destinations. And, finally, you close the shop,
go home, and enjoy your evening after a hard day of work!

49

Now that you know everything about slicing, let’s see how to use it to manipulate lists—that is, how
to change, add, or remove list elements. Download and open Jupyter Notebook number 7 from www .
learnpythonwithjupyter.comand follow along. Similarly to the previous chapter, cover the code
in these pages with a sheet of paper. First, try to guess the commands to execute, and then compare
with the code below. Don’t forget to read the code aloud!

Let’s first learn how to change list elements using slicing and assignment.

e Let’s start with the following list:

senses = ["eyes", "nose", "ears", "tongue", senses is assigned eyes, nose, ears,
"skin"] tongue, skin
print (senses) print senses

['eyes', 'nose', 'ears', 'tongue', 'skin']

Thelist senses contains five strings: "eyes", "nose", "ears", "tongue",and "skin" (line 1), and we print
it out (line 2).

e Replace "nose" with "smell":

senses[1] = "smell" senses in position one is assigned
smell
print (senses) print senses
['eyes', 'smell', 'ears', 'tongue', 'skin']

To change one list element, we assign the new value to the list sliced in the element’s position. In
this case, the element we want to replace—"nose"—is in position 1. So, we slice the list in position 1,
and we assign the new string "smell" (line 1). Then, we print the list to check whether the change is
correct (line 2).

At this point, you might ask: Why do | have to learn list manipulation using slicing when | already
know how to do it with methods? For at least three reasons! First reason: to reduce the possibility
of errors. The code at line 1 is an alternative to the code we learned in Chapter 5, where we used
three methods to replace an element, that is:

nose_index = senses.index("nose") nose index is assigned senses dot index
of nose

senses.pop(nose_index) senses dot pop nose index

senses.insert(nose_index, "smell") senses dot insert at position nose

index smell

By usingslicing, we reduce the number of commands from 3to 1, and we do not need to create an extra
variable—nose_index. By writing less code, we minimize the possibility of making errors! Second
reason: slicing makes code writing faster. Imagine you have to replace 4 elements. With slicing,

50

www.learnpythonwithjupyter.com
www.learnpythonwithjupyter.com

Chapter 7. Senses, planets, and a house

you would have to write just 4 lines of code; instead, with list methods, the number of lines required
would be 12! And finally, the third reason: transitioning from list methods to list slicing allows us to
shift from a more concrete to a more abstract way of thinking. As you know, when using list methods,
we use a coding language that is more similar to a natural language. Method names, in fact, are words
in the English vocabulary, such as remove, insert, etc. Instead, when slicing, we use numbers—which
represent element positions—and thus we use (numerical) symbols in place of words. As you can see,
we are building more and more the abstract thinking that coding requires. So let’s keep going!

e Replace "tongue" and "skin" with "taste" and "touch":

senses[3:5] = ["taste", "touch"] senses in positions from three to five
is assigned taste, touch
print (senses) print senses
['eyes', 'smell', 'ears',6 'taste', 'touch']

To change several elements in a list, first we slice the elements we want to substitute, and then we
assign them a list containing the new values. In this case, we want to replace two elements, so we slice
using the three-s rule. The start is the position of "tongue", which is 3, and the stop is the position of
"skin",whichis 4, but it becomes 5 because of the plus onerule. The stepis 1, so we canomit it. Tothe
sliced list, we assign a list containing the new elements, which are the strings "taste" and "touch" (line
1). Finally, we print the list to make sure that the change occurred correctly (line 2).

e Replace "eyes" and "ears" with "sight" and "hearing":

senses[0:3:2] = ["sight", "hearing"] senses in positions from zero to three
with a step of two is assigned sight,
hearing

print (senses) print senses

['sight', 'smell', 'hearing', 'taste', 'touch']

Like in the previous example, we want to replace several elements. So, we begin by slicing the list.
The start is the position of "eyes", which is @ (and can be omitted). The stop is the position of "ears",
whichis 2, but it becomes 3 because of the plus one rule. The two elements are not consecutive, thus
we have to write the step, which is 2. Finally, we assign the list containing the two strings we want to
add: "sight" and "hearing". Note that the two elements we want to replace are not consecutive, but
Python takes care of placing "sight" and "hearing" in the right positions (line 1). At the end, we print
the final list to check the changes we made (line 2).

To add new elements to a list, we can use slicing combined with list concatenation and assignment.
How? Let’s have a look at the following examples!

51

Part 2. Introduction to lists and if/else constructs

e Let’s start with the following list:

planets = ["Mercury", "Mars", "Earth", "Neptune"] planets is assigned Mercury,
Mars, Earth, Neptune
print (planets) print planets
['Mercury', 'Mars', 'Earth', 'Neptune']

We begin with the list planets, which contains four strings: "Mercury", "Mars", "Earth", and
"Neptune" (line 1), and we print it out (line 2).

e Add "Jupiter" at the end of the list:

planets = planets + ["Jupiter"] planets is assigned planets
concatenated with Jupiter
print (planets) print planets
['Mercury', 'Mars', 'Earth', 'Neptune', 'Jupiter']

To add an element at the end of a list, we (1) embed it in a list, (2) concatenate it to the original list,
and (3) assign the result to the original list. It’s less complicated than it sounds! Let’s start from the
farright of line 1. We take the new element " Jupiter"—whichis a string—and we enclose it in square
brackets to transform it into a list: ["Jupiter"]. Why do we need to change "Jupiter" data type?
Because we want to add it to the list planets using concatenation. And, as in string concatenation, we
can concatenate only strings with strings; in list concatenation, we can concatenate only lists with
lists. Note that list concatenation works the same way as string concatenation. Finally, we assign the
result of the operation to the original list planets to actually change it. It is common to say that we
reassign the result to the original list. This whole operation constitutes an alternative to the method
.append(). Finally, we print out the modified list to check the correctness of our code (line 2).

You may have realized that in this example there is no slicing! This is because it’s a special case, where
we add an element at the end of a list—it would be similar if we added an element at the beginning of a
list. We could write planets[@:4] + ["Jupiter"], where planets[0:4] slices all the elements in the
list, but that would be redundant. Let’s see slicing in action in the next two examples!

e Add "Venus" between "Mars" and "Earth":

planets = planets[0:2] + ["Venus"] + planets[2:5] planets is assigned planets from
zero to two concatenated with
venus concatenated with planets
from two to five

print (planets) print planets
['Mercury', 'Mars', 'Venus', 'Earth', 'Neptune',
'Jupiter']

In this case, we want to add an element in the middle of a list. To do so, we (1) split the list in two
segments at the position where we want to insert the new element, (2) insert the new element as a
list by concatenating it with the two list segments, and (3) assign the result to the original list. Like
before, it's easier than it sounds! We want to split the list between "Mars" and "Earth". So, the first
list segment will contain "Mercury" and "Mars". Thus, we slice planets starting from position o, cor-
responding to "Mercury", and stopping in position 2 for the plus one rule; "Mars" is in position 1. The
second list segment will contain "Earth", "Neptune",and "Jupiter". So, weslice starting from position

52

Chapter 7. Senses, planets, and a house

2, corresponding to "Earth", and stopping in position 5 for the plus one rule; "Jupiter" is in position
4. In between the two list segments, we concatenate a new list containing the string "venus"—like
before, we have to change "venus" from a string to a list. We conclude the operation by assigning
the concatenation result to the original list. As you may have realized, this line is an alternative to
the method .insert() (line 1). Finally, we print out the obtained list to check the correctness of the
operation (line 2).

A nice way to think about the whole procedure is to consider a list like a toy train, where each list
element is a car. When we want to insert a new car, for example a restaurant car, we split the train
into two parts in the position where we want the new car to be. Then, we add the first part of the
train to the left side of the restaurant car, and the second part of the train to the right side of the
restaurant car. Thus, we obtain our modified train!

e Add "Uranus" and "Saturn" between "Neptune" and " Jupiter":

planets = planets[:5] + ["Uranus", "Saturn"] + planets is assigned planets from

planets[5:] the beginning of the list to
position five concatenated with
Uranus, Saturn concatenated with
planets from position five to
the end of the list

print (planets) print planets
['Mercury', 'Mars', 'Venus', 'Earth', 'Neptune',
'"Uranus', 'Saturn', 'Jupiter']

To insert several consecutive elements in the middle of a list, we use the same approach as the one
above. We slice the first part of the list planets from the beginning (start omitted) to 5, which corre-
sponds to the position of "Neptune" plus 1. Then, we concatenate the two new elements "Uranus" and
"Saturn" embedded in a list. Finally, we concatenate the remaining part of the list planets, starting
from the position of " Jupiter", which is 5, and stopping at the end of the list (stop omitted). As you’ll
probably notice, when we want to insert several consecutive elements in the middle of a list, we just
embed all the elements in a list (line 1). Finally, we print out the modified list to check whether we
added the new elements correctly (line 2).

Now atrick! We saw that the start of the first list segment and the stop of the second list segment are
omitted. In addition, you may have noticed that the stop of the first list segment coincides with the
start of the second list segment—they are both 5. This is because of the plus one rule applied to the
stop of the first list segment. Therefore, when adding new elements using slicing, we can just count
the stop of the first list segment. That will coincide with the start of the second list segment. The
remaining start and stop can be omitted!

An important note before continuing: in the past three examples, we started analyzing code from
the right side of the assignment symbol. Focusing on that side is quite common because it is where
we define variable changes and operations. Sometimes, we can even start writing code on the right
side of the assignment symbol, and then type the appropriate variable name on the left side. It's very
common to start analyzing or writing code backwards!

53

Part 2. Introduction to lists and if/else constructs

To delete list elements, we can use the keyword del combined with list slicing. This is very easy. Let’s
have a look!

e Consider the following list:

house = ["kitchen", "dining room", "living room", house is assigned kitchen,
"bedroom", "bathroom", "garden", "balcony", dining room, living room,
"terrace"] bedroom, bathroom, garden,
balcony, terrace,
print (house) print house
['kitchen', 'dining room', 'living room', 'bedroom',
' bathroom', 'garden', 'balcony', 'terrace']

We start with a list called house containing 8 strings (line 1), and we print it out (line 2).

e Delete "dining room":

del house[1] del house in position one
print (house) print house

['kitchen', 'living room', 'bedroom', ' bathroom',

'garden', 'balcony', 'terrace']

To delete one elementin alist, we can use del followed by the list sliced at the position of the element
we want to delete. In this case, we want to remove the string "dining room", whichisin position 1, so
we write the keyword del followed by house[1]. del is a keyword that allows us to delete a variable
or some elements in a variable—in this case, some elementsin alist. Like the other keywords we have
seen so far—for example, if and else—del is written in bold green in Jupyter Notebook. As you may
have realized, using del and slicing is an alternative to using the list methods . pop () or . remove () (line
1). After removing the element, we print out the list for checking (line 2).

e Delete "garden" and "balcony":

del house[4:6] del house in positions form four
to six
print (house) print house
['kitchen', 'living room', 'bedroom', ' bathroom',
'terrace']

To delete consecutive elements from a list, we use the same syntax as above: we write the keyword
del followed by the list sliced at the positions of the elements we want to delete. In this example, the
start is the position of "garden", which is 4, and the stop is the position of "balcony", whichis 5,and it
becomes 6 because of the plus one rule (line 1). Then we print out the reduced list (line 2).

e Delete "kitchen", "bedroom" and "terrace":

del house[::2] del house in positions from the
beginning to the end of the list
with a step of two
print (house) print house
['living room', ' bathroom']

54

Chapter 7. Senses, planets, and a house

To delete non-consecutive elements in a list, we use the same procedure as the one above: we write
the keyword del, followed by the list sliced at the positions of the elements we want to remove. In
this example, the start corresponds to "kitchen", which is the first element of the list, so we can omit
it. The stop corresponds to "terrace", which is the last element in the list, so we can omit it as well.
And the stepis 2 because want to delete every second element (line 1). Finally, we print the remaining
list (line 2).

e Delete "house":

del house del house
print (house) print house
NameExrror Traceback (most recent call last)
<ipython-input-13-ef@0756c89224> in
1 del house

————> 2 print (house)
NameError: name 'house' is not defined

Finally, we want to delete the whole house! So we write the keyword del followed by the variable
name house (line 1). This time, we get an error when we print out the list house. It’s a Name Error,
telling us that the variable does not exist anymore (line 2). This is a good error, telling us that we
succeeded in our aim: we deleted the whole variable house!

In the previous four chapters, you learned how to manipulate lists using methods or slicing. Complete
the table below to compare the two different techniques:
List operation List methods List slicing

Adding an element at the be-
ginning of a list

Adding an element in the mid-
dle of alist

Adding an element at the end
of alist

Changing an element in a list

Deleting an elementin alist

e What is different if you want to add, change, or delete several elements? Write your answer here:

55

Part 2. Introduction to lists and if/else constructs

e To change list elements, we can use slicing and assignment

e Toadd list elements, we can combine slicing, concatenation, and assignment
e To delete list elements, we can use the keyword del and slicing

56

The kernel is the component of Jupyter Notebook that executes code. When we run a cell, the
kernel tells Python to execute computations and save variables. Every Notebook has its own
kernel. And when we open a Notebook, a new kernel is automatically created and is ready to
execute code. Now you may ask: Why do we care about the kernel? Because sometimes we
need to interrupt it or restart it to continue running code. Let’s see what this means.

Interrupting the kernel. Consider two cells containing code. In the first cell, we ask a question
using the function input (). In the second cell, we print the variable containing the answer. We
want to execute the code, so we run the first cell. On the left side, we get the star symbol be-
tween the square brackets, indicating that the code is being executed. But before entering the
answer, we mistakenly run the second cell! Now the second cell also gets the star symbol be-
tween the square brackets on the left side, like this:

name = input ("What's your name?") name is assigned input what's your
name?

What's your name? | ‘

print (name) print name

In this case, the situation is frozen and no code gets executed! So we need to interrupt the
kernel. To do that, we can either go to the JupyterLab top bar, then to Kernel, and then Interrupt
Kernel, or we can go to the Jupyter Notebook top bar and press the interrupt kernel button—
thatis, item 7 in Figure 7.1.

B + X O » m C » Code v

After interrupting the kernel, the star symbols in between square brackets disappear, and we
can run each cell again.

Restarting the kernel. Consider the list house from this chapter. Let’s say that we want to delete
the element "dining room", as we did in one of the examples above. But, by mistake, we type
the wrong slicing index—that is, @ instead of 1—deleting "kitchen" in place of "dining room",

Chapter 7. Senses, planets, and a house

like this:

house = ["kitchen", "dining room", house is assigned kitchen, dining
"living room", "bedroom", "bathroom", room, living room, bedroom,
"garden", "balcony", "terrace"] bathroom, garden, balcony, terrace,
del house[Q] del house in position zero
print (house) print house

['dining room', 'living room', 'bedroom',

'bathroom', 'garden', 'balcony','terrace'l]

We want to restore the original variable house and rerun the corrected version of our code—
del house[1]— to obtain the correct result. How do we go back? By restarting the kernel! To
do that, we can either go to the JupyterLab top bar, then Kernel, and then Restart Kernel; or we
can go to the Jupyter Notebook top bar and press the curved arrow (item 8 in Figure 7.1). Then,
we can rerun the cells of the Notebook. As an alternative, we can restart the kernel and rerun
all Notebook cells at once by going to the JupyterLab top bar, then Kernel, and then Restart Ker-
nel and Run all Cells, or to the Jupyter Notebook top bar and pressing the symbol with two ar-
row tips (item 9 in Figure 7.1). You may ask: do | really have to restart the kernel every time |
make a mistake? Not really. In this case, one could just rerun the first cell to bring the variable
house back to its original value, and rerun the second cell with the corrected code. However,
when dealing with multiple variables, or if we make several mistakes for a single variable, it is
good practice to reset the kernel and start from scratch.

. Stephanie Shirley. Do you know the story of Stephanie Shirley? Let’s see what she did! Given the
following list:

stefanie_shirley = ["In 1962", "Stephanie Shirley", "founded", "a software company",

"employing", "only women", "working from home"]

Do the following using list slicing:
a. Replace "founded" with "thrived"
Remove the element in position O (first element)
Replace "employing" with "transferred ownership"
Add "and over the years" between "thrived" and "a software company"
Replace "only women" with "to her staff"
Insert "gradually" in position 4 (fifth element)
Replace "a software company" with "she"
Add "70 millionaires" at the end of the list
Remove "Stephanie Shirley"

@ -0 20 T

j- Replace "working from home" with creating"
k. Insert "The business" at the beginning of the list

Then, redo the same using list methods.

57

Part 2. Introduction to lists and if/else constructs

2.

Tim Berners-Lee. What did Tim Berners-Lee invent? Let’s find it out! Given the following list:

tim_bernerslee = ["Tim Berners-Lee", "invented", "the World Wide Web", "in 1989",
"at CERN in Geneva", "info.cern.ch", "was", "the address of",

"the world's first website and Web server"]

Do the following using list slicing:
a. Remove "info.cern.ch"
Replace "was" with "consists of"
Remove the element in position 1 (second element)
Add "all over the world" atthe end of the list
Replace "the world's first website and Web server" with "about 75 million servers"
Remove the element in position O (first element)
Replace "in 1989" with "Nowadays"
Remove the element in position O (first element)
Replace "at CERN in Geneva" with "it is estimated that"
j. Add "the internet" in position 2 (third element)

@ -0 20 T

k. Remove the element in position 4 (fifth element)

Then, redo the same using list methods.

3. Alan Turing. What happened thanks to Alan Turing’s contributions? Let’s discover it! Given the

58

following list:

alan_turing = ["Turing", "created", "an electromechanical machine", "to crack",

"the Nazi Navy's", "Enigma Code"]

Do the following using list slicing:
a. Replace "the Nazi Navy's" with "shortened the war"
Insert "by two years" in position 5 (sixth element)
Replace "an electromechanical machine" with "his contribution"
Add "saving millions of lives" totheend
Replace "created" with "that"
Remove "to crack"
Replace "Turing" with "It is estimated"

SR -0 20 T

Remove the element in position 5 (sixth element)

Then, redo the same using list methods.

PART 3

INTRODUCTION TO
THE FOR LOOP

In this part, you will learn about the for loop, which is one of the two loops in coding—the other is the
while loop. We will learn its syntax and how to use it to search elements in a list, modify a list, and

automatically create new lists. Let’s go!

8. My friends’ favorite dishes

for... in range()

The for loop is one of the most important constructs in coding because it allows us to repeatedly
execute commands. What does this mean and how does it work? Time to open Jupyter Notebook 8
and answer these questions! Read the following example out loud and try to understand it:

e Here are alist of my friends and a list of their favorite dishes:

1 friends = ["Geetha", "Luca", "Daisy", "Juhan"]

2 dishes = ["sushi", "burgers", "tacos", "pizza"]

e These are all my friends:

1 print ("My friends' names are:")
2 print (friends)

e These are my friends one by one:

1 for index in range (0,4):
2 print ("index:" + str(index))

3 print ("friend:" + friends[index])

e These are all their favorite dishes:

1 print ("Their favorite dishes are:")
2 print (dishes)

e These are their favorite dishes one by one:

1 for index in range (0,4):
2 print ("index:" + str(index))

3 print ("dish:" + dishes[index])

e These are my friends, with their favorite dishes one by one:

1 for index in range (0,4):

2 print ("My friend " + friends[index] +
+ dishes[index])

s favorite dish is

friends is assigned Geetha, Luca,
Daisy, Juhan
dishes is assigned sushi, burgers,
tacos, pizza

print My friends' names are:
print friends

for index in range from zero to four
print index: concatenated with
string of index

print friend: concatenated with
friends in position index

print Their favorite dishes are:
print dishes

for index in range from zero to four
print index: concatenated with
string of index

print dish: concatenated with dishes
in position index

for index in range from zero to four
print My friend concatenated

with friends in position index
concatenated with 's favorite dish
is concatenated with dishes in
position index

Get some hints about what the code does by completing the next exercise.

61

Part 3. Introduction to the for loop

Match the sentence halves

1. Theforloop allows us a. astart and a stop as an argument

2. Thevariable index \ b. how many times commands are repeated
3. Inthefirst loop, the variable index c. torepeat the indented commands

4. The built-in function range () determines d. changes value at each loop

5. The built-in function range () can take e. is assigned the value O

Computational thinking and syntax

Let’s start by running the first cell:

friends = ["Geetha", "Luca", "Daisy", "Juhan"] friends is assigned Geetha, Luca,
Daisy, Juhan
dishes = ["sushi", "burgers", "tacos", "pizza"] dishes is assigned sushi, burgers,

tacos, pizza
There are two lists—friends and dishes—and each contains four strings.

Let’s run the second cell:

print ("My friends' names are:") print My friends' names are:
print (friends) print friends

My friends' names are:

['Geetha', 'Luca','Daisy', 'Jubhan']

We print out the stringMy friends' names are: (line 1) and the content of the list friends (line 2).

Let’s now run the third cell, which contains the first for loop:

for index in range (0,4): for index in range from zero to four
print("index:" + str(index)) print index: concatenated with
string of index
print("friend:" + friends[index]) print friend: concatenated with

friends in position index

index: 0

friend: Geetha

index: 1

friend: Luca

index: 2

friend: Daisy

index: 3

friend: Juhan

The code prints the position and the value of each list element by repeating lines 2 and 3 four times.

How does this happen? Let’s start from line 1, which is the header of the for loop. It consists of five

components:

e for: The keyword starting a for loop. Like all keywords, it is bold green in Jupyter Notebook.

e index: Avariable that is assigned a different value at each loop iteration (we’ll talk more about this
in a bit).

e in: Amembership operator, the same that you learned in the construct if. . .in/else in Chapter 3.

62

Chapter 8. My friends’ favorite dishes

e range(): A built-in Python function. You can recognize this as a function because it is followed
by round brackets and is colored green in Jupyter Notebook—like input () and print (). We'll talk
more about range () in a bit too.

e : thatis, the colon punctuation.

To better understand what this line does, let’s begin from the built-in function range(). It takes two
arguments: @ and 4. They are two integers that we can call—guess what?—start and stop! So, what
does range () do? Create a separate cell in the notebook, and then write and run the following code:
list(range (0,4)) list of range from zero to four
[0,1,2,3]

The built-in function range() returns a sequence of integers spanning from the start (included) to
the stop (excluded because of the plus one rule). In this example, the integers go from @ to 3, and—
guess what again?—they correspond to the indices of the elements of the list friends! Why is there
list()? This is another built-in function that we write here for a proper print out. Don’t worry too
much about it for now. Let’s focus on understanding the for loop!

What do we do with the list of integers created by range ()? We assign them to the variable index!
At each code repetition—or loop, or iteration—index is subsequently assigned a number created by
range(). That s, in the first loop, index is assigned o; in the second loop, index is assigned 1; and so
on. We could call the variable index any name—for example, loop_id, iteration_number. However, it is
convention to call it index, so we will adopt it. Now, what can we do with the variable index? At least
two things!

First, we can print index to keep track of which loop is getting executed, like we do at line 2. In
the first loop, index is assigned @, so we print "index: @". In the second loop, index is assigned 1,
so we print "index: 1"—and so on. Why is str() here? Because we can concatenate only strings
with strings, and index is an integer! So, we need to change the variable type of index from integer
to string. And to do that, we can use the built-in function str (), which transforms a variable into a
string.

Second, we can use index to automatically slice list elements one by one. As you now know, index
changes at every iteration, and it can be assigned values that go from the beginning of a list—that
is, —to the end of a list—in this case 3. Let’s look at line 3 of the cell above. In the first loop, when
index is assigned @, friends[index] is the same as friends[@] —that is, "Geetha". In the second loop,
when index is assigned 1, friends [index] is the same as friends[1],i.e., "Luca". And so on.

The lines below the header—in this example, lines 2 and 3—are called the body of the for loop. They
are always indented, and there can be as many as we want. They get executed for a number of times
determined by the sequence of numbers created by the function range().

63

Part 3. Introduction to the for loop

Before moving to the next cell, let’s summarize what the code at cell 3 does. We have to go through

the three lines of code for a total of four times, like this:

e In the first iteration, index is assigned @ (line 1), so we print index: @ (line 2), and then friends in
position index—which is 2—and thus friend: Geetha (line 3).

¢ Inthesecond iteration, index is assigned 1 (line 1), sowe print index: 1 (line 2),and then friendsin
position index—which is 1—and therefore friend: Luca (line 3).

e In the third iteration, index is assigned 2 (line 1), so we print index: 2 (line 2), and then friends in
position index—which is 2—and therefore friend: Daisy (line 3).

e Inthefourthiteration, index is assigned 3 (line 1), so we print index: 3(line 2),and then friends in
position index—which is 3—and therefore friend: Juhan (line 3).

Being aware of what happens at each loop is fundamental to make sure that our code does what we

expect. Any time you are uncertain about what is happening in a for loop, think about your code line

by line and iteration by iteration, like we did right above. If the code is particularly complicated, you

can also create a table, where you can keep track of each line at each iteration, like this:

Loop for index in range(0,4): print("index:"+str(index)) print("friend:"+friends[index])
First index=0 index: O friend: friends[0] — Geetha
Second index=1 index: 1 friend: friends[1] — Luca

Third index=2 index: 2 friend: friends[2] — Daisy

Fourth index=3 index: 3 friend: friends[3] — Juhan

Before going to the next cell, let’s define the for loop:

Afor loop is the repetition of a group of commands
for a determined number of times.

This definition summarizes the two main features of a for loop.
1. We execute the lines of code that are in the body of the for loop several times
2. The number of times is known and is determined by a sequence of numbers created by the
built-in function range ()

Let’s continue with cell 4:

print ("Their favorite dishes are:") print Their favorite dishes are:
print (dishes) print dishes

Their favorite dishes are:

['sushi', 'burgers', 'tacos', 'pizza']

We printout the string Their favorite dishes are: (line 1) andthe contentof thelistdishes (line 2).

64

Chapter 8. My friends’ favorite dishes

Let’s run cell 5, which contains another for loop:

for index in range (0,4): for index in range from 0 to 4
print("index:" + str(index)) print index: concatenated with
string of index
print("dish:" + dishes[index]) print dish: concatenated with dishes

in position index

index: @

friend: sushi

index: 1

friend: burgers

index: 2

friend: tacos

index: 3

friend: pizza
The header is the same as that of the for loop we met at cell 3, including the start and the stop of the
built-in function range (). Also, line 2—where we print the index value at each iteration—is the same.
However, at line 3 we print out the dish names one by one. Once again, let’s go through the code one

iteration at a time:

e In the first iteration, index is assigned @ (line 1), so we print index: @ (line 2), and then we print
dishes in position index—which is —and thus dish: sushi (line 3)

e Inthe second iteration, index is assigned 1 (line 1), so we print index: 1 (line 2), and then we print
dishes in position index—which is 1—and thus burgers (line 3)

¢ In the third iteration, index is assigned 2 (line 1), so we print index: 2 (line 2), and then we print
dishes in position index—which is 2—and thus tacos (line 3)

e In the fourth iteration, index is assigned 3 (line 1), so we print index: 3 (line 2), and then we print
dishes in position index—which is 3—and thus pizza (line 3).

Finally, let’s run the last cell:

for index in range (0,4): for index in range from zero to four
print ("My friend " + friends[index] + print My friend concatenated
"'s favorite dish is " + dishes[index]) with friends in position index

concatenated with 's favorite dish
is concatenated with dishes in
position index
My friend Geetha's favorite dish is sushi
My friend Luca's favorite dish is burgers
My friend Daisy's favorite dish is tacos
My friend Juhan's favorite dish is pizza
Once again, thereis afor loop. The header is the same as that in the two previous examples: we create
a sequence of integers that go from O to 3, and we assign them to the variable index, one by one at
each iteration (line 1). Just one note: beyond the start and the stop, the built-in function range () can
also take a step as an argument, like so:
for index in range (0,4,1): for index in range from zero to four
with a step of one
As for the start and the stop, the step also works exactly the same way as it does in slicing (Chapter
6). In these examples, we omitted the step because it is 1—that is, we take all the elements of the list.

65

Part 3. Introduction to the for loop

You will play with different step values in the coding exercises at the end of this chapter.

Finally, the body of the for loop is constituted of one line of code, where we print out a sentence com-
posed of four parts, concatenated to each other. The first and the third parts are two strings—"My
friend "and "'s favorite dish is ". Thesecond and the fourth parts are the elements of the lists
friends and dishes sliced at position index (line 2). As you’ll notice, we can use index to simultane-
ously slice several lists of the same length at the same position within one for loop.

Complete the following sentences to summarize the for loop syntax and functionality in your own
words:

Aforloopis

Afor loop header is

Afor loop body is

forisa and is colored in Jupyter Notebook.

LA A

indexisa andiscolored in Jupyter Notebook.

It is assigned

6. range()isa and is colored in Jupyter Note-
book. It can take three arguments: , ,and
. It returns

7. Aniterationor loop is

e Aforloopis the repetition of commands for a defined number of times

e When the for loop is used to slice a list, the number of times coincides with the list length

e The generic syntax of a for loop header is: for index in range(start, stop, step):

e The body of afor loop is indented and can contain as many lines of code as needed

e range() is a built-in Python function that creates a sequence of integers spanning from the start
(included) to the stop (excluded)

e str() isabuilt-in Python function that converts a variable into a string

When executing afor loop, we might encounter twoerrors: index errors and indentation errors.
Let’s see why they happen and how to fix them!

66

Chapter 8. My friends’ favorite dishes

Index error. Let’s modify the example in cell 3 by changing the stop to 5 (instead of 4). When we
run the cell, we get the following error.

for index in range (0,5): for index in range from zero
to five
print("index:" + str(index)) print index: concatenated
with string of index
print("friend:" + friends[index]) print friend: concatenated
with friends in position
index
index: 0
friend: Geetha
index: 1

friend: Luca
index: 2
friend: Daisy
index: 3
friend: Juhan
index: 4
IndexError Traceback (most recent call last)
<ipython-input-13-ef@0756c89224> in
1 for index in range (©,5):
2 print ("index: " + str(index))
-————> 3 print ("friend: " + friends[index])
IndexError: list index out of range

Let’s decipher the error message. As you know from Chapter 2, we start reading from the last
line, which informs us about the type of error: IndexError: list index out of range. This
means that we are trying to slice a list in a position that does not exist. Where do we do this?
Let’s look for the arrow. It points to line 3, where we slice friends in position index. What'’s
the value of index? From the last line of the printouts, we can see that index is 4. Thus, we are
trying to slice the list friends in position 4, which does not exist. Fixing this error is easy: we
just correct the stop in range() to 4.

IndentationError. The indentation error is very easy to recognize and fix. Let’s look into this

example:
for index in range (0,4): for index in range from zero
to four
print("index:" + str(index)) print index: concatenated
with string of index
"/var/ipykernel_54813/8597.py" 2
print ("index: " + str(index))

IndentationError: expected an indented block

Again, we start reading from the last line of the error message, whichsays: IndentationError:
expected an indented block. This means that we did not indent a line of code. Where?
The message says line 2 at the end of its first line. The fix is straightforward: we
just indent line 2. A last note: Jupyter Notebook (and other editors) help us avoid
the indentation error by positioning the cursor correctly when we press enter after a

67

Part 3. Introduction to the for loop

line terminated by a colon (:)—that is, after a for loop header, an if or else condition, a while loop
header (Chapter 17), a function definition (Chapter 28), or a class definition (Chapter 35).

1. For each of the following scenarios, create code similar to that presented in this chapter.

a. Capitals of the world. Write two lists, one containing countries of the world and the other
containing their capital cities. First, print out all the countries as a list and all the countries
one by one. Then, print out all the cities as a list and all the cities one by one. Finally, print out
each country with its capital.

b. Animals of the world. Write two lists, one containing animals of the world and one containing
the continents (or countries) where they live. First, print out all the animals as a list and all
the animals one by one. Then, print out all the continents as a list and all the continents one
by one. Finally, print out each animal with the continent where it lives.

2. Mountains and rivers. Given the following list:

mountains_rivers = ["everest", "mississipi", "yosemite", "nile", "mont blanc",

"amazon"]

Print:
a. All elements as a list
All elements one by one using a for loop
Mountains using slicing
Mountains one by one using a for loop (tip: remember that range() can have three argu-
ments: start, stop, step)
Rivers using slicing
Rivers one by one using a for loop (what start do you use?)
All elements in reverse order using slicing
All elements in reverse order, one by one, using a for loop (what start, stop, and step do you

& n T

> @ 0

use?)

3. Wild animals. Given the following list:

wild_animals = ["eagle", "bear", "parrot", "tiger", "pelican", "coyote"]

Print:

a. Allanimals as a list

All animals one by one using a for loop
Mammals using slicing
Mammals one by one using a for loop
Birds using slicing
Birds one by one using a for loop (what start do you use?)
All animals in reverse order using slicing
All animals, one by one, in reverse order using a for loop

@~ 0 Q20 T

68

9. At the zoo

For loop with if... ==... / else...

Can we combine for loops and if/else constructs? Yes! How? Open Jupyter Notebook 9 and follow

along. Read the following example aloud, and try to understand how it works:

e You are at the zoo and you write down a list of some animals you see:

1

2

animals = ["giraffe", "penguin",
"dolphin"]
print (animals)

e Then you print out the animals one by one:

u B W N B

for each position in the list

for i in range (@, len(animals)):
print ("--- Beginning of loop ---")
print each element and its position
print ("The element in position " +

str(i) + is + animals[i])

e You really wanted to see a penguin:

1

wanted_to_see = "penguin"

animals is assigned giraffe, penguin,
dolphin
print animals

for each position in the list

for i in range from zero to len of animals
print beginning of loop

print each element and its position

print the element in position concatenated
with string of i concatenated with is
concatenated with animals in position i

wanted to see is assigned penguin

e Once home, you tell your friend the animals you saw, specifying which one you really wanted to

see:

for each position in the list
for i in range (@, len(animals)):
if the current animal is
what you really wanted to see
if animals[i] == wanted_to_see:

print out that that's the animal
you really wanted to see

print ("I saw a " + animals[i] +

" and I really wanted to see it!")

else:
just print out what you saw
print ("I saw a " + animals[i])

for each position in the list

for i in range from zero to len of animals
if the current animal is what you really
wanted to see

if animals in position i equals wanted to
see

print out that that's the animal you
really wanted to see

print I saw a concatenated with animals in
position i concatenated with and I really
wanted to see it!

else:

just print out what you saw

print I saw a concatenated with animals in
position i

What'’s happening in this code? Get some hints by completing the following exercise.

69

Part 3. Introduction to the for loop

1. Wecaninclude a condition in a for loop using an if/else construct T F
2. The built-in function 1en() returns the number of elements in a list T F
3. The hash symbol # starts a new line of code T F
4. The ==symbol checks whether two variables are different T F
Let’s start by running the first cell:

animals = ["giraffe", "penguin", animals is assigned giraffe, penguin,

"dolphin"] dolphin

print (animals) print animals

['giraffe', 'penguin', 'dolphin']

We consider a list called animals containing three strings: "giraffe", "penguin”, and "dolphin" (line
1), and we print it out (line 2).

Let’s run the second cell:

for each position in the list for each position in the list

for i in range (@, len(animals)): for i in range from zero to len of animals
print ("--- Beginning of loop ---") print beginning of loop
print each element and its position print each element and its position
print ("The element in position " + print the element in position concatenated
str(i) + " is " + animals[i]) with string of i concatenated with is

concatenated with animals in position i

--- Beginning of loop ---

The element in position @ is giraffe

--- Beginning of loop ---

The element in position 1 is penguin

--- Beginning of loop ---

The element in position 2 is dolphin
We run the for loop three times, and each time we print out the lines 3and 5. Let’s diginto the code to
understand it better! The header of the for loop at line 2 contains two changes from the syntax we saw
in the previous chapter. First, we use the abbreviation i for the variable index. Shortening names of
frequently used variables is common in coding because it reduces the amount of typing required. Some
abbreviations become conventions—like in this case—so, from this point on we will use i. Second,
instead of an integer, we use len(animals) as the stop in the built-in function range(). If we used
an integer, then the stop would be 3, because the last element—"dolphin"—is in position 2, to which
we add 1 for the plus one rule. But what if we added another element to the list? We would have
to remember to modify the stop from 3 to 4. As you can imagine, this practice is very prone to error,
as it’s easy to forget to update the stop or miscount the last element position. Therefore, we do not
want to hard-code the stop—that is, to explicitly write its value. We want to make it dependent on
the variable we are dealing with so that we do not have to take care of possible variations. To do so,
we use len(), which is a built-in function that returns the length of a variable—that is, 3 for the list
animals. We can use this trick because the length of a list is always one unit more than the index of

70

Chapter 9. At the zoo

the last element; therefore, it coincides with the stop. From this point on, we will not need to count
to find the stop—1en() will do it for us!

Let’s analyze the body of the for loop. At line 3, we print a string stating that we are at the beginning
of aloop. It is meant to be visually different to make the printouts of each iteration easy to identify.
Beyond Beginning of loop, we could use sentences like New iteration, New loop, etc. To increase the
visibility, we can also use symbols before and/or after the text—such as dashes (- - -) in this example.
Alternatives can be arrows (- ->), tildes (~~~), or any other character on the keyboard. At line 5, we
print out each element and its position in a sentence composed of four parts concatenated to each
other. The first and the third parts—"The element in position " and" is "—aretwo hard-coded
strings. The second element is the index of the current loop. It’s aninteger, so we use the built-in func-
tion str() to convert it into a string. Finally, the last element (animals[i]) is a string, containing a list
element sliced in a different position i at each iteration—that is, "giraffe", "penguin", or "dolphin".

Finally, lines 1 and 4 start with the hash symbol (#) and are followed by text. These lines are called
comments. What are they? Let’s give a definition:

Comments are code descriptions or explanations.

Comments are a fundamental component of coding. They can contain descriptions of the code, or
explanations about why we made a certain coding choice, or any other information that is relevant
to understand the code they refer to. Comments are in light green in Jupyter Notebook, and they are
above and aligned with the line/s they explain. For example, the comment at line 4 refers to the code
at line 5, so it is indented and aligned with line 5. You might wonder why we write comments. For at
least two reasons. First reason: to make code readable for us and others. When reading old code, we
rarely remember why we wrote what we wrote—yes, even if we wrote it ourselves! Similarly, whenwe
read somebody else’s code, it is often hard to understand what they did and why, if the code is not well
commented. Second reason: to keep track of what we are doing. When writing code, we sometimes
concentrate on small details and lose the big picture. In these cases, we can end up asking ourselves:
why am | writing this again? Using comments to outline code can help us keep track of the steps we
have to implement—that is, to write. Finally, how do we write useful comments? That’s simple: use
precise language. Writing # here is a for loop does not add any information to code because a
loopis clearly visible. It is more meaningful to describe what the for loop does and why; for example,
using a for loop to browse a list and print out its elements one by one. Also, don’t take
any line of code for granted. It’s really so easy to forget why we wrote that line of code that way! In
general, remember that comments are written for human beings, not for Python. As a matter of fact,
Python skips comments when it reads our code. Try to add an hash front of a line of code yourself:
Python is not going to execute it!

Let’s run the next cell:

wanted_to_see = "penguin" wanted to see is assigned penguin

We create a variable called wanted_to_see to which we assign the string "penguin".

71

Part 3.

Introduction to the for loop

Let’s run the last cell:

for each position in the list
for i in range (@, len(animals)):
if the current animal is
what you really wanted to see
if animals[i] == wanted_to_see:

print out that that's the animal
you really wanted to see

print ("I saw a " + animals[i] +

" and I really wanted to see it!")

for each position in the list

for i in range from zero to len of animals
if the current animal is what you really
wanted to see

if animals in position i equals wanted to
see

print out that that's the animal you
really wanted to see

print I saw a concatenated with animals in
position i concatenated with and I really

wanted to see it!
else: else:
just print out that you saw it just print out that you saw it
print I saw a concatenated with animals in

position i

print ("I saw a " + animals[i])

I saw a giraffe

I saw a penguin and I really wanted to see it!

I saw a dolphin
Once more, we use the for loop to browse the list elements. But this time, we apply a condition to
each element. Let’s analyze line by line. The header of the for loop is the same as the one in cell
2. Then, at line 4, we start an if/else construct. It is similar to the one we learned in Chapter 3: it's
composed of an if condition (line 4), a statement (line 6), an else (line 7), and another statement (line
9). However, the condition after the keyword if is different. In Chapter 3, we checked if an element
was in a list by using the membership operator in. In this case, we check if the values assigned to
two variables animals[i] and wanted_to_see are equal. To do so, we write (1) the keyword if; (2) the
first variable, that is, animals[i]; (3) the comparison operator ==, and (4) the second variable, that is,
wanted_to_see. The comparison operator == is pronounced equals or is equal to. Note that == is very
different from =. The symbol == is a comparison operator and is used in conditions to check if the
values assigned to two variables are the same. The symbol = is the assignment operator, and it is used
to assign a value to a variable.

To make sure that what this code does is clear, let’s go through the for loop step-by-step:

e Inthe first loop: at line 2, i is assigned 0. At line 4, we check if animals in position i—where i is o,
so animals[@] is "giraffe"—is equal to the value assigned to the variable wanted_to_see, which is
"penguin". Because "giraffe" is not equal to "penguin", we skip the statement under the if at line
6, and we jump directly to the statement under the else, which is at line 9. There, we print "I saw
a giraffe"

e Inthesecondloop: atline 2, i is assigned 1. At line 4, we check again if animals in position i—where
i is 1, so animals[1] is "penguin"—is equal to the value assigned to the variable
wanted_to_see. In this case, the values of the two variables animals[i] and wanted_to_see are
equal, sowe execute the statement under the if condition (line 6), wherewe print "I saw a penguin
and I really wanted to see it!"

e Finally, in the third loop: at line 2, i is assigned 2. At line 4, we check once more if animals in po-
sition i—where i is 2, thus animals[2] is "dolphin"—is equal to the value assigned to the variable
wanted_to_see, whichis "penguin". Because "dolphin" is not equal to "penguin", we skip the state-

72

Chapter 9.

At the zoo

ment at line 6, and we jump directly to the statement under the else, which is at line 9. There, we

print "I saw a dolphin".

In coding there is a lot of jargon—that is, technical words or expressions that are typically used, but
whose meaning is not always clear. Have you familiarized yourself with the jargon introduced so far?

Complete the table by writing the meaning of the following expressions:

Expression

Torunacell

(Chapter 1)

To write readable code
(Chapter 3)

The function takes one argument
(Chapter 5)

The function returns an integer
(Chapter 5)

To reassign to a variable
(Chapter 7)

The element is hard-coded
(Chapter 8)

To comment code

(Chapter 9)

To hard-code

(Chapter 9)

To implement code

(Chapter 9)

In a for loop, the variable index is commonly abbreviated with i
The built-in function 1en() returns the length of a variable
We can use the if/else construct in a for loop

Meaning

We can use the comparison operator == (equals or is equal to) in an if condition
Comments start with the hash symbol #, and they are descriptions or explanations

73

Part 3. Introduction to the for loop

Type error is common when we try to concatenate variables of different types. Let’s look at this

example, modified from cell 2 in this chapter:

for each position in the list
for i in range (@, len(animals)):

print ("--- Beginning of loop ---")
print each element and its position

print ("The element in position " +
i+ " is " + animals[i])

for each position in
the 1list

for i in range from
zero to len of animals
print beginning of loop
print each element and
its position

print the element in
position concatenated

with i concatenated
with is concatenated
with animals in
position i

--- Beginning of loop ---

TypeExrror Traceback (most recent call last)
<ipython-input-5-db98c59ed681> in
3 print ("-- Beginning of loop --")

4 # print each element and its position
————> 5 print ("The element in position " + i +
" + animals [i])
TypeError: can only concatenate str (not "int") to str

" is
The last line of the error message says TypeError: can only concatenate str (not "int")
to str. It meansthat somewhere in our code we are trying to concatenate an integer with one
or more strings. Where? The green arrow points to line 5, where there are three concatena-
tions. As mentioned in the text above, the components are "The element in position" and
" is ", which are two hard-coded strings; the list element animals[i]—that is, "giraffe",
"penguin", or "dolphin"—which is a string, too; and the variable i, which is an integer between

0 and 2. So i is the issue! Solving the error is very easy: we just transform i into a string with
the built-in function stx (), like this: str(i).

Let’s look at another example, modified from Chapter 7:

planets = planets + "Jupyter" planets is assigned

planets concatenated
with jupyter
print (planets) print planets

TypeExrror Traceback (most recent call last)

<ipython-input-5-db98c59ed681> in

————> 1 planets = planets + "Jupyter"

2 print (planets)
TypeExrror: can only concatenate list (not "str") to list

This time, the last line of the error message says: TypeError: can only concatenate list
(not "str") with list. We are trying to concatenate a string to a list. Where? The green
arrow points to line 1. Around the concatenation symbol, there are planets—which is a list—

74

Chapter 9. At the zoo

and "Jupyter"—which is a string! Correcting this error is easy: we simply transform
"Jupyter" into alist by embedding it in between square brackets, like this: ["Jupyter"]. When
getting a type error, remember to analyze the type of each variable located in the line of code
where the error occurs. Also, remember that we can only concatenate lists with lists, and
strings with strings!

Note: Starting from this chapter, write code comments wherever pertinent.

1. For each of the following scenarios, create code similar to that presented in this chapter:

a. Sports. Write a list of sports you like, and print them out one by one. What is your favorite
sport? Create a variable for it. Finally, print out all sports one by one, specifying if they are
your favorite sports.

b. Anastronaut’s next destination. You are an astronaut and you write down the list of the planets
of the solar system: Mercury, Mars, Venus, Earth, Neptune, Uranus, Saturn, Jupiter. Print out
the planets one by one. Then, create a variable for your next destination. Finally, print out all
the planets, specifying if they are your next destination.

2. Months. Given the following list:
months = ["February", "July", "January", "August", "December", "June"]

Print out the names of winter months using a for loop. Then, print out the names of summer
months using a for loop. Choose a month you like and assign it to a variable. Print out all the
months one by one, specifying if the current month is your favorite. Finally, what alternative way
could you use to check if your favorite month is in the list?

3. Mary K. Keller. Given the following list:

mary_k_keller = ['a nun', 'She was also', 'in Computer Science.',

1 1

'to receive a Ph.D.', 'American woman', 'the first', 'was', 'Mary K. Keller']

Print out all the elements in reverse order, first using slicing, and then using a for loop. Then, con-
sider the following variable: name = 'Mary K. Keller'. Check if this variable is in the list in two
ways: first, using the if/else construct; and then, using the if/else construct in a for loop. What are
the differences between the two methods?

75

When combined with lists, a for loop is typically used for at least three operations: searching ele-
ments, changing elements, and creating new lists, as you will learn in the next three chapters. In this
chapter, we will start with learning how to use the for loop to search elements in a list. Ready? Open
Jupyter Notebook 10 and follow along. Cover the code after each task with a piece of paper, and try
to guess the answer. Then compare and read the explanation. Let’s get started!

e Who doesn’t have a messy drawer? Here is ours! It contains some accessories:

accessories = ["belt", "hat", "gloves", accessories is assigned belt, hat,
"sunglasses", "ring"] gloves, sunglasses, ring
print (accessories) print accessories

['belt', 'hat', 'gloves', 'sunglasses', 'ring']

We start with the list accessories composed of 5 strings (line 1), and we print it out (line 2).

e Print all accessories one by one, as well as their positions in the list. Use a sentence like The element
X is in position y:

for each position in the list for each position in the list

for i in range (len(accessories)): for i in range len of accessories
print each element and its position print each element and its position
print ("The element " + accessories[i] + print The element concatenated
" is in position" + str(i)) with accessories in position i

concatenated with is in position
concatenated with string of i
The element belt is in position 0
The element hat is in position 1
The element gloves is in position 2
The element sunglasses is in position 3
The element ring is in position 4
We warm up by using a for loop to print each list element and its position, as we learned in Chapters
8 and 9. The syntax of the for loop is the same as we saw previously, with one last simplification in the
header: we omit the start. When the start is 0—that is, the beginning of the list—we don’t need to
write it. Can we also omit the stop when it coincides with the end of the list? Not really: the built-in
function range () would not know where to stop creating consecutive integers (if you need to refresh
your memory that range() creates a list of integers, see cell 4 on page 63). Finally, note that we keep

commenting each command to increase code readability.

Now it’s time to look for items in the drawer. How do we do it? To search list elements, we have to
(1) create a for loop to browse all elements of a list and (2) use an if/else construct to check if the
current element has the characteristics we want, like we did at cell 4 of Chapter 9. In general, we can
search for elements based on various conditions. In the previous chapters, we searched if elements
are present in alist (Chapter 3) and for elements equal to a given variable (Chapter 9). In this chapter,
we will search for elements with a certain length and in a certain list position. To do that, we will use

76

Chapter 10. Where are my gloves?

the comparison operators. Ready? Let’s go!

1. Print the accessory whose name is composed of 6 characters and its position in the list. Use a
sentence like The element x is in position y and it has n characters:

for each position in the list for each position in the list
for i in range (len(accessories)): for i in range len of accessories
if the length of the element equals 6 if the length of the element equals
six
if len(accessories[i]) == 6: if len of accessories in position i
equals six
print the element, its position, print the element, its position, and
and its number of characters its number of characters

print ("The element " + accessories[i] + print The element concatenated
" is in position" + str(i)) + with accessories in position i
" and it has 6 characters") concatenated with is in position
concatenated with string of i
concatenated with and it has six
characters
The element gloves is in position 2 and it has 6 characters
We want to find the list element composed of 6 characters. As mentioned above, we create a for loop
to browse all elements in the list (line 2), and we write an if/else construct to evaluate if the current
element—thatis, accessories[i]—is composed of 6 characters (lines 4 and 6). How do we know how
many characters a string has? The number of characters coincides with the length of the string;
therefore, we can use the built-in function 1en(). Thus, in the if condition, we compare the length
of the current element of the list—1len(animals[i])—to the number of characters we want—that is,
6. The comparison operator that we use is == (equals or is equal to), which checks if two values are
identical, like you learned in Chapter 9 at cell 4. If the current element satisfies the condition, we
print out the sentence at line 6, like we do for the element "gloves". What about the other elements?
We do not want to do anything, so we simply omit the else part of the if/else construct. Note the
comments on lines 1,3, and 5.

2. Print the accessories whose names are composed of less than 6 characters:

for each position in the list for each position in the list
for i in range (len(accessories)): for i in range len of accessories
if the length of the element is less if the length of the element is less
than 6 than six
if len(accessories[i]) < 6: if len of accessories in position i
less than 6
print the element, its position, print the element, its position, and
and its number of characters its number of characters

print ("The element " + accessories[i] + print The element concatenated
" is in position" + str(i)) + with accessories in position i
" and it has less than 6 characters") concatenated with is in position
concatenated with string of i
concatenated with and it has less
than 6 characters
The element belt is in position @ and it has less than 6 characters
The element hat is in position 1 and it has less than 6 characters
The element ring is in position 4 and it has less than 6 characters

77

Part 3. Introduction to the for loop

The structure of the code is the same as that in example 1. What changes is the comparison operator,
which is < and is pronounced less than (line 4). By using this operator, we check if the length of the
current element is less than 6. For the elements composed of less than 6 characters, we print out the
sentence at line 6—that is, for the strings "belt", "hat",and "ring".

3. Print the accessories whose name is composed of more than 6 characters. Also, assign 6 to a vari-
able:

defining the threshold defining the threshold
n_of_characters = 6 n of characters is assigned six
for each position in the list for each position in the list
for i in range (len(accessories)): for i in range len of accessories
if the length of the element is greater if the length of the element is
than the threshold greater than the threshold
if len(accessories[i]) > n_of_characters: if len of accessories in position i
greater than n of characters
print the element, its position, print the element, its position, and
and its number of characters its number of characters
print ("The element " + accessories[i] + print The element concatenated
" is in position" + str(i) + with accessories in position i
" and it has more than " + concatenated with is in position
str(n_of_characters) + " characters") concatenated with string of i

concatenated with and it has more
than concatenated with string of
n of characters concatenated with
characters

The element sunglasses is in position 3 and it has more than 6 characters
In this example, we add two novelties. The first is straightforward: we use the comparison operator
>, which is pronounced greater than (line 6). In this case, only one string has more than 6 characters—
that is, "sunglasses"—so we print out line 8 for that element.

The second novelty is the variable n_of_characters (line 2). It is assigned 6—that is, the threshold
length above which we want to print list elements. Why do we create n_of_characters instead of
simply using 6? Because we use it in two lines of code—in the condition (line 6) and in the print (line
8)—and this implies the possibility of errors. What if instead of considering 6 characters, we wanted
to consider 4? We would have to modify the number both at lines 6 and 8, and we could forget to
change in both places. Instead, by using the variable n_of_characters, we change the value in just
one place (line 2). It is good practice to create variables containing values instead of hard-coding
within a block of code. Variables are usually written at the beginning of a block of code so that they
are easy to find, especially when the code is composed of several lines.

4. Print the accessories whose name is composed of a number of characters different from 6:

defining the threshold defining the threshold
n_of_characters = 6 n of characters is assigned six

for each position in the list for each position in the list

for i in range (len(accessories)): for i in range len of accessories

78

Chapter 10. Where are my gloves?

if the length of the element is not equal if the length of the element is not

to the threshold equal to the threshold
if len(accessories[i]) != n_of_characters: if len of accessories in position i
not equal to n of characters
print the element, its position, print the element, its position, and
and its number of characters its number of characters
print ("The element " + accessories[i] + print The element concatenated
" is in position" + str(i) + with accessories in position i
" and it has a number of characters concatenated with is in position
B eErE e ¢ & concatenated with string of i
str(n_of_characters)) concatenated with and it has a

number of characters different from
concatenated with string of n of
characters
The element belt is in position @ and it has a number of characters different from 6
The element hat is in position 1 and it has a number of characters different from 6
The element sunglasses is in position 3 and it has a number of characters different from 6
The element ring is in position 4 and it has a number of characters different from 6

The comparison operator for different fromis !'= and is pronounced not equal to (line 6). The structure
of the code is the same as that above: we use the variable n_of_characters to avoid hard coding (line
2); we create a for loop to browse all list elements (line 4); we create an if condition to check what
strings have lengths not equal to the threshold (line 6); and, finally, we print out a sentence for those
elements that satisfy the condition (line 8)—that is, "belt", "hat","sunglasses", and "ring". Before
each command, we write a comment to explain what the command does (lines 1,3,5, and 7).

5. Print the accessories whose position is less than or equal to 2:

defining the threshold defining the threshold
position = 2 position is assigned two
for each position in the list for each position in the list
for i in range (len(accessories)): for i in range len of accessories
if the position of the element is less if the position of the element is
than of equal to the threshold less than or equal to the threshold
if i <= position: if i less than or equal to position
print the element, its position, print the element, its position, and
and its position characteristic its position characteristic
print ("The element " + accessories[i] + print The element concatenated
" is in position" + str(i) + with accessories in position i
", which is less than or equal to " + concatenated with is in position
str(position)) concatenated with string of i

concatenated with which is less than
or equal to concatenated with string
of position
The element belt is in position @, which is less than or equal to 2
The element hat is in position 1, which is less than or equal to 2
The element gloves is in position 2, which is less than or equal to 2

In this example, we introduce two novelties again. The first novelty is the comparison operator <=,
which is pronounced less than or equal to (line 6). What is the difference between the two comparison
operators <= (less than or equal to) and < (less than)? When using <=, we include the threshold—that

is, we consider all the elements whose position is equal to 2 or less. When using <, we exclude the
threshold—that is, we consider only the elements whose position is strictly less than 2.

79

Part 3. Introduction to the for loop

The second novelty is that we want to search for elements based on their position. How do we do it?
First, we create a variable called position to which we assign the threshold—that is, 2 (line 2). Then,
we need to write the comparison. How do we know the position of each element? In a for loop, the
position of the current list element is i! Remember the following from the previous chapters?

e Inthefirstloop, i is assigned @, thus accessories[i] isaccessories[@], whichis "belt"

e Inthe second loop, i is assigned 1, thus accessories[i] is accessories[1], whichis "hat"

e Inthe third loop, i is assigned 2, thus...

Therefore, in the if condition, we compare the current element position i to the threshold position in
thevariable position (line 6). For all those elements whose position i is less than or equal to position,
we print line 8—that is, for "belt", "hat", and "gloves".

6. Print the accessories whose position is at least 2:

defining the threshold defining the threshold
position = 2 position is assigned two
for each position in the list for each position in the list
for i in range (len(accessories)): for i in range len of accessories
if the position of the element is greater if the position of the element
than of equal to the threshold is greater than or equal to the
threshold
if i >= position: if i greater than or equal to
position
print the element, its position, print the element, its position, and
and its position characteristic its position characteristic
print ("The element " + accessories[i] + print The element concatenated
" is in position" + str(i) + with accessories in position i

", which is at least " + str(position)) concatenated with is in position
concatenated with string of i

concatenated with which is at least
concatenated with string of position
The element gloves is in position 2, which is at least 2
The element sunglasses is in position 3, which is at least 2
The element ring is in position 4, which is at least 2
In this last example, the code structure remains the same, but we use the comparison operator >=,
pronounced greater than or equal to (line 6). Similarly to before, the difference between >= (greater
than or equal to) and > (greater than) is that when using >=, we include the threshold, whereas when us-
ing >, we exclude the threshold. In this case, we print the sentence at line 8 for all the elements whose
position is at least—that is, greater than or equal to—position, which are "gloves", "sunglasses",

and "ring" (line 8).

Finally, a trick to remember the spelling of comparison operators composed of two symbols: the sym-
bol = is always in the second position, as you'll notice for != (example 4), <= (example 5), and >= (ex-
ample 6).

80

Chapter 10. Where are my gloves?

In this chapter, you learned the six comparison operators. Sum up their characteristics in your own
words in the table below:

Comparison What it does Pronunciation
operator

Up to now, you have learned several coding elements: data types, built-in functions, keywords, and
list methods. Do you remember which is which? Insert the following elements into the right column:

string, else,input(),if, .remove(), print(), .index(), len(),

str(),del, list, .append(), range(), for, .insert(), integer, .pop()

Data types Built-in functions Keywords List methods

e We can use afor loop combined with an if/else construct to search for elements in a list

e ltisgood practice to create variables instead of hard-coded values in a block of code to reduce the
possibility of errors. Variables are usually located at the beginning of a block of code

e In Python, there are six comparison operators: ==, 1=, >, >=, <, <=

81

Part 3. Introduction to the for loop

82

While coding, it can be very practical to use keyboard shortcuts to minimize typing interrup-
tions. Although it might sound like a bit of an exaggeration, using the mouse can really be
distracting at times because it slows down the typing rhythm and interrupts the writing flow.
Shortcuts, on the other hand, allow us to never leave the keyboard! They are combinations of
keys pressed simultaneously that can perform various operations. Let’s have a look at the most
common ones. In the following examples, we will use the keys that are colored in Figure 10.1.

N ! @ # $ % A & * () — + delete

) 1 2 3 4 5 © 7 8 9 0 - = backspace
e IBRIN
oL Q W E R T Y U | O P [1 \

: " return
caps lock A S D F G H J K L : , enter <
Z X B N M < > ?

{rsnie c Vv , . / shift 4T

In the following shortcut combinations, control/command means that you will have to press they
key control if you are using a Windows operating system, or the key command if you are using
a MacOS operating system (that is, one of the red keys in Figure 10.1). In addition, the symbol
+ means that you have to press the listed keys simultaneously. What shortcuts do you know
among the following ones?

e control/command + A (red key + pink key): selects all the lines of code in a cell—the letter A
stands for all

e control/command + X (red key + grey key): cuts selected lines of code

e control/command + C (red key + yellow key): copies selected lines of code

e control/command + V (red key + purple key): pastes selected lines of code

e control/command + / (red key + orange key): adds a # in front of the selected lines of code—
that is, it comments them out. If the key combination is re-pressed, the # is removed, and the
code is un-commented

e tab (green key): indents the selected lines of code—that is, it moves the lines four spaces to-
wards right

e shift + tab (blue key + green key): outdents the selected lines of code—that is, it moves the
lines four spaces towards the left

Note that these shortcuts can be used for several lines of code at once, thus speeding up the

writing. Together with learning to type with ten fingers (see the In more depth session in Chapter

1), using shortcuts is an efficient way to write code faster and without interruptions!

Chapter 10. Where are my gloves?

1. Seasons. Given the following list:
seasons = ["spring", "summer", "fall", "wintexr"]

Print:
a. All seasons whose names are composed of at least 5 characters
b. Allseasons whose names are composed of a number of characters that is equal to or less than
4
c. All seasons whose position is less than 2
d. All seasons whose position is at least 2

2. Word search. You are working for a magazine and you have just created a new word search game
for your readers. Here are the words hidden in the game:

words = ["cards", "park", "pets", "football", "golf", "crosswords", "toys",
"exercise", "hobbies", "riding", "biking", "games", "reading", "movies",
"walking", "concerts"]

After the grid is completed:

a. Createavariable called title containing the number of words to find, and then print it out (e.g.,
Word search with 16 words)

b. Findwords composed of 5 letters. More specifically, print out a title, which has to contain the
number of letters of this word group, and the words

c. Are there words with less than 5 characters? If so, for each word, print out a sentence con-
taining the word itself, its position in the list, and its number of characters

d. Similarly, are there words with more than 8 characters? If so, for each word, print out a sen-
tence containing the word itself, its position in the list, and its number of characters

e. What are the words in the second part of the list that have a number of characters different
than 7? What's their position? And their number of characters?

f. Finally, what are the words in the first fourth of the list that are composed of 4 characters?
What's their position?

You can download the word search game for this exercise solution on the community website!

3. Spelling competition. Here are some words of the category musculoskeletal (msk) system that you
have to memorize for the next spelling competition:

msk_words = ["ankle", "patella", "rib", "femur", "sternocleidomastoid", "tendon",
"sternum", "abdominal external oblique", "muscle", "scapula", "radius", "bone",
"vertebra", "ligament", "ulna", "skull", "clavicle"]

a. How many words do you have to learn? Compute it and print it out

b. What is the length of each word? (including spaces if any)

c. Let’s now group words based on their length. Here is a list of short words:
short = ["leg"]
Add all words with 6 characters or less to the list and print out the result. How many words
are in the list?

83

Part 3. Introduction to the for loop

d. Hereis alist of words of intermediate length:

intermediate = ["cartilage"]
Add all words with 7, 8, and 9 characters. Then print out the result. How many words are in

the list?
e. And finally, here is a list of long words:
long = ["pectoralis major"]
Add all the remaining words and print out the result. How many words are in the list?

84

11.

For loop to change list elements

Cleaning the mailing list

Time to learn how to use the for loop to change list elements! Open Jupyter Notebook 11 and follow

along. Don't forget to pay attention to code pronunciation. Let’s go!

e You are responsible for a newsletter, and you have to send an email to the following addresses:

1

emails = ["SARAH.BROWN@GMAIL.com",
"Pablo.Hernandez@live.com",
"LI.Min@hotmail.com"]

emails is assigned

SARAH . BROWN@GMAIL . com,
Pablo.Hernandez@live.com,
LI.Min@hotmail.com

e For the sake of consistency, you want all email addresses to be lowercase. So you change them:

A W N -

o U

10

11

12
13

14

for each position in the list
for i in range (len(emails)):

print ("-> Loop: " + str(i))

print element before the change
print ("Before the change, the element in
position " + str(i) + " is " + emails[i])

change element and reassign
emails[i] = emails[i].lower()

print element after the change
print ("After the change, the element in
+ emails[i])

position " + str(i) + " is "

15 # print the modified list

16 print ("Now the list is:

" + str(emails[i]))

for each position in the list
for i in range len of emails

print -> loop: concatenated with
string of 1

print element before the change

print Before the change, the element
in position concatenated with string
of i concatenated with is concatenated
with emails in position i

change element and reassign
emails in position i is assigned
emails in position i dot lower

print element after the change

print After the change, the element in
position concatenated with string of i
concatenated with is concatenated with
emails in position i

print the modified list
print Now the list is: concatenated
with string of emails in position i

What's new in the code above? Get some hints by completing the following exercise.

True or false?

1. Tochange alist element, we need to reassign after the change

> wbd

The method . lower () is a list method
The method . lower() changes a string to uppercase
Comments and empty lines make code more readable

- - 4 -
M M m M

85

Part 3.

Introduction to the for loop

Computational thinking and syntax

Let’s run the first cell:

1 emails = ["SARAH.BROWN@GMAIL.com",
"Pablo.Hernandez@live.com",
"LI.Min@hotmail.com"]

emails is assigned
SARAH.BROWN@GMAIL . com,
Pablo.Hernandez@live.com,

LI.Min@hotmail.com

We consider a list composed of three strings, each corresponding to an email address (line 1).

Let’s run the second cell:

1 # for each position in the list

2 for i in range (len(emails)):

3

4 print ("-> Loop: " + str(i))

5

6 # print element before the change
print ("Before the change, the element in
position " + str(i) + " is " + emails[i]

8

9 # change element and reassign

10 emails[i] = emails[i].lower()

11

12 # print element after the change

13 print ("After the change, the element in
position " + str(i) + " is " + emails[i]

14

15 # print the modified list

16 print ("Now the list is: " + str(emails))

-> Loop: 0
Before the change, the element in position @ is: SARAH.BROWN@GMAIL.com
After the change, the element in position @ is: sarah.brown@gmail.com

-> Loop: 1
Before the change, the element in position @ is: Pablo.Hernandez@live.com
After the change, the element in position @ is: pablo.hernandez@live.com

-> Loop: 2
Before the change, the element in position @ is: LI.Min@hotmail.com
After the change, the element in position @ is: 1i.min@hotmail.com
Now the list is: ['sarah.brown@gmail.com', 'pablo.hernandez@live.com',

'1i.min@hotmail.com']

for each position in the list
for i in range to len of emails

print -> loop: concatenated with
string of 1

print element before the change

print Before the change, the element
in position concatenated with string
of 1 concatenated with is concatenated
with emails in position i

change element and reassign
emails in position i is assigned
emails in position i dot lower

print element after the change

print After the change, the element in
position concatenated with string of i
concatenated with is concatenated with
emails in position i

print the modified list
print Now the list is: concatenated
with string of emails

We use a for loop to browse all the elements in the list (line 2). Within the for loop, there are four

commands. Let’s have a look at them one by one.

At line 3, we print a title for each iteration of the for loop, as we learned at cell 2 of Chapter 9. The title

is composed of a symbol (i.e., ->) and the number of the current loop—represented by the variable
i. The symbol makes the title easy to visually identify, and the loop number favors checking what

86

Chapter 11. Cleaning the mailing list

happens at each specific iteration.

At line 5, we print the current element (emails[i]) before the change, as it is in the list. This will be
convenient for comparing the current element before and after the change.

At line 7, we change the current element. How do we do it? We take the current element emails[i],
and we change it to lowercase using the string method . lower (). You might remember that methods
are functions for specificdata types, they are colored blue in Jupyter Notebook, and their syntaxis: (1)
variable name, (2) dot, (3) method name, and (4) round brackets, in which there can be an argument
(see page 32). How do we know that .lower() is a string method? Because emails[i] is a string!
Python has at least four methods to change character cases:

.lower () to change all characters of a string to lowercase

.upperx () to change all characters of a string to uppercase
.title() to change the first character of a string to uppercase and all the remaining characters to

lowercase
e .capitalize() to change the first character of each word in a string to uppercase, and all the re-
maining characters to lowercase
Finally, to actually change alist element, we need to re-assign the changed element to itself. In other
words, we need to overwrite the current element with its new version. If we do not do that, then the
list element will remain unchanged.

At line 9, we print out a sentence containing the modified element to check that the change actually
occurred. For a double check, we can also compare this sentence with the sentence containing the
element before the change, which we printed at line 5.

At line 10, we print out the new list. We need to transform the list emails to a string because of the
concatenation. Thus, we use the built-in function str (), like we do for integers.

Finally, we use two techniques to increase code readability. First, we add comments before each ma-
jor command to explain what the code does (lines 1, 6, 9, 12, and 15). Second, we add empty lines
to visually separate units of thought corresponding to one or more commands, like we would do for
paragraphs in a text (lines 3, 5, 8, 11, and 14).

Given the following string:
greeting = "hElLo, How arE YoU?"

Connect each command with the correct output:

1. print(greeting.lower()) a. '"HELLO, HOW ARE YOU?'
2. print(greeting.upper()) b. '"Hello, how are you?'
3. print(greeting.title()) C. 'hello, how are you?'
4. print(greeting.capitalize()) d. 'Hello, How Are You?'

87

Part 3. Introduction to the for loop

e To change list elements, we always need to reassign the changed element to itself

e String methods to change cases are: .lower(), .upper(), .title(),and .capitalize().

88

Sometimes, we have to change a list element before adding it to an existing list. This can create
confusion about where to change the list element. Let’s consider this example:

e Given the following list:

sports = ["diving", "hiking"] sports is assigned diving, hiking

e Add the mountain sport to the following list, making sure the string is uppercase:

mountain_sports = ["CLIMBING"] mountain_sports is assigned
CLIMBING
We want to take the string "hiking" from the list sports, transform it into "HIKING", and add it
to the list mountain_sports. Where do we change the string to uppercase? Let’s have a look at
these two cases.

Case 1: Changing the element both in the original list and in the new list.
Consider the following code:

sports[1] = sports[1].uppex() sports in position 1 is assigned
sports in position 1 dot upper

mountain_sports.append(sports[1]) mountain_sports dot append sports
in position 1

print(sports) print sports

print(mountain_sports) print mountain_sports

['diving', 'HIKING']

['CLIMBING', 'HIKING']
In this example, we first change the element in position 1 to uppercase (line 1), and then we
append the changed element to the list mountain_sports (line 2). When we print out the two
lists (lines 3 and 4), we see that the element "HIKING" is uppercase in both lists. As you can
imagine, changing the element in the original list is not the best option because we might need
the original list sports for further computations. How do we make "hiking" uppercase only in
mountain_sports? Let’s have a look at the next example.

Chapter 11. Cleaning the mailing list

Case 2: Changing the element only in the new list.
Consider the following code:

current_sport = sports[1].upper() current_sport is assigned sports in
position 1 dot upper

mountain_sports.append(current_sport) mountain_sports dot append
current_sport

print(sports) print sports

print(mountain_sports) print mountain_sports

['diving', 'hiking']

['CLIMBING', 'HIKING']
In this example, we assign the transformed element—that is, 'HIKING', created with the com-
mand sports[1] .upper()—to anew variable. This new variable is current_sport(line 1). Then,
we append the variable current_sport to the list mountain_sports (line 2). When we print out
both lists (lines 3 and 4), we see that "HIKING" is only in the list mountain_sports. We can call
current_sport an intermediary, auxiliary, or temporary variable. Its role is to temporarily
store a value that we will use in subsequent code. Although they are very convenient, tem-
porary variables are generally not recommended because they occupy computer memory. Can
we avoid using current_sport? Yes, let’s have a look at this last example:

mountain_sports.append(sports[1].upper()) mountain_sports dot append sports
in position 1 dot upper()

print(sports) print sports
print(mountain_sports) print mountain_sports
['diving', 'hiking']
['CLIMBING', 'HIKING']
In this final example, there is a nested command, which is a command containing one or
more commands, like in a Russian doll (line 1). To break down nested commands, we usually
start from the inner command and move outwards. In this example, the inner command is
sports[1].upper(),wherewemodifythestring 'hiking' to be uppercase. The outer command
is mountain_sports.append(), where we add the modified element—that is, 'HIKING' —to the
list. As you can see, the inner command is what we assigned to the variable current_sport in
the previous example. Therefore, we can avoid a temporary variable by directly substituting its
content in a nested command. Finally, when we print out both lists (lines 2 and 3), we see that
we changed "hiking" to uppercase only in the list mountain_sports.

Nested commands are a convenient way to write compact code. How many commands can we
nest into each other? Theoretically, as many as we want! In practice, we want to keep nested
commands to a minimum for a good balance between code efficiency and code readability.

89

Part 3. Introduction to the for loop

1. For each of the following scenarios, create code similar to that presented in this chapter:

a. Editing an article. You work at a newspaper, and you have to edit a paper that has plenty of
acronyms:
acronyms = ["asap", "faq", "fyi", "diy"]
All the acronyms are lowercase, so you change them to uppercase.

b. Name tags. You are organizing an event, and you have the following list of names:
names = ["JOHN", "geetha", "xiao", "LAURA"]
You want to print out nice name tags, so you capitalize all names.

2. Colors. Given the following list:

colors = ["yellow", "beige", "green", "red", "ultramarine", "coral", "lavender",
"silver", "cyan", "blue", "black", "magenta", "gold", "pink", "scarlet", "brown"]
a. How many colors are there? Compute it!
b. Starting from the second element (position 1), change every third word to uppercase
c. Starting from the third element (position 2), capitalize every third word
d. Addallthe colors of the first half of the list colors to the following list using a for loop, making
sure they are lowercase:
some_colors = ["white"]
How many colors are there in some_colors now?
e. Add all the colors of the second half of the list colors to the following list using slicing:
more_colors = ["purple"]
How many colors are there in more_colors now? Change them to uppercase.

3. Camping. Given the following list:

camping = ["tent", "adventure", "boots", "hiking", "hat", "nature", "path", "lake",
"mountain_sports", "fire", "water bottle", "fishing", "national park", "beach",
"compass", "forest", "trail", "sleeping bag"]

a. How many elements are in there?

b. Get all the words composed of less than (including) 6 letters and add them to the following
list, capitalizing each word:
short_camping = ["Trip"]

c. Slice every second word of the list camping starting from the first word (position 0) and assign
them to a new variable called some_camping_words

d. Capitalize each word of the strings in some_camping_words composed of a number of charac-
ters other than 4

e. In some_camping_words, remove the first word (position 0) using a list method

f. In some_camping_words remove "path" using a list method

g. Are there more words in short_camping or some_camping_words? Use an if/else construct to
print out which list has more words, as well as how many words they contain.

90

12. What a mess at the bookstore!

For loop to create new lists

Let’s finally learn how to use a for loop to create new lists. Open Jupyter Notebook 12 and follow
along. Once more, don't forget to read the code out loud!

e There were many customers in the shop today, and they mixed up the books whose authors’ last
names start with Aand S:

1 authors = ["Alcott", "Saint-Exupéry", authors is assigned Alcott, Saint-Exupéry
"Arendt", "Sepulveda", "Shakespeare"] Arendt, Sepulveda, Shakespeare

e So you have to put the books whose authors’ last name starts with A on one shelf, and the books
whose authors’ last name starts with S on another shelf:

1 # initialize the variables as empty lists initialize the variables as empty lists
2 shelf_a = [] shelf a is assigned an empty list
3 shelf_s = [] shelf s is assigned an empty list
4
5 # for each position in the list for each position in the list
6 for i in range (len(authors)): for i in range len of authors
7
8 # print out the current element print out the current element
9 print ("The current author is: " + print The current author is: concatenated
authors[i]) with authors in position i
10
11 # get the initial of the current author get the initial of the current author
12 author_initial = authors[i][0] author initial is assigned authors in
position i in position zero
13 print ("The author's initial is: " + print The author's initial is:
author_initial) concatenated with author_initial
14
15 # if the author's initial is A if the author's initial is A
16 if author_initial == "A": if author_initial equals A
17 # add the author to the shelf a add the author to the shelf a
18 shelf_a.append(authors[i]) shelf a dot append authors in position i
19 print ("The shelf A now contains: " + print The shelf A now contains:
str(shelf_a) + "\n") concatenated with str of shelf a
concatenated with backslash n
20
21 # otherwise (author's initial is not A) otherwise (author's initial is not A)
22 else: else:
23 # add the author to the shelf s add the author to the shelf s
24 shelf_s = shelf_s + [authors[i]] shelf s is assigned shelf_s concatenated
with authors in position i
25 print ("The shelf S now contains: " + print The shelf S now contains:
str(shelf_s) + "\n") concatenated with str of shelf s
concatenated with backslash n
26

91

Part 3. Introduction to the for loop

print out the final shelves print out the final shelves

print ("The authors on the shelf A are: " + print The authors on the shelf A are:
str(shelf_a) concatenated with str of shelf a
print ("The authors on the shelf S are: " + print The authors on the shelf S are:
str(shelf_s) concatenated with str of shelf s

What are the new concepts in this code? Complete the following exercise to get some hints.

True or false?

1. Weinitialize an empty list by assigning a pair of square brackets T F
2. We can compose several slicings in one command T F
3. The method .append() and list concatenation perform two different actions T F
4. The special character "\n" creates an empty line after a print T F
Computational thinking and syntax
Let’s run the first cell:

authors = ["Alcott", "Saint-Exupéry", authors is assigned Alcott, Saint-Exupéry

"Arendt", "Sepulveda", "Shakespeare"] Arendt, Sepulveda, Shakespeare

The list authors is composed of five strings, each of them corresponding to the last name of a book
author. The last names start with either AorS.

Let’s run the second cell. The code is long, so we break it in pieces. Here are lines 1-3:

initialize the variables as empty lists initialize the variables as empty lists
shelf_a = [] shelf a is assigned an empty list
shelf_s = [] shelf s is assigned an empty list

We create two new lists, shelf_a and shelf_s, to which we assign a pair of empty square brackets.
Technically, we say that we initialize two empty lists—meaning that we create the two lists shelf_a
and shelf_s, but they don’t have any content yet. Why do we do that? We will answer this question
when we analyze lines 18 and 24. So, let’s keep going!

Let’s analyze lines 5-9:

for each position in the list for each position in the list

for i in range (len(authors)): for i in range len of authors
print out the current element print out the current element
print ("The current author is: " + print The current author is: concatenated
authors[i]) with authors in position i

We create afor loop to browse all the elements in the list authors (line 6), and we print out a sentence
to keep track of the list element sliced at each iteration (line 9).

92

Chapter 12. What a mess at the bookstore!

Let’s continue with lines 11-13:

get the initial of the current author get the initial of the current author

author_initial = authors[i][0] author initial is assigned authors in
position i in position zero

print ("The author's initial is: " + print The author's initial is:

author_initial) concatenated with author_initial

At eachiteration, we obtain the initial of the current author (line 12), and we print it out (line 13). How
dowe get an author’sinitial? Let’s focus on the right side of the assignment symbol—authors[i] [0]—
atline 12. There are two pairs of square brackets, indicating two consecutive slicings. To understand
how this works, let’s substitute the variables with their corresponding values. In the first loop, i is ¢;
thus, we get authors[0] [@]. authors[@] is "Alcott",and "Alcott"[@] is "A". Similarly, in the second
loop, i is 1, thus we get authors[1]1[@]. authors[1] is "Saint-Exupéry", and "Saint-Exupéry"[0] is
"s". And so on. With the first pair of square brackets [i], we slice a list obtaining a string, whereas
with the second pair of square brackets [0], we slice a string obtaining a character. In summary, when
dealing with several consecutive slicings, we execute one at the time, starting from the left. Note
that string slicing works the same way as list slicing.

Let’s have alook at lines 15-25:

if the author's initial is A if the author's initial is A

if author_initial == "A": if author_initial equals A
add the author to the shelf a add the author to the shelf a
shelf_a.append(authors[i]) shelf a dot append authors in position i

print ("The shelf A now contains: + print The shelf A now contains:
str(shelf_a) + "\n") concatenated with str of shelf a
concatenated with backslash n

otherwise (author's initial is not A) otherwise (author's initial is not A)
else: else:
add the author to the shelf s add the author to the shelf s
shelf_s = shelf_s + [authors[i]] shelf s is assigned shelf_s concatenated
with authors in position i
print ("The shelf S now contains: " + print The shelf S now contains:
str(shelf_s) + "\n") concatenated with str of shelf s

concatenated with backslash n

We are still in the for loop whose header is at line 6, and we find an if/else construct. If the author’s
initial is equal to A (line 16), we append the current author authors[i] to the list shelf_a (line 18).
Then, we print out the current status of shelf_a (line 19). If the author’s initial is not A, then we go
to the else (line 22), and we concatenate the current author authors[i] to the list shelf_s (line 24).
Note that authors[i] is in between square brackets for type compatibility: authors[i] is a string,
so it must be transformed into a list to be concatenated to the list shelf_s (we learned this at cell 6
of Chapter 7). Finally, we print the current status of shelf_s (line 25). Let’s now look at a few more
details.

At lines 18 and 24, we add an element to a list. In the first case, we use the list method .append(),
whereas in the second case, we use concatenation. The two approaches perform exactly the same
operation and can be used interchangeably.

At the end of the print commands at lines 19 and 24, you’ll notice "\n". What’s that? It’s a special

93

Part 3. Introduction to the for loop

character that creates an empty line after a print. The backslash \ tells Python to consider n not as a
letter of the alphabet, but as a special character meaning new line. Printing an empty line is another
way to increase code readability in a for loop, in addition to printing loop titles (see Chapter 9, cell 2).
You will see more special characters in the In more depth section of Chapter 27.

Finally, we can answer the question we asked at lines 1-3: why do we need to initialize shelf_a and
shelf_s as empty lists? Because it would be impossible to add new elements to a list that does not
exist!

As a general rule, when using a for loop to create and fill an empty list, we have to:

1. Initialize an empty list before the for loop
2. Concatenate or append new elements within the for loop

Let’s conclude with lines 27-29:

print out the final shelves print out the final shelves

print ("The authors on the shelf A are: " + print The authors on the shelf A are:
str(shelf_a) concatenated with str of shelf a
print ("The authors on the shelf S are: " + print The authors on the shelf S are:
str(shelf_s) concatenated with str of shelf s

Above, we print out the final versions of the created lists—shelf_a (line 28) and shelf_s (line 29). In
both cases, we transform the list to a string using the built-in function stxr () to concatenate.

Finally, let’s look at the printouts:

The current author is: Alcott
The author's initial is: A
The shelf A now contains: ['Alcott']

The current author is: Saint-Exupéry
The author's initial is: S
The shelf S now contains: ['Saint-Exupéry']

The current author is: Arendt
The author's initial is: A
The shelf A now contains: ['Alcott', 'Arendt']

The current author is: Sepulveda
The author's initial is: S
The shelf S now contains: ['Saint-Exupéry', 'Sepulveda']

The current author is: Shakespeare
The author's initial is: S
The shelf S now contains: ['Saint-Exupéry', 'Sepulveda', 'Shakespeare']

The authors on the shelf A are: ['Alcott', 'Arendt']
The authors on the shelf S are: ['Saint-Exupéry', 'Sepulveda', 'Shakespeare']

Each triplet of lines of code is printed during a for loop iteration. The first line is printed at line 9 (e.g.,
The current author is: Alcott), the second line is printed at line 13 (e.g., The author's initial
is: A),andthethirdlineisprintedatline 19if the author’sinitialis A(e.g., The shelf A now contains:

94

Chapter 12. What a mess at the bookstore!

['Alcott']), or at line 25 is the author’s initial is S (e.g, The shelf S now contains:
['Saint-Exupéry'). After each group of 3 lines, there is an empty line because of "\n" at the end of
the print commands at lines 19 and 25. The last two lines containing the final content of shelf_a and
shelf_s come from the prints at lines 28 and 29.

Finally, the code contains several comments and empty lines between blocks of code to improve read-
ability.

Let’s summarize what we learned about for loops! Given the following list:
hot_drinks = ["tea", "coffee", "hot chocolate"]

Connect each command with the correct output and the corresponding action:

1. for i in range (len(hot_drinks)): a. ['TEA', 'coffee', Y .create list elements
print (hot_drinks[i]) "hot chocolate']
2. for i in range (len(hot_drinks)): b. tea &. change list elements
if hot_drinks[i][@] == "c": coffee
print (hot_drinks[i]) hot chocolate
3. for i in range (len(hot_drinks)): C. ['coffee', 'hot chocolate'] M.print list elements
if len(hot_drinks[i]) == 3: one by one

hot_drinks[i] = hot_drinks[i].upper()
print (hot_drinks)

4. 1long_words = [] d. coffee A. find list elements
for i in range (len(hot_drinks)):
if len(hot_drinks[i]) >= 6:
long_words.append(hot_drinks[i])

print (long_woxds)

To create and fill alist in a for loop, we have to: (1) initialize an empty list before the for loop and (2)
fill the list using . append() or list concatenation in the for loop
String slicing works the same way as list slicing

In multiple consecutive slicings, we execute one slicing at a time, starting from the left
The special character "\n" creates an empty line after a print

95

Part 3.

Introduction to the for loop

When creating a new list within a for loop, a common mistake is to assign a new element to the
list instead of appending it or concatenating it. Let’s see what this means with the following

example. Here is the same list as the one used earlier in this chapter:

Let’s simplify the code by creating only the list containing author last names starting with A. To
show how an error can occur, at line 10 we assign authors[i] to the new list shelf_a, instead

authors = ["Alcott", "Saint-Exupéry",
"Arendt", "Sepulveda", "Shakespeare"]

authors is assigned Alcott,
Saint-Exupéry Arendt, Sepulveda,
Shakespeare

of appending it (or concatenating it). What happens to shelf_a throughout the code?

initialize the variable

shelf_a = []

for each position in the list

for i in range (len(authors)):
get the author's initial
author_initial = authors[i][0]

if the author's initial is A

if author_initial == "A":
add the author to the shelf a

initialize the variable

shelf a is assigned an empty list
for each position in the list

for i in range len of authors

get the author's initial

author initial is assigned authors
in position i in position zero

if the author's initial is A

if author_initial equals A

add the author to the shelf a

96

shelf_a = authors[i] shelf a is assigned authors in
position i

print ("The shelf A now

" + str(shelf_a))

print out the final shelves

print ("The authors on the shelf A are: "

+ str(shelf_a)

print The shelf A now contains:
"contains: concatenated with str of shelf a
print out the final shelves

print The authors on the shelf A
are: concatenated with str of shelf
a

Alcott

The shelf A now contains: Arendt

The authors on the shelf A are:

The shelf A now contains:

Arendt

Let’s go through the for loop and focus on the names starting with A:

e Wheniiso(line4),author_initialis "A" (line 6); the if condition is true (line 8), so we assign
authors[i]—thatis, "Alcott"—to shelf_a (line 10), and we print out The shelf A now contains:
Alcott (line 11). With the assignment at line 10, we implicitly transform shelf_a from a list—
which we initialized at line 2—into a string—because we assign it the string "Alcott".

e Wheniis 2 (line 4), author_initial is "A" (line 6); the if condition is true (line 8), we assign
authors[i]—thatis, "Arendt"—to shelf_a(line 10),and we print out: The shelf A now contains:
Arendt (line 11). In this case, in the assignment at line 10, we overwrite the value "Alcott"—
which we assigned in the previous loop—with the value "Arendt"; thus, shelf_a remains a
string.

At line 13, we print the final version of shelf_a, which is a string with value "Arendt".

In conclusion, assigning a variable to a list (e.g., shelf_a = authors[i]) changes the type of
the list itself to the variable type (e.g., shelf_a becomes a string). In addition, the value is

Chapter 12. What a mess at the bookstore!

overwritten at each loop, and the final value is the one assigned in the last loop. Thus, the cor-
rect way to add elements to a list is either to append—e.g., shelf_a.append(authors[i])—or
concatenate—e.g., shelf_a = shelf_a + [authors[i]].

. For each of the following scenarios, create code similar to that presented in this chapter.

a. Selling electric cars. You work at a famous car company, and you have to ship new electric cars
that have just arrived. Your colleagues plated the cars destined to Spain and to Portugal, but
they mixed them up:
e_cars = ["PT-754J", "ES-0@96L", "PT-536G", "ES-543H", "PT-653H"]

Separate the two groups of cars according to their destinations.

b. TeachingEnglish verbs. You are an English teacher for foreign students. Some of them have dif-
ficulties understanding when a present verb is conjugated in the third person singular
(he/she/it), or in other persons (I/you/we/they). So you provide a list of verbs:
english_verbs = ["eat", "drink", "eats", "sleep", "drinks", "sleeps"]

and you help your students separate the verbs between third person and other persons.
. Desserts. Given the following list:

desserts = ["meringue", "apple pie", "eclair", "rice pudding", "chocolate",

"english pudding", "cake", "icing"]

Get all the initials, change them to uppercase, and concatenate them in a new list. Then invert the
list. What dessert do you get?

. Guess the jobs. Given the following list:

jobs = ["phOtOg", ubaln’ "mU", "inVe", nambasu, nsin’ uleIn’ ”Stig", urapheru’ "Ci",

"atOI", "ina", "an“, usadorn]

Group strings composed of 2, 3, 4, 5, and 6 letters in new lists. What jobs do you get? Make sure
that the first letter of each job is uppercase.

. Art. Given the following list:

art = ["apor", "refsscu", "atwat", "fetes", "erta", "jtylpt", "aprco", "srap",

"ruolo", "texture", "gitp", "puors"]
Create new lists for each of the following:

e Ifthe string length is 4, then get two letters starting from the second (position 1)
e Ifthe string length is 5, then get the third and fourth letters (positions 2 and 3)
e Ifthe string length is at least 6, then get the last three letters

What art words do you get? Make sure all strings are uppercase!

97

PART 4

NUMBERS AND
ALGORITHMS

In this part, you will learn how to perform arithmetic operations, play with random numbers, and im-
plement your first algorithms. Ready? Let’s go!

In the previous chapters, you have developed quite a bit of computational thinking, so now you are
ready for numbers, some easy math, and algorithms! There is a general misconception that in order
to be good at coding one has to be very good at math. However, that’s not necessarily true, as you will
see in the coming chapters!

In this chapter, you will start becoming familiar with numbers in coding by implementing a calculator.
To do that, you first need to learn arithmetic operators in Python and how to ask a user for a number.
As in previous chapters, try first to solve the task by yourself and then compare your answer with the
code below. You will find the code also in Jupyter Notebook 13. Let’s start!

In Python, there are 7 arithmetic operations. Let’s quickly explore them one by one. Which ones do
you already know, and which ones are new?

1. Addition:
4 + 3 four plus three

7
To sum two numbers, we use the arithmetic operator +, pronounced plus. As you know, the same
symbol + isused as a concatenation symbol when merging strings or lists; in that case, it is pronounced
concatenated with.

2. Subtraction:

6 - 2 six minus two
4

To subtract one number from another, we use the arithmetic operator -, pronounced minus.

3. Multiplication:
6 *5 six times five
30
To multiply two numbers, we use the multiplication operator *, which is pronounced times. Note that
in Python (and in other programming languages), the multiplication symbol is different from the sym-
bol used in paper-and-pencil computations, which can be the cross symbol x or the mid-line dot op-
erator -.

4. Exponentiation:

2 ** 3 two to the power of three
8

To calculate the power of a number, we use the exponentiation operator **, which is pronounced to
the power of. The operation 2**3 corresponds to 23 in paper-and-pencil.

101

Part 4. Numbers and algorithms

5. Division:
10 / 5 ten divided by five
2.0
To divide anumber by another number, we use aforward slash /7, and we pronounce it divided by. Note
that the result of a division is always a decimal number.

6. Floor division:

7 /1 4 seven floor division four
1
To execute a floor division, we use the operator /7, composed of two forward slashes and pronounced
floor division. A floor division is a division where the result is rounded to the closest lower integer. In
this example, the result of the corresponding division /7 would be 1.75, thus the result of the floor
division is 1, which is the closest lower integer to 1.75. The word floor indicates that we round the
result down, that is—using a metaphor-to the floor of a house.

7. Modulo:

7% 4 seven modulo four
3

To calculate a modulus, we use the operator %, which is pronounced modulo. This operation calculates
areminder (or modulus), which is the number needed to go back to the dividend after a floor division.
For example, from cell 6 we know that the result of the floor division 7//4 is 1. If we multiply 1 (the
result) times 4 (the divisor), we get 4 (4x1=4). To get to 7 (the dividend), we need 3, which is the modulus
(4+3=7). Note that modulo is the name of the operator, while modulus is the name of the operation and
a synonym for remainder. The modulus operation is used quite often in coding, as you will see in the
next chapter.

To summarize, Python provides seven arithmetic operators:
1 for addition (+)
1 for subtraction (-)

2 for the “multiplication family”, which are multiplication (*) and exponentiation (**)

e 3for the “division family”, which are division (/), floor division (/ /), and modulo (%)

Note that the division operators can provide whole numbers or decimal numbers as results, indepen-
dently of the characteristics of dividend and divisor. Discover more nuance by solving the following
exercise. Test your answers in Python!

1. Theresult of adivision is always a whole number (e.g., without decimals). For example, T F
the result of 11/5 is the whole number 2

2. Theresult of 7//2is 3, but the result of -7//2 is -4. This is because the floor division T F
rounds to the closest lower integer

3. Theresultof 7.5 % 3is1.5. Therefore, the result of a modulus operationcanbeadec- T F
imal number

102

Chapter 13. Implementing a calculator

When asking a user to input a number, it's important to be careful about variable types. Let’s see what
this means!

e Ask auser to input a number, assign it to a variable, and print out the variable:

number = input("Insert a number:") number is assigned input Insert a number:
print (number) print number
Insert a number: 9

9

We use the built-in function input () to ask the user to type a number, and we save the answer in the
variable number (line 1). Then, we print out the variable value (line 2). What type do you expect the
variable number to be? Let’s find out!

e Check the type of the variable number:

type (number) type number
str
To know the type of a variable, we use the built-in function type (), which takes a variable as an input
and returns its type. In the printout, we see that the type of number is str, which is an abbreviation
for string. But shouldn’t 9 be an integer? Yes! However, number is a string because the built-in func-
tion input () returns strings, regardless of what a user types on a keyboard (characters, numbers, or
symbols). To transform the value of number into an actual number that we can use in calculations, we
have to transform its type from string to integer.

e Transform number into an integer, print it out, and check its type:

number = int(number) number is assigned int of number
print (number) print number
type (number) type number

9

int

The built-in function int () takes a non-integer variable as an input and returns it as an integer.
Note that to actually transform a variable type, we need to reassign the output of the built-in func-
tion int () to the variable itself (line 1). At line 2, we print number, which is still 9. However, this time
number is of type int, as we can see from type (number) at line 3. What if we want a decimal number?
In that case, we have to transform the variable type into float!

e Transform number into a float, print it out, and check its type:

number = float(number) number is assigned float of number
print (number) print number
type (number) type number

9.0

float

The built-in function float () takes a nonZidecimal variable as an input and returns it as a decimal.
Also in this case, we need to reassign the output of float () to the variable itself to actually change
the data type (line 1). From the print at line 2, we see that the variable number is now 9.0, that is, a

103

Part 4. Numbers and algorithms

decimal number. And from the command at line 3, we can see that number is now of type float. Let’s
close the circle, and go back to the variable number being a string! How would you do that?

e Transform number back into a string, print it out, and check its type:

numbexr = str(number) number is assigned str of number
print (number) print number
type (number) type number

9.0

str

To transform a variable into a string, we use the built-in function stx (), which we learned in Chapter
8. Note that because we transform number into a string from a float (and not an integer), the value is
now 9.0—that is, it contains the decimal component.

Numerical variables can be of three types:
¢ Integers (whole numbers), used in computations
e Floats (decimal numbers), used in computations
e Strings, when we need numbers as text—for example, when concatenating them to strings

We finally know arithmetic operations in Python and how to ask a number to a user. So we are ready
to create a calculator! Where do we start? From the user inputs! Let’s find out the inputs in the
following exercise.

Complete the following sentences with the inputs you need from a user to implement a calculator. If
you are not sure, think about what you yourself enter when using a calculator:

1. The firstinputis

2. The second input is

3. Thethirdinputis

e Ask the user for the first input, which is the first number. What type should it be?

first_number = input("Insert the first first_number is assigned input Insert the
numbexr:") first number:
first_number = float(first_number) first_number is assigned float of

first_number
type (first_number) type first number
Insert the first number: 4
float
We ask the user to input the first number using the built-in function input (), and we assign the user’s

choice to the variable first_number (line 1). Then, we need to transform the type of first_number

104

Chapter 13. Implementing a calculator

from a string into a numerical type to perform calculations. Which type do we choose: integer or
float? If the user enters a whole number, we need to transform first_number into an integer. But
what if the user enters a decimal number? Then, we need to transform first_number into a float! So
we go for an inclusive solution, that is, transforming first_number into a float to comprehend both
whole numbers and decimal numbers. Thus, we use the built-in function float (), and we reassign to
the variable first_number (line 2). Finally, we print out first_number’s type to check that it’s correct
(line 3).

e Ask the user for the second input, which is the arithmetic operator:

operator = input("Insert an arithmetic operator is assigned input Insert an
operator:") arithmetic operator:
type(operator) type operator

Insert the arithmetic operator: +

str

We ask the user for an arithmetic operator and we save the value in the variable operator (line 1).
Because an arithmetic operator is a symbol, we keep it as a string, and we print out its type to check
for correctness (line 2).

e Finally, ask the user for the third and final input, which is the second number. What type should
it be?

second_number = float(input("Insert the second_number is assigned float of input
second number:")) Insert the second number:
type (second_number) type second number

Insert the second number: 3

float

Aswedidfor first_number, we ask the user for the second number using the built-in function input ().
Then, we need to transform the user’s choice from string to float using the built-in function float().
Instead of using two separate commands like we did at cell 13 (lines 1 and 2), we nest the two built-in
functions one into the other: we transform the user’s choice into a float before assigning it to the
variable second_number (line 1). Then, we print out the second_numbexr’s type to make sure that it’s a
float (line 2).

e Let's write the core of the calculator! How would you do it? Try out some ideas before looking at
the implementation below:

if operator == "+": if operator is equal to plus
result = first_number + second_number result is assigned first number plus
second number
elif operator == "-": elif operator is equal to minus
result = first_number - second_number result is assigned first number minus
second number
elif operator == "*": elif operator is equal to times
result = first_number * second_number result is assigned first number times
second number
elif operator == "**": elif operator is equal to to the power of
result = first_number ** second_number result is assigned first number to the

power of second number

105

Part 4. Numbers and algorithms
elif operator == "/": elif operator is equal to divided by
result = first_number / second_number result is assigned first number divided
by second number
elif operator == "//": elif operator is equal to floor division
result = first_number // second_number result is assigned first number floor
division second number
elif operator == "%": elif operator is equal to modulo
result = first_number % second_number result is assigned first number modulo
second number
else: else
print ("You didn't enter an print You didn't enter an arithmetic
arithmetic operator") operator
print (result) print result
7.0

The operation that our code will execute depends on the arithmetic operator entered by the user;
thus, we need to take into account all possibilities. To do that, we create a long list of conditions for
the arithmetic operator, with the corresponding calculations. We start by considering addition (lines
1and 2). Inthe if condition, we check if the variable operator from cell 14 is equal to the symbol +. Be-
cause operator is a string, we need to consider the addition operator as a string as well, so we embed
it in between quotes (i.e., "+") (line 1). In the subsequent statement, we calculate the sum between
the two numerical variables (first_number and second_number) entered by the user, and we assign
the result to the variable result (line 2). Then, we consider subtraction (lines 3 and 4). We structure
the code as we did above: first, we write a condition where we check that the variable operator is
equal to the string "-" (line 3); then, we execute the difference between the two numbers entered by
the user, and we assign the result to the variable result (line 4).

As you might have noticed, the condition at line 3 started with the keyword elif, which is an abbre-
viation for else if. We use elif when we check several conditions on one single variable, which is
operator in this case. We continue the code with a similar structure for the remaining arithmetic
operations (lines 5-14). When using an if/elif/else construct, make sure to always test code un-
der all conditions. To do that in our example, re-enter the variables first_number, operator, and
second_number for each condition and make sure that what gets printed is the one you expected. We
conclude the list of conditions with an else (line 15), which prints out a warning in case the user did
not enter a valid arithmetic operator (line 16). Finally, we print out the variable result to check that
our code is correct (line 17). Note that we print result at the end of the if/elif/else construct in-
stead of after each statement (lines 2,4,6,8,10,12,14) to avoid redundancy.

e Finally, let’s print out the result:

print (str(first_number) + " " + operator
+ " " + str(second_number) + " = " +
str(result))

print str of first_number concatenated
with space concatenated with operator
concatenated with space concatenated with
str of second_number concatenated with
equals concatenated with str of result
4.0 + 3.0 =17.0

We print the result, concatenating first_number, operator, second_number,and result. Note that we

106

Chapter 13. Implementing a calculator

convert the numerical variables into strings for the concatenation.

Finally, let’s put it together our code to create a real calculator by merging all lines from the code
above into one single cell. This will allow us to run only one cell (instead of multiple cells) when exe-
cuting the code:

first input
first_number = float(input("Insert the
first number:"))

operator
operator = input("Insert an arithmetic
operator:")

second input
second_number = float(input("Insert the
second number:"))

computations
if operator == "+":
result = first_number + second_number

elif operator == "-":
result = first_number - second_number

elif operator == "*":
result = first_number * second_number

elif operator == "**":
result = first_number ** second_number

elif operator == "/":
result = first_number / second_number

elif operator == "//":
result = first_number // second_number

elif operator == "%":
result = first_number % second_number

else:
print ("You didn't enter an
arithmetic operator")

print the result

print (str(first_number) + " " + operator
+ " " + str(second_number) + " = " +
str(result))

first input
first_number is assigned float of input
Insert the first number:

operator
operator is assigned input Insert an
arithmetic operator:

second input
second_number is assigned float of input
Insert the second number:

computations

if operator is equal to plus

result is assigned first number plus
second number

elif operator is equal to minus

result is assigned first number minus
second number

elif operator is equal to times

result is assigned first number times
second number

elif operator is equal to to the power of
result is assigned first number to the
power of second number

elif operator is equal to divided by
result is assigned first number divided
by second number

elif operator is equal to floor division
result is assigned first number floor
division second number

elif operator is equal to modulo

result is assigned first number modulo
second number

else

print You didn't enter an arithmetic
operator

print the result

print str of first_number concatenated
with space concatenated with operator
concatenated with space concatenated with
str of second_number concatenated with
equals concatenated with str of result

When we merge code in one cell at the end of an implementation, we usually edit and clean it up for
better readability. In this example, we directly transform first_number in a float by nesting the built-
in function input () into the built-in function float() (line 2); we delete all the intermediate prints
(i.e., we remove line 3 from cell 13, line 2 from cells 14 and 15, and line 17 from cell 16); and we add

107

Part 4. Numbers and algorithms

comments (lines 1,4, 7, 10, and 28) and lines spaces (lines 3, 6, 6, 27).

In this chapter, you learned the seven arithmetic operators. Sum up their characteristics in your own
words in the table below:

Arithmetic Operation Pronunciation

operator

+

k%

I
%

e There are seven arithmetic operators in Python: +, -, *,** /,//,%

e Numbers can be represented by three data types: integers for whole numbers, floats for decimal
numbers, and strings as text

e To transform a variable into an integer, we use the built-in function int (); to transform a variable
into a float, we use the built-in function float ()

e To check the type of a variable, we use the built-in function type()

e We use the keyword elif to check multiple conditions on the same variable

Arithmetic expressions are combinations of arithmetic operations. As we do in paper-
and-pencil expressions, we execute operations in a specific order, which is summarized by
the acronym BEDMAS. First, we perform operations between brackets, then we compute
exponentiation, division, multiplication, addition, and subtraction. Here is an example:

6 +2 *3 six plus two times three
12

108

Chapter 13. Implementing a calculator

First we execute the multiplication, followed by the addition. Thus, we first calculate 2 * 3,
whichis 6,and then6 + 6, whichis 12.

Here is another example:

(6 +2) * 3 open round bracket six plus two close round
bracket times three
24
First, we execute the operation between round brackets (6 + 2),which s 8, and then the mul-

tiplication 8 * 3, which is 24. Note that brackets can only be round in coding.

. Math competition. You are holding a math competition where participants have to choose among
three envelopes and solve the arithmetic operation contained in the chosen envelope:

e If the participant chooses envelope 1, she will have to solve: (3 x 52 + 15)-(5-22)

e If the participant chooses envelope 2, she will have to solve: -1 x [(3-4 x 7) + 5]-23 x 24 + 6
(36-3)x4
(15-9)=3

e If the participant chooses envelop 3, she will have to solve:
Compute the solutions.

. Geometry tutoring. You are helping your neighbor’s kid with some geometry exercises. He has to
calculate the area and volume of a cylinder, and you want to test result correctness using Python.
Ask the kid for cylinder radius and height. Then calculate area and volume of a cylinder using these
formulas: area = 2mr? + 27rh and volume = 7r?h. Hint: What is the value of 7?2 Assignitto a
variable!

He also has to calculate surface and area of a cube of edge length ¢ = 4. He does not have the
right formulas, so you look for them on the internet. Write code to test whether his calculations
are correct.

. What'’s the temperature out there? You are traveling between Europe and North America, and you
need to pack theright clothes. Write a temperature converter, knowing that the relation between
Celsius and Fahrenheit degreesis C' = 5 + 9 x (F' — 32). Answer these two questions:

a. The temperature in Miamiis 75°F. What is the temperature in Celsius?

b. The temperature in Lisbon is 17°C. What is the temperature in Fahrenheit?

109

14. Playing with numbers

Common operations with lists of numbers

Lists of numbers are one of the most used data structures in coding. They follow the same rules as
lists of strings—that is, we can use slicing and methods (e.g., .append(), .remove(), etc.) to manipu-
late them. In this chapter, we will explore some typical tasks performed with lists of numbers. Open
Jupyter Notebook 14 and follow along. As we've done previously, try first to solve the task by your-
self: start by defining the expected solution, outline the steps to reach it, and then write the code to
solve it. When you are done, compare your implementation with the one proposed here.

1. Changing numbers based on conditions

One of the most common tasks in coding is changing numbersin a list based on some conditions. Let’s
have a look at this example!

e Given the following list of numbers:

numbers = [12, 3, 15, 7, 18] numbers is assigned twelve, three, fifteen, seven,
eighteen
We start with a list containing five integers.

e Subtract 1 from the numbers greater than or equal to 10, and add 2 to the numbers that are less
than 10:

for each position in the list for each position in the list
for i in range (len(numbers)): for i in range len of numbers
if current number >= 10 if current number is greater than or equal to ten
if numbers[i] >= 10: if numbers in position i is greater than or equal
to ten
subtract 1 subtract one

numbers[i] = numbers[i] - 1 numbers in position i is assigned numbers in
position i minus one

otherwise otherwise
else: else:
add 2 add two

numbers[i] = numbers[i] + 2 numbers in position i is assigned numbers in
position i plus two

print the final result print the final result
print (numbers) print numbers
[11, 5, 14, 9, 17]
We implement a for loop to browse all the elements of the list numbers (line 2). Then, we use an if/else
construct todefine a condition and compute accordingly. If the current number—thatis, numbers[i] —
is greater than 10 (line 4), we subtract 1, and we reassign the result to numbers[i] (line 6), similarly to

110

Chapter 14. Playing with numbers

what we saw in Chapter 11 (cell 2, line 10). If the current number is not greater than or equal to 10,
we jump to the else (line 10). Then, we add 2 to the current number, and we reassign (line 12). Let’s
see how this works step by step:

e In the first loop, i is @ (line 2). numbers in position @ is 12, which is greater than 10 (line 4), so we
subtract 1, obtaining 11, and we replace 12 with 11 by reassigning (line 7).

e In the second loop, i is 1 (line 2). numbers in position 1 is 3, which is not greater than or equal to
10 (line 4), so we jump to the else (line 10). There, we add 2 to 3, obtaining 5, and we replace 3 with
5 by reassigning (line 12).

e Etc.

Finally, we print the obtained list to check its correctness (line 12).

2. Separating numbers based on conditions

Another very common task with lists of numbers is to separate numbers into new lists based on given
conditions. Let’s see an example here!

e Given the following list of numbers:

numbers = [2, 10, 7, 5, @0, 9] numbers is assigned two, ten, seven, five, zero,
nine

We start with a list containing six integers.

e Separate the numbers into two different lists—one for odd numbers, and one for even numbers:

initialize the empty lists initialize empty lists

even = [] even is assigned an empty list
odd = [] odd is assigned an empty list

for each position in the list for each position in the list

for i in range (len(numbers)): for i in range len of numbers

if the current number is even if the current number is even

if numbers[i] % 2 == 0: if numbers in position i modulo two equals zero
add it to the list even add it to the list even
even.append(numbers[i]) even dot append numbers in position i
otherwise otherwise
else: else:
add it to the list odd add it to the list odd
odd.append(numbers[i]) odd dot append numbers in position i
check the final results check the final results
print (even) print even
print (odd) print odd
[2,10,0]

[7,5,9]

We create two empty lists, one that will contain the even numbers (line 2) and one that will contain the
odd numbers (line 3). To fill them up, we need a for loop together with the list method . append() (or
with concatenation), as we learned in Chapter 13. Thus, we create a for loop that browses all the list

111

Part 4. Numbers and algorithms

numbers one by one (line 6). Then, we use an if/else construct to determine whether each element
of the list numbers will go to even or odd (lines 8-15). How do we decide if a number is even or odd?
We know that even numbers are divisible by 2, whereas odd numbers are not. Thus, we can use the
modulo, one of the seven arithmetic operators we learned in the previous chapter. When divided by 2,
even numbers have a modulus (or remainder) equal to 0, whereas odd numbers don't (the remainder
is 1!). Therefore, if the remainder of the current list number (e.g., numbers [i]) divided by 2is O (line 9),
then we append numbers[i] to the list even (line 11). Otherwise (line 13), we append numbers[i] to
the list odd (line 15). Finally, we print the two lists to check the results (lines 18 and 19).

3. Finding the maximum of a list of numbers

A third very common task when dealing with lists of numbers is to find the maximum (or minimum)
number in a list. Try to find the maximum of the list below by yourself, drafting and experimenting
with code, before looking into the solution.

e Given the following list of numbers:

numbers = [2, -5, 34, 70, 22] numbers is assigned two, minus five,
thirty-four, seventy, twenty-two

e Find the maximum number in the list:

initialize the maximum with the initialize the maximum with the first element

first element of the list of the list

maximum = numbers[0] maximum is assigned numbers in position 0

for each position in the list for each position in the list starting from the

starting from the second second

for i in range (1, len(numbers)): for i in range one len of numbers

if the current number is greater if the current number is greater than the

than the current maximum current maximum

if numbers[i] > maximum: if numbers in position i is greater than

maximum

assign the number to maximum assign the number to maximum

maximum = numbers[i] maximum is assigned numbers in position i
print the maximum of the list print the maximum of the list
print (maximum) print maximum

70

We create avariable called maximum that will contain the maximum number in the list, and we initialize
it with the first number in the list, which is numbers [@] (line 1). Then, we employ a for loop starting
from the second position to the last position of the elements in the list (line 5)—we do not start from
0 because it is not very meaningful to compare the value of numbers[0] (from the for loop) to itself
(assigned to maximum). Then, we check if the current number is greater than the maximum (line 8).
If so, we assign the number to the maximum (line 10). If not, we do not need to perform any action;
therefore, we can skip the else. Finally, we print out the maximum (line 13). In other words, we assign
the first number of the list—that is, 2—to a variable that we call maximum (line 1). Then, we compare

12

Chapter 14. Playing with numbers

all the subsequent numbers of the list to the value of maximum, and if the list number is greater than

maximum, we assign the list number to maximum (lines 5-10). When we look into each iteration, this is
what happens:

Wheniis 1, numbers[1] is -5, which is not greater than 2, so we don’t do anything.

When i is 2, numbers[2] is 34, which is greater than 2. Thus, 34 is the new maximum and we assign
it to the variable maximum.

When i is 3, numbers[3] is 70, which is greater than 34. Thus, 70 is the new maximum and we assign
it to the variable. maximum

When i is 4, numbers[4] is 22, which is not greater than 70, so we don't do anything. Since the for
loop is over, the value of maximum is 70, as we found in the previous iteration.

Finally, why do we initialize the variable maximum with the first element of the list and not with a very

small number? Consider the following example. Let’s say we initialize maximum with a small number
like -999993. However, the current list could be -999993, such as [-999998, -999996, -9999941, so
we won't be able to find the maximum of the list (i.e., -999994). When we look for a maximum, picking

a specific number as the initial maximum does not allow us to generalize our code. We want to compare
the numbers within the list.

To change anumber in alist, we need to reassign the new value to the same list position. T F
To calculate whether a number is divisible or multiple of another number, we usedthe T F
arithmetic operation floor division.

To calculate the maximum of a number in a list, we compare the list numbers witheach T F
other.

When dealing with lists of numbers, some of the basic tasks are:

Changing numbers in a list depending on conditions

e Separating numbers into new lists based on conditions

Finding the maximum (or minimum) number in a list

When naming variables, it'simportant not to use reserved words, that is, names of built-in func-
tions or keywords. How do we know if a name is a reserved word? And what happens if we used
it as a variable name? Consider the following example:

len = 10 len is assigned ten

print (len) print len
10

113

Part 4. Numbers and algorithms

We create a variable called 1en to which we assign the number ten. As you can see, the vari-
able name is colored green, which means it is a reserve word—we know that 1en() is a Python
built-in function, and that variable names are colored black (line 1). When we print the variable,
we do not encounter any issue (line 2). However, if we want to calculate the length of a list in
subsequent code, we get an error:

numbers = [1, 2, 3] numbers is assigned one, two,
three
len (numbers) len numbers
TypeExrror Traceback (most recent call last)
<ipython-input-5-db98c59ed681> in
1 numbers = [1, 2, 3]

———=> 2 len (numbers)
TypeExrror: 'int' object is not callable

The error message says: 'int' object is not callable, which means that we want to use
len as afunction; instead, now lenis aninteger! In other words, by naming the variable 1en (cell
1, line 1), we overwrote the function 1en with an integer, and we cannot use it as a function any-
more. To solve this issue, we have to restart the kernel, that is, we need to erase all variables
and start from scratch (see the In more depth section in Chapter 7).

1. Finding the minimum in a list of numbers. Given the following list of numbers:

numbers = [78, -900, 356, -103, @, -78]

find the minimum number in the list.
2. Grouping numbers by position. Given the following list of numbers:

numbers = [4, 25, 7, -8, 59, 63, -10, 74]

separate the numbers in odd positions from the numbers in even positions using a for loop.
3. Number multiples. Given the following list of numbers:

numbers = [20, 24, 69, 15, 100, 16, 4@, 80, 33, 57, 2, 200]

create a list for the numbers that are multiples of 10, a list for the numbers that are multiples of 3,
and a list for the remaining numbers. Finally, delete the list numbers.

4. Longest and shortest string. Given the following list of strings:

dogs = ["labrador", "chihuahua", "basset hound", "bernese shepherd", "poodle",

"cocker spaniel"]
find the longest and the shortest strings. Print out the two strings and their lengths.
5. Summing numbers in a list. Given the following list of numbers:

numbers = [3, 5, 2]

114

Chapter 14. Playing with numbers

calculate the sum.

. Fibonacci sequence. The Fibonacci sequence is a sequence of numbers where the current number
is the sum of the two previous numbers. Write code that asks the user for a number n and prints
out the Fibonacci sequence of n.

Hint: Start the sequence as [1,1]
Example:

e Userinput: 10
e Output: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

115

15. Fortune cookies

The Python module random

Let’s continue our discovery of numbers in Python by learning how to generate random numbers.

Randomness is quite useful in coding, for example to create games or in scientific simulations. Read

the following example and try to understand it. You can play with the code in Notebook 15. Let’s

start!

e YouareataChineserestaurant, and at the end of the meal, you get afortune cookie. There are only

three fortune cookies left. Each of them contains a message:

fortune_cookies = ["The man on the top of the
mountain did not fall there", "If winter comes,
can spring be far behind?", "Land is always on
the mind of a flying bird"]

fortune_cookies is assigned The
man on the top of the mountain did
not fall there, If winter comes,
can spring be far behind?, Land

is always on the mind of a flying
bird

e Whichfortune cookie will you get? Let the computer decide! Todo so, the computer needs a Python

module called random:

import random

e Here is your message when the computer picks an index:
pick a message index
message_index =
random.randint (@, len(fortune_cookies)-1)

print(message_index)

get the message
message = fortune_cookies[message_index]

print(message)

import random

pick a message index

message index is assigned random
dot randint zero len of fortune
cookies minus one

print message index

get the message

message is assigned fortune
cookies at message index
print message

e And here is your message when the computer directly picks an element:

pick a message
message = random.choice(fortune_cookies)

print(message)

True or false?

1. importisafunction
randomis a Python module

2
3. .randint() and .choice() are functions of the package random
4. The arguments of the functions .randint() and .choice() are of type string

pick a message

message is assigned random dot
choice fortune cookies

print message

- - 4 -
M M m M

Chapter 15. Fortune cookies

Let’s begin by running the first cell:

fortune_cookies = ["The man on the top of the fortune_cookies is assigned The
mountain did not fall there", "If winter comes, man on the top of the mountain did
can spring be far behind?", "Land is always on not fall there, If winter comes,
the mind of a flying bird"] can spring be far behind?, Land
is always on the mind of a flying
bird

The variable fortune_cookies is a list containing 3 strings.

Let’s continue with the second cell:

impoxt random import random

We use the keyword import to import the module random. What does this mean? As you know, Python
contains basic built-in functions, such as print(), input(), len(), range(), etc. However, when we
code, we often need tools for recurrent tasks, such as generating random numbers, browsing direc-
tories, computing statistics, etc. For this reason, Python contains additional units called modules. We
will talk about modules in greater detail in Chapter 32. For now, let’s keep in mind this definition:

A module is a unit containing functions for a specific task

Because in Python there are plenty of modules—which could slow down our computer if imported
all at once—we usually import only the module (or modules) that we are planning to use. To import a
module, we use the keyword import followed by the module name.

Let’s now run cell number 3:

pick a message index pick a message index
message_index = message index is assigned random
random.randint (@, len(fortune_cookies)-1) dot randint zero len of fortune

cookies minus one

print(message_index) print message index

get the message get the message

message = fortune_cookies[message_index] message is assigned fortune
cookies at message index

print(message) print message

2
Land is always on the mind of a flying bird

The module random contains several functions, and in this cell we use .randint () (line 2). As you can
see, the syntax to call a module function is as follows: (1) module name; (2) dot; (3) function name;
and (4) function inputs in between round brackets. The function .randint() takes two integers as
inputs—which we can we call aand b (. randint (a,b))—and returns a random number between them
included—that is, a and b can be the generated random number. In our example, we want to pick a
random number representing the index (or position) of an element in the list fortune_cookies. Thus,
we could write .randint (0, 2). But what if we added or removed some strings to or from the list? We
would have to manually change the endpoint b, and this could be prone to error! Similarly to what we

117

Part 4. Numbers and algorithms

do for the stop in a for loop, we parameterise b, that is, we write b as a function of the length of a list.
Thus, we type len(fortune_cookies), from which we subtract 1 because list indexes start from zero
(i.e.,len(fortune_cookies) is 3, but the index of the last element is 2). After creating the random num-
ber, we assign it to message_index, and we print it (line 3). Finally, we slice the list fortune_cookies in
position message_index to extract a string containing that we assign to the variable message (line 6)
and print to the screen (line 7). One last note: try to run the cell several times. What happens? Every
time .randint () returns a different number (O, 1, or 2), and thus we get a different fortune cookie
message!

Let’s have a look at the last cell:

pick a message pick a message
message = random.choice(fortune_cookies) message is assigned random dot
choice fortune cookies

print(message) print message
The man on the top of the mountain did not fall there
In this case, we use another function from the module random called . choice(), which takes alist as an
input and returns a randomly selected element of the list (line 2). Finally, we print the message (line
3).

What is the difference between .choice() and .randint()? When using .choice(), we do not know
the position of the element the computer randomly selects, whereas when using . randint (), we know
where the element is in the list.

In range(start, stop, step) . module name, dot, function name()

In .randint(a,b) . returns a random element from a list
The function .randint(a,b)

The function .choice(1list)

. stopis excluded

. variable name, dot, method name()
The syntax to use a string or list method is
The syntaxtouse afunctionfromamodule returns a random integer between a and
is b (included)

. the endpoint b is included

ok bR
S0 a0 o W

e A module is a unit containing functions for a specific task.

e To import a module, we use the keyword import. Imports are usually written at the beginning of
code, and only once.

e When calling a module function, we use the following syntax: module_name.function_name()

e randomis a module to generate random numbers. It contains several functions, including:
m .randint(a,b): returns arandom integer between the endpoints a and b (included)
m .choice(list_name): returns an element of a list

118

Chapter 15. Fortune cookies

As we know from the previous chapters, in a for loop, the variable i changes its value from the
start to the stop (minus 1!) of the interval created by the function range (). Within the loop,
we use i to either print out the current loop number (e.g., print ("This is loop number " +
str(i))) or to automatically slice list elements (e.g., print (friends[i])). However, in some
cases, we do not need i. Let’s look at an example:

impoxt random import random
repeat the commands 3 times (index not repeat the commands 3 times (index
needed) not needed)
for _ in range (0,3): for underscore in range from zero
to three
create a random number between 10 create a random number between ten
and 20 and twenty
random_number = random.randint(10,20) random_number is assigned random
dot randint ten twenty
print the number print the number
print ("The random number is" + print The random number is
random_number) concatenated with random_number

The random numbers is: 14
The random numbers is: 17
The random numbers is: 12

We use a for loop to generate and print three random numbers (lines 4-8). As you can see,
we use the for loop to repeat commands that do not contain i. In this case, it is a Python style
convention to substitute i with an underscore (i.e., _) in the header of the for loop (line 4), to
signal that we do not need an index in the loop. Using i in the loop header would not be an
error, but it would decrease code readability for other Python coders.

. For each of the following scenarios, create code similar to that presented in this chapter:

a. Tossing a coin. What are the possibilities when tossing a coin? Write themin a list. Then, toss
the coin, once using . randint () and once using .choice (). What do you get?

b. Rolling dice. What are the possibilities when rolling a die? Write them in a list. Then, roll the
die, once using .randint () and once using .choice(). What numbers do you get? Finally,
choose one method and roll the die three times. What numbers do you get?

. Ten random numbers. Create a list of 10 random numbers between 0 and 100 using a for loop.

. Unique random numbers multiple of a number. Create a list of 100 random numbers between 5 and
60. Divide them into two lists depending on whether they are a multiple of 4 or not. Then, create
another list called unique, where you add unique multiples of 4 from the previous list. This means
that, for example, that if 42 is present more than once, it will appear only once in unique. If the
number is already present in unique, print out a sentence like: The number x is already in unique.
How many unique multiples of 4 could you generate randomly?

119

Part 4. Numbers and algorithms

4. Playing with prime numbers. Create a list of 150 random numbers between 50 and 100, and divide
them into lists depending on whether they are multiple of the prime numbers 2, 3, 5, or 7 (a number
can be added to more than one lists if it is multiple of several prime numbers). Then, sum up all the
elements for each list separately (do not use built-in functions you might find online). Is each sum
a multiple of the original prime number? That is, is the sum of all the multiples of 3 a multiple of 3
itself?

120

Everybody knows the game rock paper scissors! Kids in every corner of the world play this game
originating at least 2,000 years ago in China®. In this chapter, we will learn how to implement this
game in Python. How would you do it? Write your ideas in the next exercise and try to write your
own implementation. Then, have a look at the computational solution below, implemented also in
Notebook 16.

Think about three steps you need to implement rock paper scissors and write them below. Consider
that you will play against the computer: it will pick either paper, rock, or scissors, and you will do the
same. Who wins?

In the first step, the computer picks among paper, rock, and scissors. How? Let’s have a look at the
code below.

e Make the computer pick rock, paper, or scissors:

impoxt random impoxt random

1list of game possibilities list of game possibilities

possibilities = ["rock", "paper", "scissors"] possibilities is assigned rock, paper,
scissors

computer random pick computer random pick

computer_pick = random.choice(possibilities) computer_pick is assigned random dot
choice possibilities

print(computer_pick) print computer pick

rock

We import the package random, which we learned in the previous chapter (line 1). Then, we create a
list containing the possible choices—that is, the three strings "rock", "paper" and "scissors" (line 4).
We use the function .choice() from the package random to randomly pick an element from the list
possibilities. Finally, we save the pick in the variable computer_pick (line 7) and we print it out (line
8). In this case, the computer_pickis rock.

thttps://enwikipedia.org/wiki/Rock_paper_scissors

121

Part 4. Numbers and algorithms

In the second step, it’s the player’s turn to choose among rock, paper, and scissors. Let’s have a look
below.

e Make the player choose among rock, paper, or scissors:

asking the player to make their choice asking the player to make their choice
player_choice = input ("Rock, paper, or player choice is assigned input rock,
scissors?") paper, or scissors?
print(player_choice) print player choice

rock, paper, or scissors? rock

rock

We use the built-in function input to ask the player to choose among rock, paper, or scissors,and we
save the choice in the variable player_choice (line 2). Then, we print it out as a check (line 3). In our
example, the player chooses rock.

It’'s time to determine who wins! How dowe doit? The computer has three possible picks, and so does
the player. Thus, there are nine possible scenarios. How do we code them without forgetting any?
One option is to define three situations where the computer’s pick is fixed and the player’s choice
varies. Let’s see the implementation!

e If the computer picks rock:

if computer_pick == "rock": if computer pick equals rock

compare to the player's choice compare to the player's choice

if player_choice == "rock": if player choice equals rock
print("Tie!") print Tie!

elif player_choice == "paper": elif player choice equals paper
print("You win!") print You win!

else: else:
print("The computer wins!") print The computer wins!

Tie!

We start with an if condition to check if the computer pick equals "rock" (line 1). Then we evaluate
the player’s choice. If the player’s choice equals "rock" (line 4), then we print that it’s a tie (line 5).
If the player’s choice equals "paper" (line 6), then we print that the player wins (line 7). Finally, in
the remaining case—the player’s choice is "scissors"—(line 8), we print that the computer wins (line
9). The code is very simple: an if condition containing an if/elif/else construct with prints in the
statements. As you can see, we print a message directly to the player, not to the coder. You might
remember that when we code, we alternate two hats: the coder hat or the player hat (see page 14).
If we print "The player wins" (line 7), we tell the coder that the code works. But if we print You win!,
we talk to the player, who is the person we are coding for! Think about when you play a computer
game: what kind of messages do you get?

Inanif/elif/elseconstruct,itisimportanttotestall conditions. We wantto make surethatall state-
ments execute correctly, as we mentioned when we implemented a calculator (Chapter 13). What

122

Chapter 16. Rock paper scissors

does testing mean exactly?
Testing means to evaluate and verify that the code does what it is supposed to do

How do we test the code in this example? We rerun cell 2—where we ask the player to choose among
rock, paper, and scissors—two times: once entering paper and once entering scissors. After each
run, we rerun cell 3 to check that the corresponding printout is correct. It is important to enter the
strings in the same order as they appear in the conditions: first rock, then paper, and finally scissors.
Keeping the same order helps us make sure that we test all conditions, without skipping any.

Sometimes testing is confused with debugging, but they are two very different concepts. You might
have heard the word debugging many times. What is its exact meaning?

Debugging means identifying and removing errors from code

Debugging is a bit of a detective job. When we get error messages, or we do not obtain the result that
we expect, we need to understand where the error is so that we can fix it. A very common way to
debug is to print variables after every line of code, to check the value they are assigned. When the
variable valueis not the expected one, that’s where the error happens! Once we have found the error,
we can fix it, and then we can keep coding. To understand further why we use the word debugging,
read the In more depth section at the end of this chapter.

Let’s continue implementing rock paper scissors, looking at the second computer pick possibility.

e |f the computer picks paper:

if computer_pick == "paper": if computer pick equals paper

compare to the player's choice compare to the player's choice

if player_choice == "paper": if player choice equals paper
print("Tie!") print Tie!

elif player_choice == "scissors": elif player choice equals scissors
print("You win!") print You win!

else: else:
print("The computer wins!") print The computer wins!

The structure of the code is the same as in the previous cell: an if condition (line 1) containing an
if/elif/else construct (lines 4-9). What changes are the terms of comparison—that is, the strings—
inthe conditions: we check if the computer picks "paper", and we change the conditions for the player
according to the printed messages.

When we write code with a repetitive structure—like in our example—it is crucial to use parallelism.
What is parallelism?

Parallelism means maintaining a corresponding structure
for subsequent lines or blocks of code

In our example, we can either keep the conditions in the same order—e.g., the first term of comparison
is always "rock", the second is always "paper", and the third is always "scissors"—or we can keep

123

Part 4. Numbers and algorithms

the statements in the same order—that is, the first message is always "Tie!" (line 5 in both cells 3
and 4), the second is always "You win!" (line 7 in both cells), and the third is always "The computer
wins!" (line 9 in both cells). Parallelism helps us remember to list all conditions in every construct,
and it improves code readability.

Once more, let’s not forget to test all conditions. We first have to make sure that the computer pick
is paper. Since we have only three options, a simple way is to rerun cell 1 until we get what we need—
that is, "paper". Then, we re-run cells 2 and 4 three times, each time entering the player choice and
testing the corresponding print, in the same order as in the if/elif/else construct. In other words,
first we enter "paper" at cell 2, and run cell 4 to test lines 4-5. Then, we enter "scissors" at cell 2,
and run cell 4 testing lines 6-7. And finally, we enter "scissors" at cell 2, and run cell 4 to test lines
8-9.

Let’s finally look into the third scenario.

e If the computer picks scissors:

if computer_pick == "scissoxrs" if computer pick equals scissors

compare to the player's choice compare to the player's choice

if player_choice == "scissors": if player choice equals scissors
print("Tie!") print Tie!

elif player_choice == "rock": elif player choice equals rock
print("You win!") print You win!

else: else:
print("The computer wins!") print The computer wins!

Also in this last case, the code structure is similar: an if condition (line 1) nesting an if/elif/else
construct (lines 4-9). We check if the computer picked "scissors" and if the player chose "scissors"
(line 4), "rock" (line 6), or "paper" (the else inline 8). As in cell 4, we construct the conditions so that
the print statements are parallel to the conditions in cell 3. Finally, once more, we want to make sure
we test the code. Thus, first we re-run cell 1, making sure that the computer_pickis "scissors". Then,
we re-run cells 2 and 5, subsequently entering and testing for "scissors", "rock", and "paper".

Note that we considered a well-behaved player, that is, a player that enters rock, paper, or scissors
correctly, without any misspelling. We will assume that we are dealing with well-behaved playersin all
coming chapters to focus on coding syntax and thinking. We will learn to check for input correctness
in Chapter 30.

At this point, the code is completed! As coders, we have taken care of the various parts of the code,
writing and testing them. Now it’s time to put all the code together for the player!

124

Chapter 16. Rock paper scissors

Merging the code

e Let's merge the code:

1 import random impoxt random

2

3 # list of game possibilities list of game possibilities

4 possibilities = ["rock", "paper", "scissors"] possibilities is assigned rock, paper,
scissors

5 # computer random pick computer random pick

6 computer_pick = random.choice(possibilities) computer_pick is assigned random dot
choice possibilities

7

8 # asking the player to make their choice asking the player to make their choice

9 player_choice = input ("Rock, paper, or player choice is assigned input rock,

scissors?") paper, or scissors?

10

11 # determine who wins determine who wins

12 # if the computer picks rock if the computer picks rock

13 if computer_pick == "rock": if computer pick equals rock

14 # compare to the player's choice compare to the player's choice

15 if player_choice == "rock": if player choice equals rock

16 print("Tie!") print Tie!

17 elif player_choice == "paper": elif player choice equals paper

18 print("You win!") print You win!

19 else: else:

20 print("The computer wins!") print The computer wins!

21

22 # 1if the computer picks paper if the computer picks paper

23 if computer_pick == "paper": if computer pick equals paper

24 # compare to the player's choice compare to the player's choice

25 if player_choice == "paper": if player choice equals paper

26 print("Tie!") print Tie!

27 elif player_choice == "scissors": elif player choice equals scissors

28 print("You win!") print You win!

29 else: else:

30 print("The computer wins!") print The computer wins!

21

12 # if the computer picks scissors if the computer picks scissors

33 if computer_pick == "scissors" if computer pick equals scissors

34 # compare to the player's choice compare to the player's choice

35 if player_choice == "scissors": if player choice equals scissors

36 print("Tie!") print Tie!

37 elif player_choice == "rock": elif player choice equals rock

38 print("You win!") print You win!

39 else: else:

40 print("The computer wins!") print The computer wins!

Rock, paper, or scissors? rock

You win!

When merging code, we usually do some editing to improve code use and readability. In this case,
we erased the print of computer_pick (whichwasincell 1, line 8) because we do not want the player to
know the computer choice in advance. Similarly, we delete the print of player_choice
(which was in cell 2, line 3), as the player already sees their choice from the entry at line 9. Other

125

Part 4. Numbers and algorithms

editing might include improving comments, making variable names more meaningful, restructuring
parts of the code, etc.

Let’s now zoom out and observe the procedure we use to implement the game. We first defined three
steps (see the exercise Complete the sentences). Then, we implemented each step separately (see para-
graphs 1. Computer pick, 2. Player choice, and 3. Determine who wins). Finally, we merged all the code
together and edited it (see Merging the code). This way of approaching a task is called divide and con-
quer.

Divide and conquer means dividing a project into sub-projects, solving the sub-projects, and
combining the solutions of the sub-projects to obtain the solution of the original project

In other words, there are three steps to solve a computational (but not strictly computational!) task:

1. Break the project into subprojects
2. Solve the subprojects separately
3. Merge the solutions of the subprojects to obtain the solution of the whole project

Last but not least, let’s talk about algorithms! You have surely heard this word many times. What is
an algorithm?

An algorithm is a sequence of rigorous steps to execute and complete a task

Algorithms are just procedures to solve tasks, problems, or assignments. They do not have to be com-
plicated. They can actually be pretty simple. There are plenty of algorithms in everyday life! Think
about the sequence of steps you make to brush your teeth: taking the toothpaste tube, opening and
squeezing it, placing toothpaste on the toothbrush, etc. This is an algorithm! Or think about cooking
recipes, especially printed recipes. At the top, there is a list of ingredients (e.g., 2 carrots, 3 onions),
which are the variables (e.g., carrots = 2, onions = 3). Then, there is the execution of the recipe,
thatis, the steps to process the ingredients into the final dish. In programming, many algorithms have
been developed in the past few decades. The most famous algorithms were designed to sort lists, find
prime numbers, find elements in a list, etc. We will not look into them in this book, but you can find
plenty of examples and explanations in more advanced books and on the internet.

126

Chapter 16. Rock paper scissors

Inthis chapter, you learned several more important concepts in coding. Write their definitions in your
own words:

Concept Definition
Testing

Debugging

Parallelism

Divide and conquer

Algorithm

e Analgorithms is a sequence of steps to execute a task
o Whenwriting an algorithm (and code in general), we largely use parallelism, testing, debugging, and
divide and conquer

Do you know why we say debugging, divide and conquer, and algorithms? The term debugging orig-
inated in 1947, when a moth was found in a relay of Mark Il computer at Harvard University,
causing the computer to malfunction. The moth was then taped to a log sheet, with the anno-
tation Relay 70 Panel F (moth) in relay. First actual case of a bug being found (see Figure 16.1).
Although the word debugging is not mentioned in the annotation, it became popular thanks
to Grace Hopper, who worked on the same computer?:?. Divide and conquer is attributed to
Philip Il of Macedon, and it was reused by the Roman ruler Julius Caesar, the French emperor
Napoleon, and many more®€. It refers to a military strategy where the invaders divide the enemy
forces to defeat them more easily and conquer them as a whole. Finally, the term algorithm de-
rives from al-Khwarizmi, the last name of Muhammad ibn Musa al-Khwarizmi, a 9th-century
Persian mathematician and astronomer whose books were widely read in Europe in the late
Middle Ages. He wrote a book on the Hindu-Arabic numeral system, which was translated into
Latin in the 12th century. The latin manuscript starts with the phrase Dixit Algorizmi ("Thus
spoke Al-Khwarizmi”), where "Algorizmi” was the translator’s Latinization of Al-Khwarizmi’s

last name?.

“https://en.wikipedia.org/wiki/Debugging
bhttps://en.wikipedia.org/wiki/Grace_Hopper
‘https://en.wikipedia.org/wiki/Divide_and_rule
dhttps://en.wikipedia.org/wiki/Algorithm

127

Part 4. Numbers and algorithms

.. qz‘ek | H“-7D ?CU‘\Q_ F
G-ho'l_s?:\n rz\m.;\ . ‘

o-f l)ucl Le{m‘ {""“""J"

Figure 16.1. The page of the log from the Mark Il with the moth taped on it. It dates 9 September 1947.
The time is 15:45 as visible on the top left. The log book is at the Smithsonian Institution’s
National Museum of American History in Washington, D.C., United States.

Flet ol
’g/"b QAW 5w.
Leasd Jowm |

(Yo

Let’s code!

1. Trivia night! Trivia is a quiz game where players have to answer questions about various subjects.
For this implementation of Trivia, prepare 3 questions and their corresponding answers for 3 dif-
ferent topics. Ask the player to pick a topic, and then ask a randomly picked question about that
topic. Finally, tell the player whether the answer is correct. If not, print out the correct answer.
Here are some hints:

e How do you organize your questions and answers? What Python data types do you use?

What is the sequence of actions you need to perform? Write them down before coding. You can

always update them while implementing

How do you test that your code is correct?

Remember to divide and conquer!

128

PART 5

THE WHILE LOOP
AND CONDITIONS

In part 5, you will learn the last construct in coding: the while loop. You will also learn various types
of conditions that you can use in while loops and if/elif/else statements. Let’s go!

17. Do you want more candies?

The while loop

In coding, there are three constructs: if/elif/else, for loops, and while loops. You have now mas-
tered the first two, and in this chapter, you will finally learn the while loop! Read the code below, and

try to understand what it does. Follow along with notebook 17!

initialize variable
number_of_candies = 0

print the initial number of candies
print("You have " + str(number_of_candies) +
" candies")

ask if one wants a candy

8 answer = input ("Do you want a candy?
(yes/no)")

10 # as long as the answer is yes

11 while answer == "yes":

12

13 # add a candy

14 number_of_candies += 1

15

16 # print the current number of candies

17 print("You have " + str(number_of_candies)
+ " candies")

18

19 # ask again if they want more candies

20 answer = input ("Do you want more

candies? (yes/no)")

21

22 # print the final number of candies

23 print("You have a total of" +
str(number_of_candies) + " candies")

initialize variable
number_of_candies is assigned zero

print the initial number of candies
print You have concatenated with str
number of candies concatenated with
candies

ask if one wants a candy

answer is assigned input Do you want a
candy? (yes/no)

as long as the answer is yes
while answer equals yes:

add a candy
number_of_candies is incremented by one

print the current number of candies
print You have concatenated with str
number of candies concatenated with
candies

ask again if they want more candies
answer is assigned input Do you want
more candies? (yes/no)

print the final number of candies

print You have a total of concatenated
with str number of candies concatenated
with candies

Completethefollowingexercise tostart getting to know the syntax and functionality of thewhile loop!

True or false?

1. whileisavariable
The while loop header contains a condition
The variable answer appears 2 times in the code

DA S S A

inputs no

The variable number_of_candies increases by one unit at each loop
The while loop continues as long as the player inputs yes and stops when the player

T
T
T
T
T

M M M M M

131

Part 5.

The while loop and conditions

Computational thinking and syntax

Let’s run the cell, and let’s analyze the code in two separate blocks. We'll start with the first block:

1
2
3
4
5

initialize variable
number_of_candies = 0

print the initial number of candies
print("You have " + str(number_of_candies) +
" candies")

initialize variable
number_of_candies is assigned zero

print the initial number of candies
print You have concatenated with str
number of candies concatenated with
candies

We create a variable called number_of_candies and initialize it to @ (line 2). This variable will keep

count of the number of candies we want. It is a very important variable, and we will talk about it again

when analyzing the second block of code. At line 5, we print out the number of candies we have, which

is zero.

Let’s look into the next block, which is the core of the whole code:

7
8

10
11
12
13
14
15
16
17

18
19
20

21
22
23

ask if one wants a candy
answer = input ("Do you want a candy?
(yes/no)")

as long as the answer is yes
while answer == "yes":

add a candy
number_of_candies += 1

print the current number of candies
print("You have " + str(number_of_candies)
+ " candies")

ask again if they want more candies
answer = input ("Do you want more
candies? (yes/no)")

print the final number of candies

print("You have a total of" +
str(number_of_candies) + " candies")

You have @ candies

Do you want a candy? (yes/no) yes

You have 1 candies

Do you want more candies? (yes/no) yes
You have 2 candies

Do you want more candies? (yes/no) no
You have a total of 2 candies

ask if one wants a candy
answer is assigned input Do you want a
candy? (yes/no)

as long as the answer is yes
while answer equals yes:

add a candy
number_of_candies is incremented by one

print the current number of candies
print You have concatenated with str
number of candies concatenated with
candies

ask again if they want more candies
answer is assigned input Do you want
more candies? (yes/no)

print the final number of candies

print You have a total of concatenated
with str number of candies concatenated
with candies

Let’s see how the while loop works. We ask the player whether they want a candy, and we save
the reply in the variable answer (line 8). Then, we continue with the while loop header, which says

something like: as long as the variable answer is equal to yes, do the following (line 11): add a unit
to the variable number_of_candies (line 14); print out the current number of candies (line 17), and

132

Chapter 17. Do you want more candies?

ask again the player if they want more candies (line 20). Then, we go back to the while loop header
(line 11). If the answer at line 20 was yes, we'll do the same as above, that is: add a unit to the vari-
able number_of_candies (line 14); print out the current number of candies (line 17), and ask again the
player if they want more candies (line 20). Then, we will go back to the while loop header again (line
11). If the answer at line 20 was yes again, we will do the same as above once more, that is: add a unit
to the variable number_of_candies (line 14), ... We'll keep doing this as long as the variable answer is
equal toyes. What if the player answers no at line 20? When we go back to the while loop header (line
11), the condition is not valid anymore, because answer is not equal to yes! So the loop stops, and we
go directly to the first line after the while loop body (line 23). There, we print out the total number of
candies.

Let’s now look into the syntax. The while loop starts with a header (line 11), which is composed of
three parts: (1) the keyword while, (2) a condition, and (3) colon : (every construct header ends with
a colon!). In this example, we check whether the value assigned to the variable answer equals the
string "yes". We will see other kinds of conditions in the next chapter. After the header, there is
the body of the while loop (lines 13-20). The body is indented, similarly to the for loop body and
if/elif/else statements. Let's now focus our attention on two variables: answer and

number_of_candies.

How many times do you see the variable answer and where? answer is in three different places: (1)
before the while loop (line 8), (2) in the condition of the while loop, and (3) in the body of the while
loop. Why do we need it three times? Before a while loop, we always have to initialize the variable
contained inthe condition of the while loop header; otherwise, we cannot evaluate the condition itself
when the loop starts. In our example, we initialize answer with the first player’s answer (line 8). Then,
we have to check the conditioninvolving the variable answer. Inthis case, we check if answerisequal to
yes (line 11). Finally, we have to allow the variable to change (line 20), so that the loop can terminate;
otherwise, the loop will keep going indefinitely. Sooner or later, we all forget this last part, and we get
into an infinite loop! If that happens to you, just stop the cell (if it takes too long, restart the kernel!)

Let’s finally look into the variable number_of_candies. How many times do you see it and where?
number_of_candies is in two places: (1) before the while loop, where it is initialized (line 2), and (2) in
the while loop, where it is incremented by one unit at every loop (line 14). The variable
number_of_candies is generally called counter because it keeps count of the number of loops. The
symbol +=is an assignment symbol, and we can pronounce it as incremented by. It is a compact way of
writing

number_of_candies = number_of_candies + 1. For any arithmetic operator, there is the associated
assignment operator, that is, -= (decrease by), *= (multiply by and reassign), /= (divide by and reassign),
etc. Note that in assignment operators, the symbol = is always in the second position, after an arith-
metic operator.

133

Part 5. The while loop and conditions

What is the difference between a for loop and a while loop? In Chapter 8, we defined the while loop
as follows:

A for loop is the repetition of a group of commands
for a determined number of times

In a for loop, we know exactly how many times we are going to run the commands in the loop body.
Conversely, in awhile loop we do not know how many times we are going to run the commands in the
loop body because the duration of a while loop depends on the validity of the condition in the header.
Let’s define the while loop and summarize its characteristics:

A while loop is the repetition of a group of commands
as long as a condition holds

A while loop stops when the condition in the header is not true anymore. We always have to give
the variable in the condition the possibility to change so that the condition in the header can be false
and the loop can stop. If the variable in the condition (answer in our example) cannot change in the
while loop body, then we will get an infinite loop. Finally, to know how many times we run the loop,
we can use a counter (number_of_candies in our example) to keep track of the number of iterations.
The presence of a counter is not compulsory.

So far, you have learned several operators: arithmetic, assignment, and comparison operators. Insert
each symbol in the right column:

+, ==, *=, < /7*; <=y=’ //=,/=;//7 !=y'=s_y+=’>=’%=y**y%y**=’>

Arithmetic operators Assignment operators Comparison operators

134

Chapter 17. Do you want more candies?

A while loop is the repetition of a bunch of commands as long as a condition holds

The variable in the condition must be initialized before the condition. It also has to change some-
where in the loop body so that the loop can stop when the condition does not hold anymore
Awhile loop can have a counter. Counters keep track of the number of loops and must be initialized
before the loop header

When updating a variable with an arithmetic operation, we can use the corresponding assignment
operator, that is, +=, -=, etc.

What steps do we do when writing an email? We start with recipient’s address and email
subject, then we continue with the salutation, the body of the email, greetings, and we finish
with signature (an algorithm, isn’t it?). Once we are done, we read the email again for a check.
We correct some misspellings, and we quickly edit a few things here and there. Often, we go
deeper: we reformulate some sentences or we completely rearrange some paragraphs. With-
out realizing it, we have gone through the email a couple of times! Now, think about the steps
we make when writing code. First, we write the imports, the variables, and the implementation
of an algorithm. Then we test it to we check whether it works, and if not, we correct it. Once it
finally works, we remove unused variables, compact some code lines, improve variable names,
and clean comments. Like we do for emails, we look at our code circularly, that is, from top to
bottom a couple of times, exactly like when we re-read an email. But for some reason, when
we code, we often want the first draft to be the final implementation, and we get frustrated if
this doesn’t happen. When writing code, consider the time you spend testing, debugging, and
improving the code as part of the process, not as some extra time that prevents you from doing
something else! It’s all part of the process!

. For each of the following scenarios, create code similar to that presented in this chapter:
a. Do you want more cookies?
b. Do you want less exercises?

. At the cheese shop. You own a cheese shop, and you sell slices of cheese at 50c each. A new cus-
tomer comes in, and you ask if they want cheese. The customer is uncertain of how much cheese
to buy, so after every slice, you ask again if they want another slice of cheese. As long as the cus-
tomer says yes, then you add a slice of cheese, update the final price, and tell them the amount of
slices of cheese and the price so far. How many slices of cheese did you sell? And what was the
final price?

. Playing with numbers. Given the following list: numbers = [@], ask the player if you should add
another number to the list. Aslong as the player says yes, add to the list the sum of the last number

135

Part 5. The while loop and conditions

136

you added and the counter of the current loop Example: If you run the while loop 7 times, you will
get the following list: [0, 1, 3, 6, 10, 15, 21, 28]

Generating even numbers. Given an empty list, ask the player if you should add another number to
the list. As long as the player says yes, create a random number between O and 100, and if the
number is even, then add it to the list. How many numbers did you generate? How many even?
How many odd? What is the ratio between the amount of even and odd numbers you generated?

In the previous chapter, we saw only one kind of condition in a while loop—that is, that a variable
is equal to "yes". Let’s now take a look at three examples with other kinds of conditions. First, try
to solve each task by yourself: read the requirements carefully, list the steps to execute, implement
them one by one, and merge the code to the solution (divide and conquer!). This time, also try to take
it one a step further: keep an eye on the processes that your mind goes through while solving the
tasks. You will often find recurring thinking patterns when coding. Knowing and recognizing them
will give you awareness and thus speed up your work. For each of the following examples, you will
see a possible way to approach the coding task at hand. Maybe it will be similar to your thinking, or
maybe it will be different. In any case, it will give you an idea of possible thinking pathways. You can
play with the proposed solutions on Notebook 18. Enough talk—let’s start coding!

e Given the following list:

animals = ["giraffe", "dolphin", "penguin"] animals is assigned giraffe, dolphin,
penguin
e Create agame in which the computer randomly picks one of the three animals and the player has to
guess the animal picked by the computer. Make sure that the player keeps playing until they guess
the animal picked by the computer. At the end of the game, tell the player how many attempts it
took to guess the animal.

The game has four requirements: (1) the computer randomly picks one of the three animals; (2) the
player has to guess the animal picked by the computer; (3) the player keeps playing until they guess
the animal picked by the computer; and (4) at the end of the game, tell the player how many attempts
it took to guess the animal. Let’s see how to implement each requirement!

1. The computer randomly picks one of the three animals. This is pretty straightforward:

impoxt random import random
computer pick computer pick
computer_pick = random.choice(animals) computer pick is assigned random dot
choice animals
print(computer_pick) print computer pick
dolphin

We import the package random (line 1), and we use its function . choice() to make the computer pick
arandom element from the list animals (line 4). Then, we print computer_pick as a check (line 5).

137

Part 5. The while loop and conditions

2. The player has to guess the animal picked by the computer. This task is also easy:

player guess player guess

player_guess = input ("Guess the animall! player guess is assigned input Guess

Choices: giraffe, dolphin, penguin:") the animal! Choices: giraffe, dolphin,
penguin:

Guess the animal! Choices: giraffe, dolphin, penguin: giraffe

We use the function input () to ask the player to input their guess (line 2). We assume that the player’s
input is giraffe.

3. The player keeps playing until they guess the animal picked by the computer. The phrase "until they
guess the animal” is equivalent to "as long as they guess the animal”, which immediately suggests to us

that we should use a while loop. What condition do we write in the header? Let’s see:

as long as the player's guess and the
computer's pick are different
while player_guess != computer_pick:

tell the player that the animal is
not right
print("That's not the right animal!")

ask the player to guess again
player_guess = input ("Try again! Guess
the animal! Choices: giraffe, dolphin,
penguin:")

as long as the player's guess and the
computer's pick are different

while player guess is not equal to
computer pick:

tell the player that the animal is not
right
print That's not the right animal!

ask the player to guess again
player guess is assigned input Try
again! Guess the animal! Choices:
giraffe, dolphin, penguin:

tell the player that they guessed the tell the player that they guessed the
right animal right animal

print("Well done! You guessed " + print Well done! You guessed
computer_pick) concatenated with computer pick

That's not the right animal!

Try again! Guess the animal! Choices: giraffe, dolphin, penguin: dolphin

Well done! You guessed dolphin
The loop must stop when the player guesses the animal, that is, until player_guess and
computer_pick are the same. In general, when a requirement defines the condition that stops a
while loop, we have to think the opposite way: we need to find the condition that allows the while
loop to keep going. In our example, the loop must keep going as long as player_guess is not equal to
computer_pick (line 2). In the loop body, we provide a feedback to the player saying that the animal
they picked in not right (line 5), and we ask the player to guess the animal again (line 8) so that the
while loop can continue. Finally, after the loop, we print out a message confirming that the player
guessed the right animal (line 12).

4. At the end of the game, tell the player how many attempts it took to guess the animal. We definitely need
acounter!

initializing the counter initializing the counter
n_of_attempts = 1 n of attempts is assigned one

138

Chapter 18.

Animals, unique numbers, and sum

4

10
11

12
13
14
15
16
17

18
19

20

as long as the player's guess and the
computer's pick are different

while player_guess != computer_pick:

tell the player that the animal is
not right

print("That's not the right animal!")
print the numbers of attempts so far
print("Number of attempts so far: " +
str(n_of_attempts)

increase the number of attempts
n_of_attempts += 1

ask the player to guess again

player_guess = input ("Try again! Guess

the animal! Choices: giraffe, dolphin,
penguin:")

tell the player that they guessed the
right animal

print("Well done! You guessed " +
computer_pick + " at attempt number " +
str(n_of_attempts)

That's not the right animal!
Number of attempts so far: 1
Try again! Guess the animal! Choices: giraffe, dolphin, penguin: dolphin

as long as the player's guess and the
computer's pick are different

while player guess is not equal to
computer pick:

tell the player that the animal is not
right

print That's not the right animal!
print the numbers of attempts so far
print Number of attempts so far:
concatenated with str n of attempts

increase the number of attempts
n of attempts is incremented by one

ask the player to guess again
player guess is assigned input Try
again! Guess the animal! Choices:
giraffe, dolphin, penguin:

tell the player that they guessed the
right animal

print Well done! You guessed
concatenated with computer pick
concatenated with at attempt number
concatenated with str(n of attempts)

Well done! You guessed dolphin at attempt number 2

We create the counter n_of_attempts (line 2),and we initialize it to 1. Why 1 and not to ©? Because the

player enters the first input before the while loop (see requirement 2. The player has to guess the animal

picked by the computer), and that is the first attempt! Then, we tell the player the current number of

attempts (line 11) and increase n_of_attempts by one unit at every loop (line 14). Finally, we include

the total number of attempts to the last print (line 20).

After solving the four tasks, we can merge the code together! Here is the complete solution:

1
2
3
4

0 4 o un

9

10
11
12

import random

computer pick
computer_pick = random.choice(animals)

print (computer_pick)
player guess

player_guess = input ("Guess the animall!
Choices: giraffe, dolphin, penguin:")

initializing the counter
n_of_attempts = 1

import random

computer pick

computer pick is assigned random dot
choice animals

print computer pick

computer pick

player guess is assigned input Guess
the animal! Choices: giraffe, dolphin,
penguin:

initializing the counter
n of attempts is assigned 1

139

Part 5. The while loop and conditions

as long as the player's guess and the
computer's pick are different
while player_guess != computer_pick:

as long as the player's guess and the
computer's pick are different
while player guess is not equal to

tell the player that the animal is
not right
print("That's not the right animal!")

print the numbers of attempts so far
print("Number of attempts so far: " +

str(n_of_attempts)

increase the number of attempts
n_of_attempts += 1

ask the player to guess again
player_guess = input ("Try again! Guess
the animal! Choices: giraffe, dolphin,
penguin:")

computer pick:

tell the player that the animal is not
right
print That's not the right animal!

print the numbers of attempts so far
print Number of attempts so far:
concatenated with str n of attempts

increase the number of attempts
n of attempts is incremented by one

ask the player to guess again
player guess is assigned input Try
again! Guess the animal! Choices:
giraffe, dolphin, penguin:

tell the player that they guessed the
right animal
print("Well done! You guessed " +
computer_pick)
Guess the animal! Choices: giraffe, dolphin, penguin: giraffe
That's not the right animall!
Number of attempts so far: 1
Try again! Guess the animal! Choices: giraffe, dolphin, penguin: dolphin
Well done! You guessed dolphin at attempt number 2

tell the player that they guessed the
right animal

print Well done! You guessed
concatenated with computer pick

Note that we commented out the print of the computer_pick (line 5), as the final code is for a player
and not for a coder!

2. Create a list of 8 unique random numbers!

Here is our next task:

e Create a list of 8 random numbers between O and 10. Make sure they are unique, meaning each
number is present only once in the list. If the number is already in the list, then print the following:
The number x is already in the list. How many numbers did you generate before finding 8 unique
numbers?

The task has four requirements: (1) create a list of 8 random numbers between 0 and 10; (2) make
sure they are unique, that is, each number is present only once in the list; (3) if the number is already
in the list, then print The number x is already in the list; and (4) how many numbers did you generate
before finding 8 unique numbers? Let’s go through the requirements one by one!

1. Create a list of 8 random numbers between O and 10.
Accordingto this requirement only, we can create a list of 8 numbers using a for loop and the function
.randint () from the module . random:

140

Chapter 18.

Animals, unique numbers, and sum

impoxt random
initialize the number list
unique_random_numbers = []
for 8 times
for _ in range (8):
create a random number between @ and 10

unique_random_numbers.append
(random.randint(0,10))

print the list
print(unique_random_numbers)

impoxt random

initialize the number list
unique random numbers is assigned an
empty list

for eight times
for underscore in range eight

create a random number between zero
and ten

unique random numbers dot append
random dot randint zero ten

print the 1list
print unique random numbers

[7, 9, 3, 2, 3, @, 9, 6]

We import the package random (line 1), and we initialize unique_random_numbers—which will contain
the created numbers—to an empty list (line 4). Then, we create a for loop, where we generate eight
random numbers between 0 and 10, and we append them to unique_random_numbers (lines 6-10).
Note that we use an underscore instead of the variable i in the loop header because we do not need
i in the loop body (see the In more depth section What if | don’t use the index in a for loop? in Chapter
15). Finally, we print unique_random_numbers to check that it actually contains eight random numbers
(line 13). Let’s go to the next requirement!

2. Make sure they are unique, which means each number is present only once in the list. In the list we
printed out above, the numbers are not unique: both 3 and 9 are present twice. Thus, we need to
modify our code. How? We do not know how many random numbers we need to generate before
obtaining 8 unique numbers, that is, we do not know how many times we need to run the command
unique_random_numbers .append(random.randint(@,10)) (line 9 inthe cell above). For this reason, we
cannot use a for loop—which we use when we know the exact number of iterations—but we need to
use a while loop, which we use when the number of iterations is determined by a condition. Making
changes in code during the drafting process is normal, as we mentioned in the In more depth section
of the previous chapter Writing code is like writing an email! What condition do we use in this while
loop? The list must be composed of 8 elements, thus its length has to be 8! Let’s see how we can
transform the code:

impoxt random impoxt random

initialize the number list initialize the number 1list
unique_random_numbers = [] unique random numbers is assigned an

empty list

141

Part 5.

The while loop and conditions

as long as the length of the list is not 8

while len(unique_random_numbers) != 8:

create a random number between @ and 10
number = random.randint(@,10)
if the number is already in the list

if number in unique_random_numbers:
place holder

a==0
otherwise
else:

add the new number to the list
unique_random_numbers.append(number)

print the list
print (unique_random_numbexrs)
[1, 8, 10, 7, 3, 0, 5, 9]

as long as the length of the list is
not eight

while len of unique random numbers is
not equal to eight

create a random number between zero
and ten

number is assigned random dot randint
zero ten

if the number is already in the list
if number in unique random numbers:
place holder

a is assigned zero

otherwise

else:

add the new number to the list
unique random numbers dot append
number

print the list
print unique random numbers

At line 7, we substitute the header of the for loop with the header of a while loop, with the condi-
tion that the loop keeps going as long as the length of the list is not equal to 8. Then, we generate a
random number (line 10). We need to make sure that the random number is a new one (or unique!)

before adding it to the list. Thus, we create an if

in / else construct (lines 12-19), which we

learned in Chapter 3. If the number is already in the list (line 13), then we do not want to add it to
the list. The next requirement will tell us what to do, so right now we can just use a placeholder, or
a nonfunctional command in our code that we plan to substitute (a=9, line 15). Using placeholders
is not very good coding practice, but sometimes we can make an exception in the very early drafting
phase. If the number is not in the list (else at line 17), then we append it to the list (line 19)

3. If the number is already in the list, then print: The number x is already in the list
We substitute the placeholder a=0 with the print commands (line 15):

142

import random

initialize the number list
unique_random_numbers = []

impoxt random

initialize the number list
unique random numbers is assigned an
empty list

Chapter 18. Animals, unique numbers, and sum

6 # as long as the length of the list is not 8 as long as the length of the list is

not eight

7 while len(unique_random_numbers) != 8: while len of unique random numbers is
not equal to eight

8

B # create a random number between @ and 10 create a random number between zero
and ten

10 number = random.randint(@,10) number is assigned random dot randint
eight ten

11

12 # if the number is already in the list if the number is already in the list

13 if number in unique_random_numbers: if number in unique random numbers:

14 # print that the number is in the list print that the number is in the list

15 print ("The number " + str(number) + print The number concatenated with

" is already in the list") str number concatenated with is

already in the list

16 # otherwise otherwise

17 else: else:

18 # add the new number to the list add the new number to the list

19 unique_random_numbers.append(number) unique random numbers dot append
number

20

21 # print the list print the 1list

22 print(unique_random_numbers) print unique random numbers

The number 1 is already in the list
The number 1@ is already in the list
The number 7 is already in the list
The number 5 is already in the list
[1, 8, 10, 7, 3, 0, 5, 9]
As we can see in the printouts, the numbers 1, 10, 7, and 5 were generated twice, but they are in the

list only once!

4. How many numbers did you generate before finding 8 unique numbers?
To satisfy this last requirement, we need a counter. It will keep track of the amount of numbers we
generated, which coincides with the number of iterations of the while loop!

1 import random import random

2

3 #initialize the number list initialize the number list

4 unique_random_numbers = [] unique random numbers is assigned an
empty list

5

6 # initialize the counter initialize the counter

7 counter = 0 counter is assigned zero

8

9 # as long as the length of the list is not 8 as long as the length of the list is
not eight

10 while len(unique_random_numbers) != 8: while len of unique random numbers is
not equal to eight

11

12 # create a random number between @ and 10 create a random number between zero
and ten

13 number = random.randint(@,10) number is assigned random dot randint
zero ten

143

Part 5. The while loop and conditions

increase the counter by 1 increase the counter by one
counter += 1 counter is incremented by one
if the number is already in the list if the number is already in the list
if number in unique_random_numbers: if number in unique random numbers:
print that the number is in the list print that the number is in the list
print ("The number " + str(number) + print The number concatenated with
" is already in the list") str number concatenated with is
already in the list
otherwise otherwise
else: else:
add the new number to the list add the new number to the list
unique_random_numbers.append(number) unique random numbers dot append
number
print the final list and the total amount print the final list and the total
of generated numbers amount of generated numbers
print(unique_random_numbers) print unique random numbers
print("The total amount of generated numbers print The total amount of generated
is: + str(counter)) numbers is: concatenated with str
counter

The number 1 is already in the list

The number 10 is already in the list

The number 7 is already in the list

The number 5 is already in the list

[1, 8, 10, 7, 3, @, 5, 9]

The total amount of generated numbers is: 12
We initialize the counter (line 7), increment it by one unit at each iteration (line 16), and print it out
(line 29).

3. Sum up the multiples of 3

e Write code that continues asking a player to enter an integer until they enter a negative number.
At the end, print the sum of all entered integers that are multiples of 3.

The task has two requests: (1) keep asking a player to enter an integer until they enter a negative
number, and (2) at the end, print the sum of all entered integers that are multiples of 3. Let’s see how
to implement them!

1. Keep asking a player to enter an integer until they enter a negative number. The requirement is straight-
forward: we use the input function to ask the player to enter numbers and awhile loop to keep asking.
Which condition do we use in the header? Let’s have a look:

ask the user for an integer ask the user for an integer

number = int(input("Enter an integer: ")) number is assigned int input Enter
an integer:

144

Chapter 18. Animals, unique numbers, and sum

4 # as long as the number is positive as long as the number positive
5 while number >= 0: while number is greater than or
equal to zero
6 # ask for the next new integer ask for the next new integer
7 number = int(input("Enter another number is assigned int input Enter
integer: ")) another integer:

Enter an integer: 3

Enter another integer: 6

Enter another integer: 4

Enter another integer: -1
The loop must continue as long as the player enters a negative number, that is, as long as number is
positive—greater than or equal to zero (line 5). As we learned in the previous chapter, the variable
in the condition has to be in three places: before the loop, in the loop header, and within the loop.
Thus, first we initialize the variable number with the integer entered by the player (line 2). Then, we
condition the variable in the while loop header (as we saw in line 5). And finally, to avoid an infinite
loop, we ask the player to enter a new number (line 7). Let’s implement the second requirement!

2. At the end, print the sum of all entered integers that are multiples of 3.
We need to check whether the numbers the user enters are multiples of 3, and, if they are, then sum
them up. Ideas on how to do it? Let’s start drafting the code:

1 # 1ist containing the numbers to sum list containing the numbers to sum

2 numbers = [] numbers is assigned empty list

3

4 # ask the user for an integer ask the user for an integer

5 number = int(input("Enter an integer: ")) number is assigned int input Enter
an integer:

as long as the number is positive as long as the number positive

8 while numbers >= 0: while number is greater than or
equal to zero

9

10 # if the number is multiple of 3 if the number is multiple of 3

11 if numbers % 3 == 0: if number modulus three is equal to
zero:

12 # add the number to the list add the number to the list

13 numbers . append (number) numbers dot append number

14

15 # ask for the next integer ask for the next integer

16 number = int(input("Enter another number is assigned int input Enter

integer: ")) another integer:

17

21 # print the list of multiples of 3 print the list of multiples of 3

19 print(numbers) print numbers

20

21 # initialize the sum to 0 initialize the sum to zero

22 sum_of_numbers = 0@ sum of numbers is assigned zero

23

145

Part 5. The while loop and conditions

calculate the sum of numbers calculate the sum of numbers

for i in range (len(numbers)): for i in range len of numbers
sum_of_numbers = numbers[i] + sum of numbers is assigned numbers
sum_of_numbers in position i plus sum of numbers

print the final sum print the final sum

print("The sum of the multiples of 3 is: + print The sum of the multiples of

str(sum_of_numbers)) 3 is: concatenated with str sum of

numbers

Enter an integer: 3

Enter another integer: 6

Enter another integer: 4

Enter another integer: -1

[3, 6]

The sum of the entered multiples of 3 is: 9
We can create an empty list called numbers that will contain the multiples of 3 (line 2). Then, within
the while loop, we add an if construct, in which we check whether the current number is a multiple
of 3 by using the modulo operator. If the condition is met, then we append the number to the list
numbers (line 13). At the end of the while loop (i.e., after the player has entered a negative number),
we sum up the numbers in the list, similarly to what we did in the exercise 5 of Chapter 14. First,
we create the variable sum_of_numbers, which will contain the final sum, and we initialize it to zero
(line 22). Then, we use a for loop through the list numbers—containing the multiples of 3—to add the
current list element (numbers[i]) to the amount in sum_of_numbers (line 26). Finally, we print out the
sum at line 29.

We solved the task, but can we improve our code? Let’s read the following requirement again: at the
end, print the sum of all entered integers that are multiples of 3. We are not asked to save the multiples
of 3in alist—just to print out their sum. Do we need to create the list? Not really! So, how do we do
it? Let’s see this alternative solution:

initialize the sum to 0 initialize the sum to zero
sum_of_numbers = 0 sum of numbers is assigned zero

ask the user for an integer ask the user for an integer

number = int(input("Enter an integer: ")) number is assigned int input Enter

an integer:

as long as the number is positive as long as the number positive
while numbers >= 0: while number is greater than or
equal to zero

if the number is a multiple of 3 if the number is a multiple of 3
if numbers % 3 == 0: if number modulus three is equal to
zero:
add the number to the sum add the number to the sum
sum_of_numbers += number sum of numbers is incremented by
number
ask for the next integer ask for the next integer
number = int(input("Enter another number is assigned int input Enter
integer: ")) another integer:

146

Chapter 18. Animals, unique numbers, and sum

print the final sum print the final sum

print("The sum of the multiples of 3 is: + print The sum of the multiples of

str(sum_of_numbers)) 3 is: concatenated with str sum of
numbers

Enter an integer: 3

Enter another integer: 6

Enter another integer: 4

Enter another integer: -1

The sum of the entered multiples of 3 is: 9
We remove all the code related to the list numbers. We initialize sum_of_numbers to zero before the
while loop (line 2). Then, within the loop, we sum the current multiple of 3 (i.e., number) to the total
sum (line 13)—without saving it to a list. With this trick, we improve our code in two ways: (1) we do
not create a list, which occupies space in computer memory, and (2) we avoid a for loop that occupies
memory and time during the execution. The code thus becomes shorter, faster, and more elegant.

In coding there are three constructs: if/else constructs, for loops, and while loops. Review their

definitions in the following exercise:
1. Anif/else construct checks whether a con- a. for a determined number of times

ditionis true or false

2. A for loop is the repetition of a group of b. as long as a condition holds
commands

3. Awhile loop is the repetition of a group of c. and executes code accordingly
commands

¢ In a while loop header, we can write various kinds of conditions. The correct condition is the one
that keeps the loop going (not stopping!)

e Whensolving atask, itis common to decompose and analyze the requirements, solve the subtasks,
and merge the code to the solution (divide and conquer!)

e When coding, we often write a first draft, and then we improve the draft to make the code faster
and robust (writing code is like writing an email!)

When learning coding constructs, it can be easy to confuse the while loop with with the if/else
construct. If this happened to you while learning the past two chapters, read the following para-
graph. If you feel like you mastered the difference between while loops and if/else constructs,
feel free to skip the coming lines!

Consider the following example, similar to the first one in this chapter.

147

Part 5. The while loop and conditions

e Given the following list:

fruits = ["mango", "orange", "banana"] fruits is assigned mango, orange,
banana

e Create a game where the computer randomly picks a fruit and the player has to guess the
fruit picked by the computer. Make sure that the player keeps playing until they guess the
fruit picked by the computer.

We have to solve 3 tasks: (1) the computer randomly picks a fruit, (2) the player has to guess

the fruit picked by the computer, and (3) we must make sure that the player keeps playing until

they guess the fruit picked by the computer. The first two requirements are straightforward,
and we will solve them quickly. We will focus on the third requirement.

1. The computer randomly picks a fruit.

impoxt random impoxt random
computer pick computer pick
computer_pick = random.choice(fruits) computer pick is assigned random

dot choice fruits

We import the package random (line 1) and we use the method . choice () to make the computer
randomly pick an element of the list fruits.

2. The player the has to guess the fruit picked by the computer.

player guess player guess
player_guess = input ("Guess the fruit! player guess is assigned input
Choices: mango, orange, banana: ") Guess the fruit! Choices: mango,

orange, banana:

We use the built-in function input () to ask the player to enter a fruit (line 7).

3. Make sure that the player keeps playing until they guess the animal picked by the computer. The
first instinct would be to do the following:

check the player guess check the player guess
if player_guess == computer_pick: if player guess is equal to
computer pick
print("That's right! The fruit is " + print That's right! The fruit is

computer_pick) concatenated with computer pick
else: else
print("Nope! Try again!") print Nope! Try again!

We check if player_guess is equal to computer_pick with an if/else construct, and we print
messages accordingly (lines 9-11). If the player did not guess the right fruit, we have to ask
them to guess again (like at line 7). Then, we have to check once more if the guess is correct
(like at lines 9-11), and so on. This is not feasible because we cannot know how many times it
is going to take the player to guess the correct fruit! In addition, we would repeat code, which
means that we can use a loop! So, here is the correct solution with the while loop:

148

Chapter 18. Animals, unique numbers, and sum

while player_guess != computer_pick: while player guess is not equal to
computer pick:
as long as the player's guess and the as long as the player's guess and
not right the computer's pick are different
player_guess = input ("Nope! Try again! player guess is assigned input
Guess the fruit! Choices: mango, orange Nope! Try again! Guess the fruit!
banana: ") Choices: mango, orange, banana:

As long as the player_guess is not equal to computer_pick (line 9), we ask the player to make a
guess (line 11), which we check in the condition of the while loop header (line 9), and the loop
keeps going as long as the condition holds.

. Guess the number! Create a game where the computer picks a number between 0 and 10, and the
player has to guessit. If the player guesses a number that is too high or too low, then the computer
tells the player. The game stops when the player guesses the number. At the end, tell the player
how many attempts it took to guess the number.

. 12 even random numbers. Create a list of 12 even random numbers between 0 and 30. How many
odd numbers did you exclude?

. Spelling game for kids. Create a game that helps kids learn spelling. The game has the following re-
quirements: (1) Create alist of words to be spelled. Among these words, choose a word randomly,
and tell the kid the chosen word (e.g., “Spell the word ‘hello’). (2) The kid has to enter one letter
at the time. If the kid enters the correct letter, then provide positive reinforcement (e.g., “Well
done!”), and ask for the next letter. If the kid does not enter the correct letter, then tell them that
the letter is not correct, and ask for a letter again.

Challenge 1: Instead of creating only 1 list of words, create 3 lists, one per topic, so that the kid
can choose a topic before spelling a word.

Challenge 2: The game continues as long as the kid wants to spell a new word.

149

19. And, or, not, not in

Combining and reversing conditions

Up to now, we have considered only one condition in if/else constructs and while loops. What if we
need more than one condition? And what if we need to reverse a condition? In this chapter, we will
learn how to combine or reverse conditions using the logical operators and, or, not, and the member-
ship operator not in. As usual, try to solve the tasks yourself before looking at the solutions, which
you can also find in Notebook 19. Let’s start!

1. and

e Given the following list of integers:

numbers = [1, 5, 7, 2, 8, 19] numbers is assigned one, five, seven,
two, eight, nineteen

e Print out the numbers that are between 5 and 10:

for each position in the list for each position in the list

for i in range (len(numbers)): for i in range len of numbers
if the current number is between 5 # if the current number is between
and 10 five and ten
if numbers[i] >= 5 and numbers[i] <= 10: if numbers in position i greater

than or equal to five and numbers in
position i less than or equal to ten

print the current number print the current number

print ("The number + str(numbers[i]) print The number concatenated with
+ " is between 5 and 10") str numbers in position i concatenated
with is between five and ten

The number 5 is between 5 and 10
The number 7 is between 5 and 10
The number 8 is between 5 and 10

We use a for loop to browse all the elements in the list (line 2). Then, we check if each number is
between 5 and 10 (line 5). To be in between two numbers, a number must be greater than or equal
to the smaller number and smaller than or equal to the greater number. The two conditions (greater
than or equal to and smaller than or equal to) must be valid at the same time. To check if two (or more)
conditions are valid simultaneously, we join them using the logical operator and.

We use the logical operator and when we want to check
whether all conditions are valid

Let’s look at the syntax. For each condition both before and dafter the logical operator and, we have to
write: (1) avariable (e.g.,numbers[i]), (2) acomparison operator (e.g.,>=), and (3) aterm of comparison
(e.g., 5). At the end of the code, we print the numbers that satisfy both conditions (line 7).

150

Chapter 19. And, or, not, not in

2. or

e Given the following string:

message = "Have a nice day!!!" message is assigned Have a nice day!!!

e And given all punctuation:

punctuation = "\"\/"()[I1{}<>.,;:?!1he~#$%&*_-" punctuation is assigned

NAVARO N SR R TEE TN 7t
The string punctuation contains all punctuation on a Latin alphabet keyboard. Compare the sym-
bols with the ones on your keyboard and note whether there are additional ones! If so, add them to
punctuation in Jupyter Notebook 19! The symbols at the beginning of the string punctuation "\"\/
might be a bit confusing, so let’s disentangle them. The first quote "\ "\/ is the symbol that introduces
the string. The following two symbols "\"\/ are special characters—you might remember the special
character "\n", which is used to go to a new line (Chapter 12). The backslash \ tells Python that the
following quote " is an actual backslash character and not the symbol that we use to close a string.
The last backslash "\"\/ is an actual backslash because the following forward slash / is not a special
character.

e Print and count the number of characters that are punctuation or vowels:

string of vowels
vowels = "aeiou"

string of vowels

vowels is assigned aeiou
initialize counter initialize counter
counter = 0 counter is assigned zero
for each position in the message for each position in the message

for i in range (len(message)): for i in range len of message

if the current element is punctuation

or vowel
if message[i] in punctuation or
message[i] in vowels:

print a message
print (message [i] + " is a vowel
or a punctuation")

increase the counter
counter += 1

print the final amount

print("The total amount of punctuation or
vowels is " + counter)

if the current element is
punctuation or vowel

if message in position i in
punctuation or message in position
i in vowels

print a message

print message in position i
concatenated with is a vowel or a
punctuation

increase the counter
counter is increased by one

print the final amount

print(The total amount of punctuation
or vowels is concatenated with
counter

a is a vowel or a punctuation
e is a vowel or a punctuation
a is a vowel or a punctuation

151

Part 5. The while loop and conditions

i is a vowel or a punctuation
e is a vowel or a punctuation
a is a vowel or a punctuation
! is a vowel or a punctuation
! is a vowel or a punctuation
! is a vowel or a punctuation

The total amount of punctuation or vowels is 9

Similarly to what we did for punctuation, we create a string containing vowels (line 2). We also create
acounter, which we will use to calculate the number of characters that are punctuation or vowels, and
we initialize it to zero (line 5). Then, we get to the core of the solution! We use a for loop to browse
all the characters in the string message (line 8). For loops for strings work exactly the same way as
for loops for lists. In the loop body, we check if each character is a punctuation or a vowel by using
the membership operator in (line 11), which we learned in Chapter 3. More specifically, we check
if message[i] is in the string punctuation or in the string vowels. Note that as for the for loop, the
membership operator in works for strings the same way as it works for lists. Since only one of the
conditions can be valid (a character cannot be both a punctuation and a vowel at the same time!), we
merge the two conditions—that is,message[i] in punctuationormessage[i] in vowels—usingthe
logical operator or.

We use the logical operator ox when we want to check
whether at least one condition is valid

The syntax is the same as for the logical operator and: we need towrite (1) avariable, (2) acomparison
operator, and (3) a term of comparison both before and after ox. To conclude the loop body, we print a
message for the characters that satisfy at least one condition (line 14), and we increment the counter
by one unit (line 17). At the end of the loop, we print the final number of characters that are vowels
or punctuation (line 20).

e Given the following list of integers:

numbers = [4, 6, 7, 9] numbers is assigned four, six, seven,
nine

e Print out the numbers that are not divisible by 2:

for each position in the list for each position in the list

for i in range (len(numbers)): for i in range len of numbers
if the current number is not even # if the current number is not even
if not numbers[i] % 2 == 0: if not numbers in position i modulo

two equals zero

print the current number print the current number
print (numbers[i]) print numbers in position i

152

Chapter 19. And, or, not, not in

For each position in the list (line 2), we have to check whether the number is not even. For a moment,
let’s think about the opposite: what condition would we write if we had to check whether the number
iseven? if numbers[i] % 2 == 0. To negate a condition, we just add the logical operator not before
the condition—more specifically, before the variable at the beginning of the condition (line 5).

We use the logical operator not when we want to check
whether the opposite of a condition is valid

If the condition is satisfied, then we print the number (line 8).

Is this the only way to solve this task? Maybe the first idea you had in mind was more similar to this

one:
for each position in the list for each position in the list
for i in range (len(numbers)): for i in range len of numbers
if the current number is odd # if the current number is odd
if numbers[i] % 2 != 0: if numbers in position i modulo two is

not equal to zero:

print the current number print the current number
print (numbers[i]) print numbers in position i
7
9

For each position in the list (line 2), we check whether the remainder of numbers[i] divided by 2 is not
equal to o (line 5). If so, then we print the number (line 8).

What solutionis better? It's a matter of preference! If you are undecided, pick the solution that looks
like the simplest to you, both in term of syntax and reasoning. In coding, there are often various ways
of solving a task. Keeping the solution simple favors readability and understanding.

Last note about conditions: when combining conditions, we need to follow a precise order, similarly
to what we do with arithmetic operators (see Solving arithmetic expressions in Chapter 13). The order
from highest to lowest precedence is: not, and, or (easy-to-memorize acronym: NAO). When you are
uncertain, write the condition to prioritize within round brackets ().

e Generate 5 random numbers between 0 and 10. If the random numbers are not already in the fol-
lowing list, then add them:

numbexrs = [1, 4, 7] numbers is assigned one, four, seven

import random impoxt random

153

Part 5. The while loop and conditions

for five times
for _ in range (5):

generate a random number between @ and 10
number = random.randint(@, 10)

print the number as a check
print (number)

if the new number is not in numbers
if number not in numbers:
add the number to numbers
numbers . append(number)

print the final list
print (numbers)

[1, 4, 7, 6, 10, 9]

for five times
for underscore in range five

generate a random number between zero
and ten
number is assigned random dot randint
zero ten

print the number as a check
print number

if the new number is not in numbers
if number not in numbers:
add the number to numbers
numbers dot append number

print the final list
printnumbers

We start by importing the package random (line 1). Then, we create a for loop that runs for five times
(line 4)—note the underscore instead of the variable i because we will not need any index in the for
loop body (see What if | don’t use the index in a for loop? in Chapter 15). Then, we create a random vari-
able (line 7) and print it as a check (line 9). To evaluate if the variable number is not already in the list

numbers (line 12), we use the membership operator not in, which is the opposite of the membership
operator in (Chapter 3). If the condition is met, then we append the randomly generated number to
the list of numbers (line 14). Finally, we print the completed list (line 17).

Insert into the right column

You now know all membership, comparison, and logical operators. Insert each symbol in the right col-

umn:

<,0r,1in, !'=,not, >, ==,not in,>=,and, <=

Membership operators Comparison operators

154

Logical operators

Chapter 19. And, or, not, not in

e The logical operators are and, or, and not
e When combining conditions, the order of execution is not, and, or (NAO)
e The membership operators are inand not in

You might have heard about GitHub, or you might have browsed some pages on its site
(github.com). Surely, you have checked the solutions of the exercises of this book on GitHub!
But what is GitHub exactly? In a simplified manner, we can think of GitHub as a cloud service
or a huge server for code. Instead of using Dropbox, Google Drive, etc., coders prefer to syn-
chronize their code with GitHub. GitHub has its own language: folders are called repositories,
sending files to the server is called a push, and getting files from the server is called a pull. Each
repository contains files—they can store any files, either containing code or not—and elements
that are specific to coding, such as issues, where anybody can indicate bugs to be solved or sug-
gest new features. Why do coders use GitHub instead of other cloud services? Because GitHub
supports version control, that is, it keeps track of code changes over time. Every time we
push a code update, we can compare it with previous version(s), and if the new code does not
work, then we can go back to an earlier version. Furthermore, GitHub is useful for collaborative
projects: programmers can work on different sections of a task individually and then integrate
the code without accidentally influencing each other’s code, all while keeping track of each pro-
grammer’s contribution. These tasks are actually executed by Git, whichis adistributed version
control system, that is, a software that manages changes to code. Other platforms that employ
Git include GitLab (gitlab.com) and Bitbucket (bitbucket.org), with GitHub being the most pop-
ular.

1. The Zen of Python. Solve the following 4 steps, and you will discover the Zen of Python!
a. Given the following list of strings:

strings_to_slice = ["reisk", "kpan", "xfsimpleg", "bosolutionb", "pobetterx",
"weorb", "ofworsep", "aathanx", "hoau", "hfcomplexx", "poors", "opcomplicatedx",
"rwsolutions", "re?o0"]

Createanew list called s1liced_strings containing the same strings but without the first two
letters and the last letter (Example: "gfhio" will become "hi").

b. Given the following list of strings:
strings_to_invert= ["emos", "elpoep", "kniht", "taht", "xelpmoc", "ro",
"detacilpmoc", "si", "retteb", "naht", "elpmis"]
Create an new list called inverted_strings containing the same strings but inverted (Exam-
ple: "ih" will become "hi")

155

Part 5. The while loop and conditions

c. Given the following list of strings:

strings_to_pick = ["this", "sounds", "simple", "but", "is", "it?", "some",
"things", "look", "better", "than", "when", "complex", "but", "complex",
"again", "is", "worse", "better", "than", "complicated", "I'm", "confused"]

Find the words that are present bothin sliced_strings and inverted_strings, change them
to uppercase, and add them to a new list. What sentence do you get?

d. Where does the obtained sentence come from? Run the following Python command: import
this

2. Playing with numbers. Given the following list of numbers:

numbers = [7, 9, 15, 19, 24, 30, 37, 45, 50]
a. Print the numbers that are divisible by 3 and 5.
b. Print the numbers that are divisible by 3 or 5.
c. Print the numbers that are divisible by 3 but not 5. Perform this task in two different ways,
once using not, and once without using not.

3. Upgrading Rock, paper, scissors. In Chapter 16, we implemented rock, paper, scissors. In that ver-
sion, there were many repetitions. In coding, we usually do not want repetitions because they can
invite errors. How can we make the code less repetitive? By combining conditions! What con-
ditions can you combine in this game? Rewrite rock, paper, scissors in a more succinct way using
logical operators. After you have optimized the code, make it a real game by adding a while loop
that allows players to play as long as they want. Hint: Instead of thinking in terms of computer and
player choices, think in terms of outcomes, i.e., tie and the player’s (or the computer’s) win.

156

It's finally time to unveil what’s behind comparisons and conditions! What does Python “see” whenwe
write a comparison or a condition? Let’s find it out with the code below! Follow along with Notebook
20.

¢ Given the following assignment:

number = 5 number is assigned five

e What is the outcome of the following comparison operation?

print (number > 3) print number is greater than three
True

The printed value is True. In fact, it is true that 5 is greater than 3! But what is True? A string? A
variable? Let’s figure it out in the next cell!

e Assign the above operation to a variable and print it. What type is it?

result = number > 3 result is assigned number is greater than three
print (result) print result
type (result) type result

True

bool

We assign the result of the comparison operation number > 3tothevariable result (line 1). Then, we
print result (line 2) and we get True—like in cell 2. Finally, we print the outcome of type(result) to
determine the type of the variable result (line 3)—we mentioned the built-in function type () in Chap-
ter 13. We say that the variable result is of type Boolean and its value is True. Booleans are a data
type exactly like strings, lists, integers, etc.

Let’s continue our exploration of what lies behind comparisons and conditions. Let’s look at this ex-
ample:

e What is the outcome of the following comparison operation?

print (number < 3) print number is less than three
False

This time, the print is False. Obviously, 3 is not smaller than 5. Let’s continue, similarly to what we
didincell 3.

157

Part 5. The while loop and conditions

e Assign the above operation to a variable and print it. What typeis it?

result = number < 3 result is assigned number is less than three
print (result) print result
type (result) type result

False

bool

We assign the output of the comparison operation number < 3to the variable result (line 1), and we
print it (line 2), obtaining False, like in cell 4. Then, we print the type of the variable result (line 3)
and we get “bool', like we did for True.

Booleans are a variable type. They can have only two values: True or False

When we write conditions in an if/else construct or in a while loop header, Python “reads” the result
behind the conditions: that is, True or False. For example, when we write:

if numbers > 3: if number is greater than three
print ("Correct!") print Correct

Python “sees”:

if True: if True
print ("Correct!") print Correct

Let’s take the operation a step further and see what happens when we combine conditions.

e What is the outcome of the following comparison operations?

number = 3 number is assigned 3
print (number > 1) print number is greater than one
print (number < 5) print number is less than five
print (number > 1 and number < 5) print number is greater than one and number is
less than five
True
True
True

We assign 3 to the variable number (line 1). Then, we print the outcome of three comparison oper-
ations. For all operations—number > 1 (line 2), number < 5 (line 3), and number > 1 and number <
5 (line 4)—the outcome is True. Let’s focus on line 4, where we combine two comparison operations
with the logical operator and. For these combined operations, Python “sees”:

print (True and True): print True and True
True

As we can see, the output of two True conditions combined by the logical operator and is True.

158

Chapter 20. Behind the scenes of comparisons and conditions

e What happens if we change the first condition to be false?

number = 3 number is assigned 3
print (number > 4) print number is greater than four
print (number < 5) print number is less than five
print (number > 4 and number < 5) print number is greater than four and number is
less than five
False
True
False

The first condition is now False because 3 is not larger than 4 (line 2), whereas the second condition
is still True (line 3). The combination of the False condition from line 2 with the True condition from
line 3 returns False (line 4). In this last case, Python “sees”:

print (False and True): print False and True
False

Thus, the output of one True and one False conditions merged by the logical operator and is False.
Let’s continue analyzing the remaining combinations!

e What happens if we change the second condition to be false?

number = 3 number is assigned 3
print (number > 1) print number is greater than one
print (number < 2) print number is less than two

print (number > 1 and number < 2) print number is greater than one and number is
less than two
True
False
False

The first condition is True (line 2)—like it was in cell 6—whereas the second condition is now False be-
cause 3is not smaller than 2 (line 3). Similarly to cell 7, the combination of one True condition and one
False condition (line 4) returns False. In this case, Python “reads”:

print (True and False): print True and False
False

We can deduce that the output of one False and one True conditions merged by the logical operator
and is always False, regardless of the order of the conditions.

e Finally, what happens if we change both conditions to be false?

number = 3 number is assigned 3
print (number > 4) print number is greater than four
print (number < 2) print number is less than two
print (number > 4 and number < 2) print number is greater than four and number is
less than two
False
False
False

159

Part 5. The while loop and conditions

Both conditions are False because 4 is neither larger than 4 (line 2) nor smaller than 2 (line 3). The
combination of the two conditions is False too (line 4). This is what Python “sees”:

print (False and False): print False and False
False

We can summarize the outcome of combinations of conditions using the logical operators and in a
truth table:

First condition = Second condition First condition and Second condition

(1) True True True
(2) False True False
(3) True False False
(4) False False False

Row 1 corresponds to the example we saw in cell 6, where both conditions were True, and their com-
bination was also True. We can pronounce the first row as True and True gives True. Row 2, where
True and False gives False, corresponds to the example in cell 7. Row 3—False and True gives False—
corresponds to the example at cell 8. Finally, row 4 corresponds to the example in cell 9, where False
and False gives False. When you write code that combines conditions using and, you can use this table
as a reference to determine the outcome!

What happens when we combine conditions using the logical operator or? Here is the truth table for

or:

First condition ~ Second condition First condition or Second condition

(1) True True True
(2) False True True
(3) True False True
(4) False False False

For the logical operator or, True and True gives True (row 1), False and True gives True (row 2), True and
False gives True (row 3), and False and False gives False (row 4).

What are the similarities and differences between the and and or truth tables? The columns for the
first and second conditions are the same for both tables, but the results change. For and, the result
is True only when both conditions are True, and it is False in all other cases. Conversely, for or, the
result is False only when both conditions are False, and it is True for all other cases. A side note: In
other textbooks or on the Internet, you might find that the columns of the first and second condition
are inverted. But the results remain the same!

Let’s conclude with the truth table for the logical operator not. Here it is:

Condition not condition
(1) True False
(2) False True

not inverts conditions. When we write not in front of True condition, it becomes False (row 1). Con-
versely, when we write not in front of a False condition, it becomes True (row 2).

160

Chapter 20.

Behind the scenes of comparisons and conditions

Create your examples

In a notebook, write an example for each row of the or truth table and of the not truth table, similar
to what we did above for and.

3. Where else do we use Booleans?

Booleans are often used as flags in while loops. What does this mean?

e Look at this modified version of the example Do you want more candies? from Chapter 17:

11
12
13
14

15
16
17
18
19
20
21
22
23

24
25
26
27
28
29

30
31

32

print ("You have
" candies")

initialize variable
number_of_candies = 0

use a Boolean as a flag
flag = True

print the initial number of candies
+ str(number_of_candies) +

as long as the flag is True
while flag == True:

ask if they want a candy
answexr = input ("Do you want a candy?
(yes/no)")

if the answer is yes
if answer == "yes":

add a candy
number_of_candies += 1

print the total number of candies
print ("You have " +
str(number_of_candies) + " candies")

if the answer is not yes
else:

print the final number of candies
print ("You have a total of " +
str(number_of_candies) + " candies")

stop the loop by assigning False to
the flag
flag = False

initialize variable
number_of_candies is assigned zero

use a Boolean as a flag
flag is assigned True

print the initial number of candies
print You have concatenated with str
number of candies concatenated with
candies

as long as the flag is True
while flag equals True

ask if they want a candy
answer is assigned input Do you want a
candy? (yes/no)

if the answer is yes
if answer equals yes

add a candy
number_of_candies is incremented by one

print the total number of candies
print You have concatenated with str
number of candies concatenated with
candies

if the answer is not yes
else

print the final number of candies

print You have a total of concatenated
with str number of candies concatenated
with candies

stop the loop by assigning False to the

flag
flag is assigned False

161

Part 5. The while loop and conditions

Canyou identify some differences between the while loop in the example above and the one in Chap-
ter 17?

As you might remember from Chapter 17, for a while loop, we have to create a variable that is: (1)
initialized before the header, (2) included in a condition within the header, and (3) allowed to change in
the body to avoid infinite iterations. In the example in Chapter 17, the variable following these three
rules was answer. In this example, it is flag. We initialize f1ag as a Boolean of value True (line 5), then
we check if its value is equal to True in the while loop header (line 11), and finally we allow it to change
to False (line 32) to avoid infinite loops. flag is a common variable name for a Boolean variable that
behaves this way—counter is another typical variable name for a variable that keeps count of the
number of iterations. We can think of a flag variable like a traffic light that makes the loop continue
or stop. As long as the traffic light is green (i.e., flag is True), the loop will continue. When the traffic
light changestored (i.e., flagis assigned False), the loop ends. Using a Boolean flagin the while loop is
somewhat like providing the answer to a condition instead of asking the header to test the condition.

When using a flag, the construction of a while loop might change. What about the variable answer in
this new code version? We initialize answer at the beginning of the while loop body, where we use the
built-in function input to ask a question to the player (line 14). Then we create an if/else condition
to decide what to do based on the value of answer (lines 17-32). If the answer is "yes", then we in-
crement the counter number_of_candies by 1 (line 20) and we print a feedback to the player (line 23).
Otherwise (i.e., else), we print a final feedback to the player (line 29) and we allow the flag to change
(line 32).

These are several ways to write a while loop. Which one should we use? All have pros and cons.
Choose the one that appears simpler and easier to understand!

When we write a comparison or a condition, the outcome is a Boolean variable

Booleans are a Python type, like lists, strings, integers, etc.

There are only 2 Boolean values: True and False

Combinations of conditions using and, or, not follow the truth tables
Booleans can be used as flags in while loops (they act like traffic lights)

162

Chapter 20. Behind the scenes of comparisons and conditions

There are several online resources for coding. What are the differences among them? How
do we choose which to use? In a simple manner, we can categorize websites into two groups:
tutorial websites and question and answer (Q&A) websites. In tutorial websites, each page
contains clear and extensive explanations about a specific topic. Common website tutori-
als are GeeksforGeeks (www.geeksforgeeks.org), W3Schools (www.w3schools.com), or learn-
python.org (www.learnpython.org). The last two also offer the possibility of typing code di-
rectly in their webpages so that you canimmediately test what you learn. On the other hand, in
Q&A website, each page starts with a question by a user, followed by answers by other users.
Usually, questions are about solving bugs or looking for better code implementations. Exam-
ples include Stack Overflow (www.stackoverflow.com) or Reddit (www.reddit.com). Q&A web-
sites are extremely useful for coders. We all encounter issues that we don't know how to solve.
The great news is that there is always somebody else who had the same issue before us and
whose solutions we can find online!

. Do you want less exercises? Rewrite the while loop from the exercise Do you want less exercises? in
Chapter 17 using a Boolean as a flag in the header.

. Flipping coins! When flipping a coin, we have two outcomes: heads and tails. In this exercise, we
will use True for heads and False for tails. Flip a coin 8 times and save the outcomes in a list whose
elements are of type Boolean. How many outcomes of heads and tails did you get? What is the
ratio between the number of heads and tails? Now flip a coin 1000 times. What is the new ratio?
How do the two ratios differ?

. Comparator. A comparator is an algorithm that compares two numbers. It is similar to a calculator,
but instead of using arithmetic operators, it uses comparison operators. Create acomparator that
asks a user for two integers and prints all the possible comparisons between the two integers.
Example: If the user enters 3 and 5, then print out:

3>5isFalse

3<5isTrue

etc.

Make sure to: (1) use all the comparison operators; (2) use Booleans wherever possible; and (3)
allow the user to use the comparator for as long as they want. Which numbers did you use to test
that the comparator works correctly? When do you get True as an output?

163

www.geeksforgeeks.org
www.w3schools.com
https://www.learnpython.org/
www.stackoverflow.com
www.reddit.com

PART ©

FOCUS ON LISTS
AND FOR LOOPS

In this part, you will integrate your existing knowledge of lists and for loops with new concepts and
properties. At the end of part 6, you will have fully mastered lists and loops!

We are halfway through our journey of learning computational thinking and coding in Python! Thus,
this is a good moment to take a break and summarize everything we have learned about lists so far. In
this Chapter, we will put the “grammar” rules for Python lists to use and highlight some new important
properties that are worth knowing. The Chapter contains a lot of examples and details that will help
you improve your coding skills and understand other people’s code. Let’s start! Follow along with
Notebook 21!

As you might remember from Chapter 13, in Python there are 7 arithmetic operations: addition (+),
subtraction (-), multiplication (*), exponentiation (**), division (/), floor division (//), and modulo (%).
To perform arithmetic operations element-wise—that is, on list elements—we use for loops. Element-
wise operations can be done (1) between two or more lists of the same length or (2) between a list
and a number. In both cases, we use a for loop. Let’s see two examples for addition (but they can be
valid for any operation).

e Sum two lists element-wise:

odd_numbers = [1, 3, 5] odd_numbers is assigned one, three, five

even_numbers = [2, 4, 6] even_numbers is assigned two, four, six

summed = [] summed is assigned empty list

for i in range (len(odd_numbers)): for i in range len odd numbers

summed. append(odd_numbers[i] + summed dot append odd_numbers in position i

even_numbers[i]) plus even numbers in position i

print (summed) print summed

[3, 7, 11]

We start with odd_numbers and even_numbers, which are two lists containing 3 integers each (lines 1
and 2), and summed, which we initialize as an empty list (line 3). Then, we create afor loop that spans the
indices of one of the lists of numbers (line 5), and we append to summed the sum of the current element
of the list odd_numbers to the element in the same position in the list even_numbexs (line 6). Finally,
we print the result for a check (line 8). Note that we save the result in a third list (summed) that we
initialized as empty before the loop (line 3) and that we fill in during the loop (line 6). If we do not want
to create a third list, we can overwrite one of the existing lists (e.g., odd_numbexrs [i]=odd_numbexrs[i]

+ even_numbers[i]).

e Sum a number to each element of a list:

numbers = [1, 2, 3] odd_numbers is assigned one, two, three
number = 3 number is assigned three

167

Part 6. Focus on lists and for loops

for i in range (len(numbers)): for i in range len of numbers
numbers[i] += number numbers in position i incremented by number
print (numbers) print numbers
[4, 5, 6]

We create the list numbers containing three integers (line 1) and the variable number to which we as-
sign the number 3 (line 2). Then, we use a for loop to browse all the positions of the list elements (line
4), and we increase each element by the value of number (line 5). Finally, we print the result (line
7). Similar to the previous example, we can either overwrite the existing list (as we do in this exam-
ple) or we can create an empty list before the for loop (e.g., sunmed = []) and fill it in the loop (e.g.,

summed.append(numbers[i] + number)).

The operations between lists are not actually arithmetic, but they use arithmetic symbols with a dif-
ferent meaning. The two possible operations are concatenation, which uses the symbol +
(pronounced as concatenated with) and replication, which uses the symbol * (pronounced as replicated
by [number]). Let’s see the examples:

e Concatenate two lists:

odd_numbers = [1, 3, 5] odd_numbers is assigned one, three, five

even_numbers = [2, 4, 6] even_numbers is assigned two, four, six

concatenated = odd_numbers + even_numbers concatenated is assigned odd numbers

concatenated with even numbers
print (concatenated) print concatenated
[1, 3,5, 2, 4, 6]

We create two lists, one containing odd numbers (odd_numbers; line 1) and one containing even num-
bers (even_numbers; line 2). Then we concatenate them using the concatenation symbol + (line 3), and
we store the result in a new list called concatenate (line 3). If we don't want to create a new variable,
we can overwrite one of the two existing lists: odd_numbers = odd_numbers + even_numbers. Finally,
we print the result (line 4), whichis alist containing the elements of odd_numbers and even_numbers se-
guentially merged.

e Replicate alist 3 times:

numbers = [1, 2, 3] odd_numbers is assigned one,two,three

number = 3 number is assigned three

replicated = numbers * number replicated is assigned numbers replicated
by number

print (replicated) print replicated

(1, 2, 3,1, 2, 3, 1, 2, 3]

We create alist called numbers (line 1) and an integer variable called number (line 2). Then we replicate
the list numbers by the number of times indicated by the variable number using the symbol *, and we
save the result in a new list called replicated (line 3). Once more, instead of creating a new variable,
we can overwrite the existing list: numbers = numbers * number. Finally, we print replicated (line
4). As you can see in the printout, replicated contains the list numbers repeated three times. When

168

Chapter 21. Overview of lists

is replication useful? Let’s see the following example:

short_list = [0] short_list is assigned zero

number = 50 number is assigned fifty

long_list = short_list * number long list is assigned short list
replicated by number

print (long_list) print long_list

[0, 0, 0, 0, 0, 0, 0, ©, 0, 0, 0, 0, ©, 0, 0, 0, 0, @, 0, 0, 0, ©, 0, 0, O, O, @, ©, O, O,
2, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0,0, 0,0, 0, 0, 0, 0, 0]
We initialize short_list as a list containing one zero (line 1) and the variable short_list containing
the value 50 (line 2). Then, we replicate short_list by the number of times indicated by number (line
3), and we store the result in the variable 1long_list. Finally, we print long_list (line 4). As you can
see, we obtained a list containing 50 zeros. If we had created 1ong_1list manually, it would have been
very tedious, and we could have easily miscounted the number of zeros in the list! Finally, note thatin
alternative to create the variables short_1list and number, we can directly write: long_list=[0]*50.

When we assign a list to another list, we have to be very careful! Let’s see why.

e Given alist containing a few integers:

given_list = [1, 2, 3] given list is assigned one, two, three
print (given_list) print given list
[1, 2, 3]

We create a list called given_list containing some integers (line 1) and we print it (line 2).

e Assigngiven_list tonew_list:

new_list = given_list new list is assigned given list
print (new_list) print new list
[1, 2, 3]

We assign given_list to another list called new_1ist (line 1), and we print it (line 2). As we can see,
new_list contains the same elements as given_list, as expected. Let’s go one step further!

e Change the first list element of new_1list:

new_list[0] = 40 new list in position zero is assigned
forty
print (new_list) print new list
[40, 2, 3]

We change the first element of new_1ist to 4@ (line 1) and we print new_1list after the change (line 2).
As expected, the first element is now 40. What about given_list?

e Printgiven_list:

print (given_list) print given list
[40, 2, 3]

The first element of given_1list is also 4@! This happens because when we assign a list to another, we
give two names to the samelist. It is a bit like when a person has two names: for example, my brother’s

169

Part 6. Focus on lists and for loops

name is Flavio Alberto. Whether | call him Flavio or Alberto, he is always the same person!

e How can we create an independent copy of a list?

given_list = [1, 2, 3] given list is assigned one, two, three
new_list = given_list.copy() new list is assigned given list dot copy
new_list[0] = 40 new list in position zero is assigned
forty

print (given_list) print given list
print (new_list) print new list

[1, 2, 3]

[40, 2, 3]

Aswe did in cell 6, we create the list given_list that contains a few numbers (line 1). Then, instead of
assigning given_list tonew_list (line we did in cell 7), we use the method . copy (), which creates an
independent copy of a list (line 2). Continuing the brother analogy, it is like if we created a twin that
is similar but independent, so that when we make changes, they happen only in the list we actually
change. At the end of the example, we change the first element of new_1list to 4@ like we did in cell 8
(line 3), and we print out both lists (lines 4 and 5).

We can add an element to alist in two ways: either at the end using the method . append() (see Chap-
ter 4), or at a specific position using the method .insert() (see Chapter 5). Let’s see two easy exam-
ples to refresh how the methods work.

e Addone element at the end of a list:

numbers = [1, 2, 3] numbers is assigned one, two, three
numbers .append(4) numbers dot append four
print (numbers) print numbers

[1, 2, 3, 4]

We create the list numbers containing three integers (line 1), and we add the number 4 using the
method . append() (line 2). Then, we print number to check the result (line 3).

e Insert the number 2 in position 1:

numbers = [1, 3, 4] numbers is assigned one, three, four
numbers.insert(1, 2) numbers dot insert at position one, two
print (numbers) print numbers

[1, 2, 3, 4]

We initialize a list containing the integers 1, 3, and 4 (line 1). At position 1, we insert the number
2 using the method .insert (), which takes as arguments first the position and then the value of the
new element (line 2). Finally, we print out numbers (line 3).

There are two ways to add a list at the end of another list: concatenation (see cell 3 and another
example below) and the method .extend().

170

Chapter 21. Overview of lists

e Concatenate two lists:

first_list = [1, 2, 3] first_list is assigned one, two, three

second_list = [4, 5, 6] second_list is assigned four, five, six

third_list = first_list + second_list third list is assigned first list
concatenated with second list

print (third_list) print third list

(1, 2, 3, 4, 5, 6]

We create two lists, called first_list and second_list, to which we assign some integers (lines 1 and
2). Then, we concatenate the two lists to obtain third_1list (line 3). Finally, we print third_list (line
4).

e Add onelist at the end of another list:

first_list = [1, 2, 3] first_list is assigned one, two, three
second_list = [4, 5, 6] second_list is assigned four, five, six
first_list.extend(second_list) first list dot extend second list

print (first_list) print first list

(1, 2, 3, 4, 5, 6]

We use the same two lists as in cell 13 (lines 1 and 2), but we use the method .extend() to merge
them. The syntax for .extend() is (1) the list to which we want to add another list (2) dot, and (3) the
added list in between round brackets (line 3). Then, we print the merged list (line 4).

What are the differences between concatenation and . extend()? When using concatenation, we can
either create anew list (e.g., third_list = first_list + second_list),or we canadd alist to an ex-
isting one (e.g., first_list = first_list + second_list). Instead, when using .extend(), we can
only modify the list to which we apply the method (i.e., first_list in cell 14). In addition, when us-
ing .extend(), we can add a list only at the end of another list, whereas when using concatenation—
combined with slicing—we can add a list at the beginning (e.g. first_list = second_list +
first_list) or in the middle of another list (e.g. first_list = first_list[:2] +
second_list + first_ list[2:]).

We can remove list elements either based on their value, using . remove () (see Chapter 4) or on their
position, using .pop () (see Chapter 5). We can also remove all elements using . clear(). Let’s see some
example to refresh these methods and learn some new tricks.

e From the following list, remove all the elements "ciao":

greetings = ["ciao","ciao","hello"] greetings is assigned ciao, ciao, hello
greetings.remove("ciao") greetings dot remove ciao
print (greetings) print greetings

['ciao', 'hello']

We start with a list containing three strings, where the element "ciao" is present twice (line 1). Then,
we use the method . remove (), to eliminate "ciao" (line 2). Finally, we print greetings (line 3). Only
one "ciao" (the first one) was removed! In lists containing multiple similar elements, the method
.remove () deletes only the first element. How do we remove both "ciao" from greetings? The first

171

Part 6. Focus on lists and for loops

instinctive idea might be to use a for loop that goes through all element positions and removes the
unwanted elements based on a certain condition (in this case, remove the element if it is equal to
"ciao"). However, this solution does not work for the reasons explained in the In more depth section
at the end of this Chapter. What we need is a while loop:

greetings = ["ciao", "ciao", "hello"] greetings is assigned ciao, ciao, hello
while "ciao" in greetings: while ciao in greetings
greetings.remove("ciao") greetings dot remove ciao
print (greetings) print greetings
['hello']

We start with the list greetings (line 1), then we create a while loop where as long as the string
"ciao" is in greetings (line 2), we remove it using the method .remove() (line 3). Finally, we print
the result (line 4).

Let’s continue to see how to remove an element based on its position and all elements in a list. In the
following two cells (17 and 18), we write the list at line 1, and we print the result at line 3. At line 2,
we use a different list method. Let’s have a look at the examples:

e Remove the string "hello" based on its position:

greetings = ["ciao", "ciao", "hello"] greetings is assigned ciao, ciao, hello
greetings.pop(2) greetings dot pop two
print (greetings) print greetings

['ciao', 'ciao']

To remove an element based on its position, we use the method .pop(), which we learn in Chapter
5 (line 2). As you might remember, the argument of the method is the position of the element to
delete.

e Remove all elementsin alist:

greetings = ["ciao", "ciao", "hello"] greetings is assigned ciao, ciao, hello
greetings.clear() greetings dot clear
print (greetings) print greetings

[1

To remove all elements in a list, we use the method . cleax() (line 2). The list becomes an empty list.

Another way to remove elements in a list is by using list comprehension. We will see it in the next
chapter.

Sortinglistsis avery commontaskin coding. For example, we might want to sort names alphabetically
(see the exercise “A further step!” below) or a list of prices increasingly or decreasingly. In the three
examples below (cells 19, 20, and 21), we will create a list of integers called numbers (line 1), use a new
method to execute the task (line 2), and print the outcome (line 3).

172

Chapter 21. Overview of lists

e Sort the following list of integers:

numbers = [5, 7, 6] numbers is assigned five, seven, six
numbers.sort() numbers dot sort
print (numbers) print numbers

[5, 6, 7]

To sort the list number, we use the method .sort() (line 2). As you can see from the printout, the
numbers are sorted in an increasing (or ascending) way, that is from the smallest to the greatest.
What if we want to sort the numbers in a decreasing (or descending) way? The answer is in the next
example:

e Sort the following list of integers in a descending way:

numbers = [5, 7, 6] numbers is assigned five, seven, six
numbers.sort(reverse = True) numbers dot sort reverse is assigned True
print (numbers) print numbers

[7, 6, 5]

We use .sort () aswedidinthe example above, but we add the argument reverse, to which we assign
the Boolean True—you will learn more about method (or function) parameters starting in Chapter 28.
As you can see from the printout, the list is now sorted in a descending way: that is, from the greatest
to the smallest number.

e Reverse the following list of integers:

numbers = [5, 7, 6] numbers is assigned five, seven, six
numbers.reverse() numbers dot reverse
print (numbers) print numbers

[6, 7, 5]

We use the method .reverse() to invert the order of the elements in the list. Thus, the last will
become the first, the second to last element will become the second, etc. Note that . reverse() sorts
the element based on their position, whereas. sort () (see example above) sorts the elements based
on their value.

Let’s conclude our long journey through list methods by learning how to search and count elements.

e Create alist and search for a specific element:

letters = ["a", "g", "c", "g"l] letters is assigned a, g, ¢, g
position = letters.index("g") position is assigned letters dot index g
print (position) print position

1

We create the list letters containing strings (line 1), and we look for the position of the element
"g" by using the method . index (), which we learned in Chapter 5. Then, we print the results (line 3).
As you can see, .index () just gives us the position of the first element, which is 1—because element
positions start from @ in Python.

173

Part 6. Focus on lists and for loops

e How do we find all positions?

letters = ["a", "g", "c", "g"l] letters is assigned a, g, ¢, g
positions = [] positions is assigned empty list
for i in range (len(lettexrs)): for i in range len of letters
if letters[i] == "g": if letters in position i is equal to g
positions.append(i) positions dot append i
print (positions) print positions
[1, 3]

To find all positions of an element in a list, we can use the for loop! We create the list letters (line
1) and the empty list positions that will contain the indices corresponding to the letter "g" (line 2).
Then, we create a for loop that browses all the positions of the letters (line 3), and if the current letter
is equal to "g" (line 4), then we append its position (that is, "i") to the list positions (line 5). Finally,
we print the result (line 6).

e Count how many times an element is present in a list:

letters = ["a", "g", "c", "g"l] letters is assigned a, g, ¢, g
n = letters.count("g") n is assigned letters dot count g
print (n) print n

2

We start with the same list 1letters as in the example above (line 1), and we use the method . count ()
to count how many times the letter "g" is in the list (line 2). Finally, we print the result (line 3).

In this Chapter, you have refreshed and learned how to execute all the typical operations that we
perform on lists by using list methods and various operators. At this point, you can consider yourself
an expert in lists! Congratulations!

Answer the following questions to discover more tricks about lists!

1. How can we efficiently remove the elements of a list in even positions?

2. What is the difference between the method . clear() and the keyword del?

3. What is the output of the method .sort() for a list of strings? E.g.: sweets = ["chocolate",

"icecream", "candy", "cake"]

174

Chapter 21. Overview of lists

4. What is the output of the method . sort () for alist of strings and numbers? E.g.: sweets_numbers

= ["chocolate", 43, "icecream", "candy", "cake", 18]

In this Chapter, you learned or refreshed the 11 list methods. Fill out the table below with method
definitions and alternative ways to implement the same operation. Some alternatives are presented
in this Chapter or in previous chapters, but for others, you will have to come up with new ideas (feel
free to consult the internet!)

Method What it does Alternative

.append()

.clear()

.copy ()

.count()

.extend()

.index()

.insexrt()

-pop()

.remove()

.reverse()

.sort()

e We can perform element-wise operations in lists using the arithmetic operators +,-, *, 7, **, //,%

e We can perform “arithmetic” operations on lists using concatenation + and replication *

e The 11 methods for lists are: .append(), .clear(), .copy(), .count(), .extend(), .index(),
.insert(), .pop(), .remove(), .reverse(), .sort()

e Of the 11 methods, the 3 methods that return a new value are . copy(), .count(), and .index().
The other 8 methods modify the lists themselves

175

Part 6. Focus on lists and for loops

A for loop is not the right way to remove elements in a list for at least two reasons. Let’s see
them in this example:

greetings = ["ciao","ciao","hello"] greetings is assigned ciao,ciao,hello

for i in range (len(greetings)): for i in range len of greetings
print ("--------------- ") print dashes
print ("i == " + str(i)) print i equal to concatenated with str i
print ("before the if:") print before the if:
print ("greetings") print greetings
if greetings[i] == "ciao": if greetings in position i is equal to ciao
del greetings[i] del greetings in position i
print ("after the if:") print after the if:
print ("greetings") print greetings
(a) i==
(b) before the if:
(c) ['ciao', 'ciao', 'hello']
(d) after the if:
(e) ['ciao', 'hello']
(f) mmmmmeeae
(@) i==1
(h) before the if:
(1) ['ciao', 'hello']
(3) after the if:
(k) ['ciao', 'hello']
(1) —-mmmmmeeme -
(m) i==2
(n) before the if:
(o) ['ciao', 'hello']
IndexExrror Traceback (most recent call last)

Cell In[16], line 6
5 print("before the if:")
6 print("greetings")
————> 7 if greetings[i] == "ciao":
8 del greetings[i]
9 print("after the if:")
IndexError: list index out of range

We start with the list greetings that we created in Paragraph 5 (line 1). Then, we create a for
loop that browses all the positions in the list (line 2). In the for loop, we use an if condition to
check whether the current element is equal to the element to remove (line 7). If that is the case,
thenwe remove the current element using the keyword del, which we learned in Chapter 6 (line
8). In between the main commands, we print some messages to check the list changes at each
iteration: a graphic separator for each loop (line 3), the number of the current iteration (line 4),
and the list before deletion (lines 5 and 6) and after deletion (lines 9 and 10).

Note that for clarity of the following explanation, the printed lines are identified with letters,
which are not actually printed when running the code.

176

Chapter 21. Overview of lists

Let’s see what happens at each loop:

e Firstloop (i==0): before the if, the listis complete ["ciao", "ciao", "hello"] (line(c)). Af-
ter the if, greetings contains only ["ciao", "hello"] (line (e)). Three changes happened:
(1) the string "ciao" in position @ (in orange in Figure 21.1) is removed; (2) the element in-
dices restarted from @, changing the positions of the remaining elements (that is, the green
"ciao" was in position 1 before the if and moved to position @ after the if, and the string
"hello" was in position 2 before the if and moved to position 1 after the if); and (3) the length
of the list changed from 3 to 2. The changes (2) and (3) will have consequences in the second
and third loops.

greetings = "ciao" "hello" greetings = "ciao" "hello"

(before the if) i==0 (after the if)

e Second loop (i==1): before the if, the list is the same as it was at the end of the previous loop,
thatis ["ciao", "hello"] (line (i)). And after the if, the list remains the same (k) because the
current element greetings[1], thatis, "hello", does not satisfy the if condition. Why wasn’t
the string "ciao" in position @ (green in Figure 21.1) deleted? The change of list index in the
previous loop moved "ciao" from position 1 to position @, so we skip its deletion because we
are currently at the second iteration of the for loop!

e Third loop (i==2): before the if, the list is still ["ciao", "hello"] (line (0)). Than, we get
an index error at line 6 of the code, where the if conditions is. This is because i is now 2,
but greetings[2] does not exist because we shortened the list when we deleted the first
"ciao" in the first loop. Thus, the error “out of range” is due to a failed attempt to slice the
list greetings in position 2, which does not exist! Note that the index i is currently 2 because
in the header of the for loop (line 2), we stated that i goes from @ to the length of the list
(len(greetings)), which is the initial list length and does not adapt to length changes during
the loop!

In conclusion, by using a for loop to delete an element in a list, we can cause two errors: (1) we
skip list elements that we should delete because of the index shift, and (2) we get out of range
errors related to the index because we shorten the list by removing some elements.

177

Part 6.

Focus on lists and for loops

1. Selling veggies at the market. At your stand at the market, you started the day with the following

items:
Item N. of items Price per item
carrots 10 0.7
zucchini 12 0.5
potatoes 11 0.2
a. Create three lists: one for the items, one for the number of items, and one for their prices.

Today you got 3 customers. You want to keep track of how much money each customer spent
and how much produce they bought. Create and initialize a list called total, where each el-
ement corresponds to the amount spent by a customer (how long is the list? what are its
content?)

The first customer bought 2 carrots, 4 zucchini, and 3 potatoes. Create a list where each
element is the number of bought items (i.e., the list will contain 3 elements, corresponding to
number of carrots, zucchini, and potatoes, respectively).

. How much did the customer pay? Save the amount in the first position of the list total with-

out creating an intermediate variable (hint: if you don’t know how to do it, first solve the task
by using an intermediate variable, and then find a way to remove it).

The second customer got 3 carrots and 3 potatoes. Create the corresponding item list. How
much did the customer pay? Save the amount in the second position of the list total.

The third customer wanted 6 carrots, 4 zucchini, and 1 potatoes. Create the corresponding
item list.

Did you have enough items to sell? Compute it.

. Given that the third customer is going to buy whatever is left (e.g., if they wanted 6 carrots,

but only 2 were left, they bought 2), how do you modify their item list? Use if/else.

. How muchdid the third customer pay? Save the amount in the third position of the list total.
j-
k.

What was the average amount a customer spent at your stand?
What was your most popular item today? And the one you sold the least of? Compute them!

2. New year’s countdown! Given the following list: numbers = [0,1,2,3,4,5,6,7,8,9], reverse it us-

178

ing:

a.
b.
C.

A list method.
Slicing.
A for loop.

What are the differences among the three methods?

. App store. You are running a market study on app store data. These are the prices of the apps in

the store:

app_prices = [

7.99, 7.99, 2.99, 4.99, 7.99, 9.99, 9.99, 1.99, 1.99, 1.99,
4.99, 5.99, 3.99, 5.99, ©.99, 3.99, 3.99, 2.99, 1.99, 4.99,
8.99, 1.99, 3.99, 1.99, 1.99, 8.99, 6.99, ©.99, 6.99, 8.99,

Chapter 21. Overview of lists

A O A P N U W & O N 00 W

.99, 1.99, ©0.99, 1.99, 0.99, 8.99, 1.99, 7.99, 3.99, 1.99,
.99, 2.99, 4.99, 6.99, 4.99, 7.99, 8.99, 1.99, 2.99, 0.99,
.99, 6.99, 7.99, 6.99, 2.99, ©0.99, ©0.99, 3.99, 2.99, 5.99,
.99, 0.99, 7.99, 9.99, 5.99, 5.99, 1.99, 4.99, 5.99, 5.99,
.99, 9.99, 5.99, 5.99, 1.99, 8.99, 9.99, 4.99, 9.99, 4.99,
.99, 0.99, 2.99, 9.99, 3.99, 6.99, 8.99, 4.99, 1.99, 9.99,
.99, 7.99, 1.99, 4.99, 4.99, ©0.99, 3.99, 3.99, 1.99, 8.99,
.99, 9.99, 5.99, 2.99, 2.99, 2.99, 5.99, 4.99, 3.99, 8.99,
.99, 8.99, 8.99, 1.99, 9.99, 7.99, 6.99, 7.99, 4.99, 4.99,
.99, 8.99, 7.99, 4.99, 5.99, 5.99, 0.99, 2.99, 8.99, 7.99,
.99, 3.99, 3.99, 4.99, 9.99, .99, 1.99, 3.99, 9.99, 5.99,
.99, 8.99, 6.99, 5.99, 6.99, 7.99, 1.99, 2.99, 9.99, 6.99,
.99, 6.99, 8.99, 8.99, 2.99, 1.99, 9.99, 1.99, 7.99, 9.99,
.99, 3.99, 9.99, 9.99, 6.99, 6.99, 7.99, 9.99, 2.99, 4.99]

a. How many apps are there?

b. How many apps cost 4.99? Calculate the result in two ways, once using a list method, and
once using a for loop.

c. What is the percentage of apps that cost 4.99?

d. What are the unique prices of the apps in the store? Find them and sort them in ascending
order.

e. How many apps are there for each price?

f. What is the most popular price for an app?

179

In the past several chapters, we have learned how to use the for loop to browse lists (Chapters 8 and
9), search elements in lists (Chapter 10), change list elements (Chapter 11), and create lists by adding
one element at a time (Chapter 12). In addition, we have used the for loop to repeat commands inde-
pendently of lists (see the In more depth section in Chapter 15). We will start this Chapter by briefly
refreshing what we already know for sake of completeness. Then, we will discover new for loops that
we can use with lists, each of them with their own characteristics and usage. Ready? Follow along
with notebook 22!

As the definition says,

A for loop is the repetition of a group of commands
for a determined number of times.

Let’s get a refresher on this concept with the following example:

e Print 3random numbers between 1 and 10:

impoxt random impoxt random
for _ in range (3): for underscore in range three
number = random.randint (1, 10) number is assigned random dot randint one ten
print (number) print number
6
4
3

We import the package random (line 1). Then, we implement the for loop (lines 3-5). We start with the
header, which contains: (1) the keyword for; (2) a variable for the index; (3) the membership operator
in; and (4) the built-in function range () (line 3). In this case, we use an underscore as a variable for
the index because we do not need the index in the loop body. We will review the characteristics of
the built-in function range () in the next paragraph. In the body of the for loop—which is always in-
dented with respect to the header—we create arandom number between 1 and 10 using the function
.randint () from the package random (line 4), and we print the created number (line 5). The lines of
code in the loop body are repeated at each loop or iteration—in this case, three times, as indicated by

range(3).

There are at least 4 ways to use the for loop with lists. You already know the first one: the for loop
through indices. In this section, we'll learn the for loop through elements, through indices and ele-

180

Chapter 22. More about the for loop

ments, and list comprehension. Note that through indices, through elements, and through indices and el-
ements are not technical terms; however, we will use them to distinguish between the different types
of for loops. On the contrary, list comprehension is a technical term that you can find in any Python
book or coding website. In all the examples in this section, we will start with the following list, which
contains three strings:
last_names = ["garcia", "smith", "zhang"] last names is assigned garcia, smith,
zhang

Our task will be to change the first letter of each string to upper case. For that, we will apply the
method . title() to each list element, and we will overwrite the existing list whenever possible.

You already know this for loop type. Let’s refresh our memories with the following example.

e Capitalize each string using a for loop through indices:

last_names = ["garcia", "smith", "zhang"] last names is assigned garcia,
smith, zhang

for i in range (len(last_names)): for i in range len last names
print ("The element in position " + str (i) + print The element in position
" is: " + last_names[i]) concatenated with str of i

concatenated with is concatenated
with last names in position i

last_names[i] = last_names[i].title() last names in position i is
assigned last names in position
i dot title
print (last_names) print last names

The element in position @ is: garcia

The element in position 1 is: smith

The element in position 2 is: zhang

['Garcia', 'Smith', 'Zhang']
We start with the list to modify (line 1). Then, we write the for loop header, which is composed of: (1)
the keyword for; (2) the index variable i; (3) the membership operator in; and (4) the built-in function
range (line 3). range () can have three parameters: start, which we omit when it is @—like in this case;
stop, which usually coincides with the length of the list; and step, which we omit when it is 1—like in this
example. If we need to browse only the first half of the list, we can write range (@, 1en(last_names)
//2), or if we want to browse only every second position of the list, we can write range(0,
len(last_names),2). Also, let’s not forget that range() is a built-in function that can be used inde-
pendently from a for loop to creates a range of integers: for example, 1list(range(@,4)) returns
the list [0,1,2,3] and list(range(@,4,2)) returns [@,2]. Why do we use 1ist() combined with
range () when creating a list? Because the built-in function 1ist () converts the output of range()—
which is its own data type—to a list. In the for loop body, we print the current value of the index
i and the corresponding element 1ast_names[i], extracted by slicing (line 4). Then, we change the
current element 1ast_names[i] by applying the string method .title() and reassigning the result to
last_names[i] itself (line 5). Finally, we print 1ast_names to check the modified list (line 7).

181

Part 6. Focus on lists and for loops

Let’s learn the first new way of implementing the for loop: the for loop through elements. Read the
example below and try to understand what it does:

e Capitalize each string using a for loop through elements:

last_names = ["garcia", "smith", "zhang"] last names is assigned garcia,
smith, zhang

last_names_upper = [] last names upper is assigned
empty list

for last_name in last_names: for last_name in last names

print ("The current element is + last_name) print The current element is

concatenated with last name
last_names_upper.append(last_name.title()) last names upper dot append last
name dot title

print (last_names_upper) print last names upper

The current element is: garcia

The current element is: smith

The current element is: zhang

['Garcia', 'Smith', 'Zhang']
Asin the previous example, we start with the list to modify (line 1). We continue with a new empty list
called 1ast_names_upper that we will fill within the loop (line 2). Then, we create the for loop through
elements (lines 4-6). The syntax of the header is: (1) the keyword for; (2) a variable; (3) the mem-
bership operator in; and (4) the list to browse. There are two differences with respect to the for loop
through indices. First, the variable in position (2) is not named index or i, but it is usually called with
the singular version of the list name—that is, if the list name is 1ast_names, then the variable name is
last_name; if the list name is numbers, then the variable name is number; and so on. This is not a rule
but a useful convention among Python coders. The second difference is that we directly use the list
itself—that is, 1ast_names—in position (4), instead of range(len(last_names)). Let’s now focus on
the loop body. First, we print the current element 1ast_name (line 5). As you may notice, there is no
slicing (that is, no [i]). This is because in a for loop through elements, the variable in position (2)—
thatis, 1ast_name—automatically browses list elements one after the other, without knowing their
position. This is the opposite of what happens in a for loop through indices, where the variable in po-
sition (2)—that is, i—browses list positions without knowing the corresponding elements; to get an
element, we must use slicing (e.g., last_name[i]). See a schematic of the difference between the two
loops in Figure 22.1.

last_name "garcia" "smith" " zhang"

182

Chapter 22. More about the for loop

Inthe firstiteration of the example, 1ast_nameis "garcia";inthe seconditeration,itis "smith";andin
thethirditeration,itis "zhang". We conclude by applyingthe method . title() tothestringlast_name
and appending the output to last_names_upper (line 6). Finally, we print last_names_upper
(line 8). Why don't we directly modify 1ast_names? Because in afor loop through elements, we cannot
modify the list we are browsing. We can only create a new list (that is, 1ast_name_upper) to which we
append the modified elements (that is, 1ast_name.title()). Let’s see what happens if we try to use a
for loop through elements to change elements:

for last_name in last_names: for last_name in last names
print ("last_name before change: " + last_name) print last_name before change:
concatenated with last name
last_name = last_name.title() last names is assigned last
name dot title
print ("last_name after change: " + last_name) print last_name after change:
concatenated with last name
print (last_names) print last names

last_name before change: garcia

last_name after change: Garcia

last_name before change: smith

last_name after change: Smith

last_name before change: zhang

last_name after change: Zhang

['garcia', 'smith', 'zhang']
In the first iteration, the variable 1ast_name is "garcia" (line 2), we change it to "Garcia" (line 3), and
we print it (line 4). In the second iteration, last_name is "smith" (line 2), we change it to "Smith" (line
3), and we print it (line 4). The procedure follows in the third iteration for "zhang". However, when
we print the final list, all strings are still lower case (line 6). This is because the for loop through ele-
ments does not keep track of element positions, so it is impossible to know where to overwrite a list
element. Finally, note that because there is no index, in a for loop through elements we cannot keep
track of the iteration number. If we need to know the iteration number, we can either use a for loop

through indices (Section 2.1) or a for loop through indices and elements (Section 2.3).

As the name implies, the for loop through indices and elements combines a for loop through indices with
a for loop through elements. Its implementation is straightforward. Try to understand the example
below before reading the subsequent explanation.

e Capitalize each string using a for loop through indices and elements:

last_names = ["garcia", "smith", "zhang"] last names is assigned garcia, smith,
zhang
for i,last_name in enumerate (last_names): for i last_name in enumerate last_names
print ("The element in position " + print The element in position
str (i) + " is: " + last_name) concatenated with str of i concatenated
with is concatenated with last name
last_names[i] = last_name.title() last names in position i is assigned last

name dot title

183

Part 6. Focus on lists and for loops

print (last_names) print last names

The element in position @ is: garcia

The element in position 1 is: smith

The element in position 2 is: zhang

['Garcia', 'Smith', 'Zhang']
The for loop header consists of (1) the keyword for; (2) two variables separated by comma, called
i and last_name; (3) the membership operator in; and (4) the built-in function enumerate () with the
list 1last_names as an argument (line 3). The differences with the other for loop headers is again in the
components (2) and (4). The role of i and last_name is quite intuitive: i is the index that browses all
the positions in the list—like in a for loop through indices—and 1ast_name is the variable that browses
all the elements in the list—like in a for loop through elements. The values to browse are provided by
enumerate(), as we can see from the following command (where we use 1list() to convert
enumerate()’s output data type into a list to be printed):

print(list(enumerate(last_names))) print list enumerate last names

[(0, 'garcia'), (1, 'smith'), (2, 'zhang')]
The built-in function enumerate() provides a list of coupled indices and elements—that is, (9,
‘garcia'), (1, 'smith'),and (2, 'zhang'). Each pair is between round brackets, which indicate a
tuple. Tuples are sequences of elements separated by comma and in between round brackets. We
will talk about tuple characteristics in Chapter 29. During the for loop in this example, the variable
i is assigned the first element of each pair—that is, 9, 1, and 2—and the variable 1ast_name is assigned
the second element of each pair—thatis, “garcia', “smith',and *zhang'. In the remaining part of the
example, first we print the position of each element i and its value 1ast_name (line 4). Then, we ap-
ply the method .title() to last_name, and we assign the result to the element in the same position
last_names[i] (line 5). Finally, we print the resulting list (line 6). The for loop through indices and
positions is useful when we need to extract both positions and elements of a whole list.

The fourth and last method to use a for loop in combination with lists is called list comprehension. It
might look complex at first glance, but we are going to untangle it right away!

e Capitalize each string using list comprehension containing a for loop through indices:

last_names = ["garcia", "smith", "zhang"] last names is assigned garcia, smith,
zhang
last_names = [last_name.title() for last names is assigned last name dot

i in range(len(last_names))] title for i in range len last names
print (last_names) print last names
['Garcia', 'Smith', 'Zhang']
Atline 2, we see: (1) thelist name; (2) the assignment symbol; and (3) the list comprehension. Inthe list
comprehension, there are two components embedded within a pair of square brackets: (1) the value
of the list element that we are going to insert into the list—that is, 1ast_name.title(); and (2) a for
loop header—thatis, for i in range(len(last_names)). To better understand the syntax, let’s have
a look at Figure 22.2 comparing the for loop through indices from cell 2 and the list comprehension

184

Chapter 22. More about the for loop

from the cell above.

(@) |[for i in range (len(last_names))
(b) last_names[i] = last_names[i].title()

(c) last_names = [last_names[il.title() |for i in range(len(last_names))|l

As you can see, the components of a list comprehension are the same as the components of a for
loop, just in a somewhat inverted position. In a for loop, first we write the header (line (a); orange
rectangle), and then we assign the modified element (yellow rectangle) to the element itself (line (b)).
In a list comprehension (line (c)), we write first the modified element (yellow rectangle) and then the
for loop header (orange rectangle). As you can see, list comprehension is a one-line command to
create or modify a list in a fast and compact way. We conclude the previous example by printing the
new list (line 3).

Can we write a list comprehension containing the header of a for loop through elements? Yes! Let’s
see how.

e Capitalize each string using list comprehension containing a for loop through elements:

last_names = ["garcia", "smith", "zhang"] last names is assigned garcia, smith,
zhang
last_names = [last_name.title() for last names is assigned last name dot
last_name in last_names] title for last name in last names
print (last_names) print last names

['Garcia', 'Smith', 'Zhang'l]
Similarly to before, in the list comprehension we write first the new element of the list—that is,
last_name.title()—and then the header of a for loop through elements—that is, for last_name in
last_names (line 2). Let’s compare the for loop through elements from cell 3 with the list comprehen-

sionin the cell above. This time, there is a big difference between the for loop and the corresponding
list comprehension. Can you find it?

(a) |foxr last_name in last_namesf:
(b) last_names_upper.append(last_name.title()|)

(c) last_names = [last_name.title() |for last_name in last_names|]

The difference is that in a for loop through elements, we must create a new list—that is,
last_names_upper (line (b))—whereas in the list comprehension, we can overwrite the existing list—
thatis, 1ast_names (line (c)). The remaining syntax correspondence is the same. In a for loop, first we
write the header (line (a); orange rectangle), and then we modify an element (line (b); yellow rectan-
gle). On the other hand, in a list comprehension (line (c)), we write first a modified element (yellow
rectangle) and then a for loop header (orange rectangle).

185

Part 6. Focus on lists and for loops

Another interesting characteristic of list comprehensions is that they can contain a conditional con-
struct. Let’s have alook at it!

e Keep and capitalize only the elements shorter than 6 characters:

last_names = ["garcia", "smith", "zhang"] last names is assigned garcia, smith,
zhang
last_names = [last_name.title() for last names is assigned last name dot
last_name in last_names if title for last name in last names if len
len(last_name) < 6] last name less than six
print (last_names) print last names

['Smith', 'Zhang']

We modify the code from cell 6 by adding an if condition at the end of the list comprehension (line 2).
Once more, let’s compare the construct of a list comprehension with the corresponding for loop.

(@) [for last_name in last_names|:
(b) [if len(last_name) < 6}
(c) last_names_upper.append(last_name.title())

(d) last_names = [last_name.title() |[foxr last_name in last_names[if len(last_name) < Q]

Similarly to above, in the list comprehension (line (d)) first we write the new element, which is in the
last line of the for loop body (yellow rectangle; line (c) in the for loop). Then, we essentially restart
from the beginning of the loop and add commands consecutively. Thus, we first write the for loop
header (orange rectangle; line (a) in the loop) and then the if condition (black rectangle; line (c) in the
loop).

Finally, list comprehensions are extremely useful to delete list elements based on conditions. In cell
16 of the previous Chapter, we used a while loop containing .remove() to delete several elements
with similar characteristics. Now, let’s learn how to delete elements in a much more compact way
with list comprehension.

e Delete elements that are composed of 5 characters:

last_names = ["garcia", "smith", "zhang"] last names is assigned garcia, smith,
zhang
last_names = [last_name.title() last names is assigned last_name dot
for last_name in last_names title for last name in last names if len
if len(last_name) != 5] last name not equal to five
print (last_names) print last names
['garcia']

When deleting elements with list comprehensions, we have to think about the elements that we are
going to keep, not about those that we are going to delete! This is because in alist comprehension, in
the first position we must write the element that we are going to insert into the list. Thus, if we want
todelete the elements whose lengthis 5, we need to reverse our thinking and write the condition that
allows us to keep the elements whose length is not equal to 5—that is if len(last_name) != 5(line
2).

186

Chapter 22. More about the for loop

In this Chapter, you have learned four different ways to write a for loop with lists. Which one do we
use and when? Highlight the differences among the for loops by completing the following table with

Yes or No.

Operation For loop For loop
through indices through
elements

Get the current index
Change list elements
Delete list elements
Browse a full list

Browse only a part of a list

For loop List
through indices comprehension
and elements

As the last topic for this Chapter, let’s learn about nested for loops. A nested for loop is a for loop
within another for loop. How does it work? Read the example below, and try to understand what

happens.

e Given the following list of vowels:
vowels = ["A", "E", "I", "0", "U"]
We start with a list of strings (line 1).

e For each vowel, print all the vowels on the right:

for i in range (len(vowels)):
print ("-- " + vowels[i])

for j in range (i + 1, len(vowels)):

print (vowels[i])

cC O H m

c O H

vowels is assigned A, E, I, 0, U

for i in range len vowels

print dash dash concatenated with vowels
in position i

for j in range i plus one len vowels
print vowels in position i

187

Part 6. Focus on lists and for loops

The nested for loop in this example is composed of an outer for loop, whose header is at line 1, and
an inner for loop, whose header is at line 3. In the outer for loop, the index i goes from @ (omitted) to
the length of the list (line 1); thus, i will browse all list positions. In the inner for loop, the index j goes
from i+1 to the length of the list (line 3); thus, j will browse all remaining list positions on the right of
the current position i. For each iteration of the outer loop, the inner loop has to be completed before
moving to the next iteration of the outer loop. Here is what happens at each loop:

In the first outer loop, i is . We print "-- " + vowels[@], whichis -- A (line 2). Then, we run the

whole inner for loop (lines 3-4). The index j will start at i+1—which is 0+1, and thus 1—and stop at

len(vowels) -1 for the plus one rule—that is, 4. Thus, j will go through the positions: [1, 2, 3, 4].

Therefore, in the inner for loop:

m Inthefirstiteration, j is 1. We print vowels[1], whichis E

m Inthe second iteration, j is 2. Thus, we print vowels[2], whichis I

m Inthe thirditeration, j is 3 and we print vowels[3], whichis 0

m Inthe fourth iteration, j is 4 and we print vowels[4], which is U. The inner loop is completed and
we go back to the outer loop.

In the second outer loop, i is 1, thus we print "-- " + vowels[1], whichis --- E (line 2). Then, we

run the whole inner for loop again (lines 3-4). The start of the inner loop is i+1, which is 1+1—that

is, 2. Thus, j will go through the positions: [2, 3, 4]. Therefore, in the inner loop:

m Inthefirstloop, j is 2 and we print vowels[2], whichis I

m Inthe second loop, j is 3 and we print vowels[3], whichis0

m Inthethirdloop, j is 3 and we print vowels[3]1, which is U. Once again, the inner loop is completed
and we go back to the outer loop

Inthe third outer loop, i is 2,sowe print -- I.Then,we runthe full inner loop as above, with j brows-

ing the positions 3 and 4, corresponding to the elements 0 and U, respectively.

In the fourth outer loop, i is 3, so we print -- 0. In the inner loop, j is assigned only the position 4,

corresponding to the elements u.

In the last outer loop, i is 4, so we print -- U. There is no inner loop, because the start, i+1, is 5 and

coincides with the stop, which is 5 too.

Can we have more loops nested within each other? Yes! As a convention, the index names are i, j,

k, etc. However, it is strongly recommended not to use too many for loops because they are compu-

tationally very expensive, that is, they use a lot of memory and time. We will talk a bit more about

nested for loops in the next Chapter, where we will use them to browse lists of lists.

188

Chapter 22. More about the for loop

When we use a for loop to repeat commands that do not need the index, we substitute the index
with an underscore

There are at least 4 types of for loops with lists: through indices (uses range()), through elements,
through indices and elements (uses enumerate()), and list comprehension

The built-in functions 1ist () can be used to transform the output of range () and enumerate() into
alist

The built-in function enumerate () simultaneously extracts coupled indices and elements from a list
Tuples are sequences of elements separated by commas and in between round brackets

Nested for loops are for loops within for loops

Asyou know, in Jupyter notebooks we can use cells to either write code or to write text. Writing
text is fundamental to embed our code into a story (or narrative) that explains the workflow—
thatis, how we go from the problem formulation to its computational solution. In Jupyter note-
books, narrative is written in a markup language called Markdown—markup languages are basi-
cally coding languages used to write text. Markdown is a simplified version of HTML, the coding
language used to program websites. The syntax of Markdown is very simple. The basic syntax
rules are:

e Titles start with 1 hash symbol (#), subtitles with 2 hash symbols (##), sub-subtitles with 3
hash symbols (###), etc. to a maximum of 6 hash symbols (#####4#))

Command Rendering
#Title Title
##Subtitle Subtitle
###Sub-subtitle Sub-subtitle

e Toitalicize text, we add 1 asterisk before and after a word or phrase; to bold text, we add 2
asterisks before and after a word or phrase

Command Rendering
jtalic text italic text
hold text bold text

189

Part 6. Focus on lists and for loops

e Todisplay text as code, we add a backtick * before and after the command
Command Rendering

print ('command in markdown') print ('command in markdown')

Using Markdown, we can also create tables, add images, write ordered and unordered lists,
etc., and integrate HTML code—in case you know it. Find all Markdown rules of syntax at the
following website: https://www.markdownguide.org/.

1. Allyou can eat. These friends are at an all-you-can-eat restaurant:
friends = ["Geetha", "Huanxiang", "Megan", "Pedro"]
This is the finger food at the buffet: food = ["sushi", "nachos", "samosa", "cheese"]

Each person tries each type of finger food. Print out sentences like:
Geetha eats sushi
Geetha eats nachos

for all the friends:
a. Using nested for loops through indices.
b. Using nested for loops through elements.

2. Playing kids. At kindergarten, kids are playing a game where they have to pair up with another kid
every time the teacher rings a bell. Eventually, every kid will pair up with all the other kids. Given
this list of kids:

kids = ["Paul", "Juhee", "Luca", "Maria"]

a. Print out all the possible combinations starting from the first kid, that is:
Paul plays with Juhee
Paul plays with Luca
Paul plays with Maria
Juhee plays with Luca
Juhee plays with Maria
Luca plays with Maria

b. Print all the possible combinations starting from the last kid (Maria).

3. Cities of the world. Given the following list cities:

cities = ["Bogota", "Riga", "Kinshasa", "Damascus", "New Delhi", "Auckland"]
a. Using a for loop through indices, create a new list containing city names with more than 7
characters and change them to upper case.
b. Using afor loop through elements, create a new list containing initials of cities with a number
of characters between 7 and 10.

190

https://www.markdownguide.org/

Chapter 22. More about the for loop

c. Using a for loop through indices and elements, print out each element in lower case and its
position:

d. Using a list comprehension, create a new list containing the city names with less than 7 char-
acters and change them to lower case.

4. Learning to count. Print consecutive numbers from 10 to 29 using a nested for loop. The outer for
loop will print the first digit, whereas the inner for loop will print out the second digit, such as:

10
11
12

29
5. Triangle of numbers. Ask a user for anumber. Then print a triangle of numbers where the maximum
row is the queried number. For example:

Input: 5

Output:

1

22

333

4444

55555

Hint: Consider using the parameter end in the print () function. Look for examples on how to use
end online.

191

What is a list of lists?

Alist of lists is a list whose elements are lists.

Lists of lists follow the same rules as lists; they just add an “extra layer” of indices. In this Chapter, you
will learn how to slice lists of lists, use nested for loops to iterate through them, and explore ways to
flatten them. Follow along with Notebook 23. Let’s go!

To slice alist of lists, we modify the slicing rules that we learned for lists in Chapter 6: by adding an
extra layer of indices. Let’s see how it works!

e Given the following list of lists:

animals = [["dog", "cat"], ["cow", animals is assigned dog, cat, cow, sheep,
"sheep", "horse", "chicken", "rabbit"], horse, chicken, rabbit, panda, elephant,
["panda", "elephant", "giraffe", giraffe, penguin

"penguin”]]

The list of lists animals is composed of three elements, which are the lists ["dog", "cat"], ["cow",
"sheep", "horse", "chicken", "rabbit"],and ["panda", "elephant", "giraffe", "penguin"]
(line 1). We call each of these lists sub-lists and their elements ("dog", "cat", "cow", etc.) sub-
element. Let’s learn how to slice sub-lists and sub-elements!

e Print the sub-lists containing pets, farm animals, and wild animals:

print (animals[@]) print animals in position zero
print (animals[1]) print animals in position one
print (animals[2]) print animals in position two
['dog', 'cat'l
['cow', 'sheep', 'horse', 'chicken', 'rabbit']

['panda', 'elephant', 'giraffe', 'penguin']

The sub-list containing pets—["dog", "cat"]—is in position @; thus, we print animals[@]. Similarly,
the list containing farm animals—["cow", "sheep", "horse", "chicken",
"rabbit"]—is in position 1, so we print it with the command print (animals[1])
(line 2). Finally, the list containing wild animals—["panda", "elephant", "giraffe", "penguin"]—
is in position 2, and thus the command is print (animals[2]) (line 3).

e Print the sub-elements “cat”, “rabbit”, and from “panda” to “giraffe”:

192

Chapter 23. Lists of lists

print (animals[@][1]) print animals in position zero in position one
print (animals[1]1[-1]1) print animals in position one in position minus one
print (animals[2]1[:3]) print animals in position two in position from the
beginning of the sub-list to three
cat
rabbit

['panda', 'elephant', 'giraffe']

To extract sub-elements, we use double slicing, where the first slicing—indicated by the first pair of
square brackets—extracts a sub-list and the second slicing—indicated by the second pair of square
brackets—extracts one or more sub-elements. To extract the sub-element "cat", first we extract the
sub-list of pets ["dog", "cat"] with the command animals[@]—like in cell 2, line 1. Then, from the
obtained sub-list, weslice "cat", whichisin position 1. Thus, the complete commandisanimals[@][1]
(line 1). The string "rabbit" is the last element of the second sub-list containing farm animals. Thus,
to slice "rabbit", we write animals[1][-1], where the first slicing [1] extracts the sub-list of farm
animals—aswedid at cell 2, line 2—and the second slicing [-1] extracts the sub-element "rabbit" (line
2). Finally, the sub-elements from "panda" to "giraffe" are in the sub-list of wild animals, which is
animals[2]—as we saw in cell 2, line 3. Within this sub-list, "panda" is in position @, which we omit,
and "giraffe" is in position 2, to which we add 1 for the plus one rule. Thus, the final command is
print(animals[2][:3])

To browse elements in a list of lists, we can use a nested for loop, where the outer loop browses the
list of lists and the inner loop browses the sub-lists. Try to understand what the following example
does and then read the explanation.

e Given the following list of lists:

sports = [["skiing", "skating", sports is assigned skiing, skating, curling,
"curling"], ["canoeing", "cycling", canoeing, cycling, swimming, suxrfing
"swimming", "surfing"]]

We sstart with alist of lists containing two sub-lists. The first sub-list contains 3 strings, and the second
sub-list is composed of 4 strings (line 1).

e Print the sub-list elements one-by-one using a nested for loops through indices:

for i in range(len(sports)): for i in range len sports
for j in range(len(sports[i])): for j in range len sports in position i
print (sports[i][j]) print sports in position i in position j
skiing
skating
curling
canoeing
cycling
swimming
surfing

In the outer for loop, the index i iterates through the positions @—corresponding to the sub-list
["skiing", "skating", "curling"]—andl—correspondingtothesub-list["canoeing", "cycling",

193

Part 6. Focus on lists and for loops

"swimming", "surfing"]—(line 1). Duringeach outer for loop, the inner for loop browses the current
sub-list from @ (omitted) to the length of the sub-list, which is 1len(sports[i]) (line 2). At each itera-
tion of the inner for loop, we print the current element sports[i] [j] (line 3). In practice:

e Inthefirst outer loop, i is @, and we execute a full inner loop to browse the first sub-list:
m Inthe first inner loop, j is @, so we print sports[0] [@], whichis "skiing".
m Inthe second innerloop, j is 1, so we print sports[@][1], whichis "skating".
m Inthe third inner loop, j is 2, so we print sports[0] [2], which is "curling". The inner for loop is
over, and we go to the second outer for loop.
e Inthesecondouterloop, iis 1,and we execute another full inner loop to browse the second sub-list:
m Inthe firstinner loop, j is @, so we print sports[1][@], which is "canoeing".
m Inthe second innerloop, j is 1, so we print sports[1][1], whichis "cycling".
m Inthe third inner loop, j is 2, so we print sports[1] [2], which is "swimming".
m Inthe fourth inner loop, j is 3, so we print sports[11[3]1, whichis "surfing". The inner for loop is
over; also, the outer for loop is concluded because there are no more sub-lists.

Canwe do the same with a for loop through elements? Yes! Think about how we might go about doing
this before looking into the following code.

e Print the sub-list elements one-by-one using a nested for loops through elements:

for seasonal_sports in sports: for seasonal sports in sports:
for sport in seasonal_sports: for sport in seasonal sports
print (sport) print sport

skiing

skating

curling

canoeing

cycling

swimming

surfing
In the outer for loop, the variable seasonal_sports is assigned once the first sub-list and once the
second sub-list (line 1). In the inner for loop, the variable sport is assigned each element of the current
sub-list (line 2). For each iteration of the inner for loop, we print the current value of the variable

sport (line 3). In other words:

e In the first iteration of the outer for loop, seasonal_sports is ["skiing", "skating", "curling"]

and the inner for loop browses all the sub-elements of seasonal_sports in the following way:

m Inthe first inner loop, sportis "skiing".

m Inthe second inner loop, sportis "skating".

m In the third inner loop, sport is "curling". The inner for loop ends, and we go back to the outer
for loop.

e In the second iteration of the outer for loop, seasonal_sports is ["canoeing", "cycling",
"swimming", "surfing"], and the inner for loop browses all the sub-elements of seasonal_sports
in the following way:

m Inthe first inner loop, sport is "canoeing".
m Inthe second inner loop, sportis "cycling".

194

Chapter 23. Lists of lists

m Inthe third inner loop, sport is "swimming".
m In the fourth inner loop, sport is "surfing". The inner for loop ends—as does the outer for loop
because we went thought all the sub-lists.

Flattening means transforming a list of lists into a list. In other words, we take the sub-elements out
of their sub-lists and we put them in a list. There are many ways of performing this operation. We'll
look at four different ways of doing so, but there can be more. For each method of flattening, try to
implement it yourself first, and then look into the example and explanation below.

e Given the following list of lists:

instruments = [["contrabass", "cello", instruments is assigned contrabass,
"clarinet"], ["gong", "guitar"], cello, clarinet, gong, guitar,
["tambourine", "trumpet", "trombone", tambourine, trumpet, trombone, triangle

"triangle"]]
e Flatten the list using a nested for loop through indices:

flat_instruments = [] flat instruments is assigned empty list

for i in range(len(instruments)):
for j in range(len(instruments[i])):

flat_instruments.append
(instruments[i][j1)
print (flat_instruments)

for i in range len instruments

for j in range len instruments in
position i

flat instruments dot append instruments
in position i in position j

print flat instruments

['contrabass', 'cello', 'clarinet', "tambourine',

"trombone', 'triangle']

‘gong', 'guitar', "trumpet’,

We start with the empty list flat_instruments, which we are going to fill out during the subsequent
nested for loop (line 1). Then, for each position in the list of lists (line 2) and each position in each
sub-list (line 3), we append the current sub-element instruments[i] [j] to flat_instruments (line 4).

Finally, we print the final list (line 5). As you can see, we flattened instruments, that is, we transform
a list of lists into a list whose elements are instruments’s sub-elements.

e Flatten the list using a nested for loop through elements:

flat_instruments = []
for group in instruments:
for instrument in group:
flat_instruments.append(instrument)
print (flat_instruments)
['contrabass', 'cello', 'clarinet',
"trombone', 'triangle']

flat instruments is assigned empty list
for group in instruments

for instrument in group

flat instruments dot append instrument
print flat instruments

"tambourine', 'trumpet',

'gong', 'guitar',

Like the previous example, we start with the empty list flat_instruments (line 1). We browse the
sub-lists using the outer for loop (line 2), and within each sub-list, we browse the sub-elements using
the inner for loop (line 3). We append the current sub-element to flat_instruments (line 4). Finally,
we print the obtained flattened list (line 5).

195

Part 6. Focus on lists and for loops

e Flatten the list using a for loop and list concatenation:

flat_instruments = [] flat instruments is assigned empty list
for group in instruments: for group in instruments
flat_instruments += group flat instruments increased by group
print (flat_instruments) print flat instruments
['contrabass', 'cello', 'clarinet', 'gong', 'guitar', 'tambourine', 'trumpet',
"trombone', 'triangle']

Once more, we start with the empty list flat_instruments (line 1). We write a for loop through ele-
ments to browse the sub-lists (line 2). We concatenate each sub-list to flat_instruments (line 3)—the
corresponding explicit command is flat_instruments = flat_instruments + group. Finally, we print
flat_instruments (line 4). The advantage of this method is that we use only one for loop. As you
might remember, for loops are computationally expensive—in terms of memory and time—and it is
good practice to minimize their use.

e Flatten the list using list comprehension:

instruments = [instrument for group in instruments is assigned instrument for
instruments for instrument in group] group in instruments for instrument in
group
print (instruments) print instruments
['contrabass', 'cello', 'clarinet', 'gong', 'guitar', 'tambourine', 'trumpet',
"trombone', 'triangle']

As you might remember from the previous Chapter, when using list comprehension, we do not need
tocreate anew list, but we can directly modify the current one—whichis instruments in this example.
In the list comprehension, we write: (1) what we want to add to the list, which is instrument; (2) the
header of the outer for loop, that is, for group in instruments; and (3) the header of the inner for
loop, whichis for instrument in group) (line 1). Note that within the list comprehension we can use
a nested for loop through elements because we do not need element positions. Finally, we print the
result (line 2).

Lists of lists are lists with lists as elements

When slicing, we use two pairs of square brackets. In the first pair, we write the position of the
sub-list to slice; in the second pair, we write the position of the sub-element(s)
We can use nested for loops to browse sub-elements

We can flatten a list of lists with a nested for loop, a for loop combined with concatenation, or a list
comprehension

196

Chapter 23. Lists of lists

You surely know that digital images are composed of pixels, that is, small colorful squares orga-
nized in a grid. We can think of the grid as a list of lists where each sub-element corresponds to
a pixel of a specific color. Let’s consider Figure 23.1.

,0.7,0.8]1

Each black square corresponds to a pixel containing @, and each white square corresponds to
a pixel containing 1. Thus, the first (and the third) row of the checkerboard is represented by
the sub-list [@,1,0,1,0], and the second (and the fourth) row is represented by the sub-list
[1,0,1,0,1]. The last row of the checkerboard contains pixels colored with various shades of
grey. Each pixel corresponds to a decimal (float) number. Darker greys are closer to @ (that is,
to black), whereas brighter greys are closer to 1 (that is, to white).

What about digital colored images? Each pixel is encoded by an RGB list composed of three
numbers, each representing a different color: the first number is for the red (R) component, the
second number for the green (G) component, and the third number for the blue (B) component.

Let’s have a look at Figure 23.2.
120 100.128 12 4 43 O 0 45 43 32
0 121 /139 0 ‘143 120 105 34
128

0O JEEE 20

/
42 M@28 0

52

128 42 g@s 0

rgb_image = [[l , [120, 12, o], [100, 4, 451, [210, 43, 43], [128, o, 3211,
U U [8, 143, 1431, [8e, 200, 1201, [9, 121, 1051, [34, 139, 34]1,

[[@ 0, 255] [0, 0, 1281, [128, 255, 2551, [20, 52, 1841, [, 150, 255]1,

[[255, @, 2551, [255,192,203], [120, 28, 2551, [255, 234, @], [255, 170, 5111,

[[165, 42, 421, [255, 128, 128], [@, @, @], [255, 255, 2551, [128, 128, 128]]]

Each pixel is represented by a sub-list composed of three numbers. For example, the top left
pixelis red and is represented by the sub-list [255, @, @], where 255 represents the amount of
red, the first @ is for the amount of green, and the second zero @ is for the amount of blue. Each
row is a list of lists, enclosed in a list of lists of lists! Finally, note that for both greyscale and
colored images, the range of the numbers defining the color can go from @ to 1 or from @ to 255.

197

Part 6.

Focus on lists and for loops

1. Playing around. Given the following list of lists:
numbers = [[3,7,1],[7,6,5,4]1,[8,9,7,4,511.

a.

® 0 T

How long is each sub-list?

In the first sub-list, replace the third element with the sum of the previous two elements.

In the second sub-list, sort the elements in ascending order.

In the third sub-list, substitute the number 4 with the number 3.

How many number 7 are there in total? Save their positions in a list of lists (expected result:

[fe, 11, [1, 31, [2, 2]]).

2. Summing up. Given the following list of lists:
numbers = [[1,3,5],[7,2,81,[3,4,911].

a.

Create a list containing the sum of the numbers in each sub-list (expected result: [9, 17, 16]).

b. Sum all the elements of the list of list using (1) a for loop through indices and (2) a for loop

through values.

3. Matrix time! Give the following matrix:

matrix = [[4,1,3,9], [2,1,6,5], [4,0,3,8], [7,2,6,2]]

(If you are not familiar with matrices, think of a matrix as a table containing numbers.)
a. Print the matrix as a 4x4 table (expected result:

198

[4, 1, 3, 9]

[2, 1, 6, 5]

[4, 0, 3, 8]

[7, 2, 6, 21)

Multiply all the elements on the maindiagonal and print the result (expected result: 24). Note:
The main diagonal goes from top-left to bottom-right. In this example, the main diagonal
contains: 4,1,3,2.

c. Sum the matrix values vertically (expected result: [17, 4, 18, 24]).

PART 7

DICTIONARIES AND
OVERVIEW OF STRINGS

In the first three Chapters of this part, you will learn a new datatype called dictionary. In the last
Chapter, you will integrate your knowledge of strings with new methods and tricks. Let’s go!

24.

Dictionaries

Inventory at the English bookstore

You already know several data types: strings, lists, integers, floats, and Booleans. In this Chapter, you
will learn a new data type called dictionary. What are dictionaries and what can we do with them?

Let’s start from this example. Read the code below aloud and follow along with Notebook 24.

e You are the owner of an English bookstore, and these are some classics you sell:

1

2

classics = {"Austen":"Pride and Prejudice",

"Shelley":"Frankenstein",
"Joyce":"Ulyssessss"}
print (classics)

classics is assigned Austen:Pride
and Prejudice, Shelley:Frankenstein,
Joyce:Ulyssessss

print classics

e You are conducting an inventory, and you need to print authors and titles:

A W N -

e Then, you need to print authors and titles separately:

O 00 N O U1l B W N B

as dict_items

print (classics.items())

as a list of tuples

print (list(classics.items()))

authors as dict_items

print (classics.keys())

authors as a list

print (list(classics.keys()))

titles as dict_items

print (classics.values())

titles as a list

print (list(classics.values()))

as dict_items

print classics dot items

as a list of tuples

print list classics dot items

authors as dict_items

print classics dot keys
authors as a list

print list classics dot keys

titles as dict_items

print classics dot values
titles as a list

print list classics dot values

e You notice that the title of the last book is wrong, so you correct it:

1

2

3

print ("Wrong title: " + classics["Joyce"]) print Wrong title: concatenated
with classics at key Joyce

classics["Joyce"] = "Ulysses" classics at key Joyce is assigned
Ulysses

print ("Corrected title: " + classics["Joyce"]) print Corrected title: concatenated

with classics at key Joyce

e Then you add two new books that have just arrived: Gulliver’s Travels by Swift and Jane Eyre by

Bronte:

N oo AW

adding the first book (syntax 1)
classics["Swift"] = "Gulliver's travels"

print (classics)
adding the second book (syntax 2)

classics.update({"Bronte":"Jane Eyre"})
print (classics)

adding the first book (syntax 1)
classics at key Swift is assigned
Gulliver's travels

print classics

adding the second book (syntax 2)

classics dot update Bronte:Jane Eyre
print classics

201

Part 7. Dictionaries and overview of strings

e Finally, you remove the books by Austen and Joyce because you have just sold them:

deleting the first book (syntax 1)
del classics["Austen"]
print (classics)

deleting the second book (syntax 2)
classics.pop("Joyce")
print (classics)

deleting the first book (syntax 1)
del classics at key Austen
print classics

deleting the second book (syntax 2)
classics dot pop Joyce
print classics

To continue discovering dictionaries, solve the following exercise!

True or false?

1. Adictionary is a Python type enclosed in squared brackets

In a dictionary, items are in pairs and are separated by commas

Items are composed of a key and a value separated by an exclamation mark

2
3
4. .items(), .keys(),.values(), .update(),and .pop() aredictionary elements
5

To add an item to a dictionary, we can use either the keyword del or the method . pop ()

Computational thinking and syntax

Let’s discover dictionaries step-by-step. Let’s start by running the first cell.

classics = {"Austen":"Pride and Prejudice",
"Shelley":"Frankenstein",
"Joyce":"Ulyssessss"}

print (classics)

{'Austen': 'Pride and Prejudice', 'Shelley': 'Frankenstein', 'Joyce': 'Ulyssessss'}

T
T
T
T
T

classics is assigned Austen:Pride

and Prejudice, Shelley:Frankenstein,

Joyce:Ulyssessss

print classics

M M M M m

At line 1, there is a variable called classics to which we assign a sequence of items separated by
comma and enclosed within curly brackets {}. Each item (e.g., "Austen":"Pride and Prejudice")is
composed of akey ("Austen")and avalue ("Pride and Prejudice"), whichareseparatedbyacolon:.

Thus, we can define a dictionary as follows:

Adictionary is a sequence of key : value pairs separated by commas ,
and in between curly brackets {}

At line 2, we print the dictionary.

Let’s continue by running the second cell.

as dict_items

print (classics.items())

as a list of tuples

print (list(classics.items()))

as dict_items

print classics dot items

as a list of tuples

print list classics dot items

dict_items([('Austen', 'Pride and Prejudice'), ('Shelley', 'Frankenstein'),

('Joyce', 'Ulyssessss')])
[('Austen', 'Pride and Prejudice'), ('Shelley',

202

'Frankenstein'), ('Joyce', 'Ulyssessss')]

Chapter 24. Inventory at the English bookstore

To print the dictionary items, we use the method .items (), which extracts items from a dictionary
(line 2). Asyou can see in the printout, . items () returns a specific type called dict_items, which con-
tains a list whose elements are the items. We can ignore dict_items and print the contained list by
enclosing the method output into the built-in function 1ist () (line 4).

What if we want to extract all keys and all values separately? Let’s look at the following cell.

authors as dict_items authors as dict_items

print (classics.keys()) print classics dot keys

authors as a list authors as a list

print (list(classics.keys())) print list classics dot keys

titles as dict_items titles as dict_items

print (classics.values()) print classics dot values

titles as a list titles as a list

print (list(classics.values())) print list classics dot values

dict_keys(['Austen', 'Shelley', 'Joyce'l)

['Austen', 'Shelley', 'Joyce'l]

dict_values(['Pride and Prejudice', 'Frankenstein', 'Ulyssessss'])
['Pride and Prejudice', 'Frankenstein', 'Ulyssessss']

To extract dictionary keys, we use the method .keys() (line 2). Like .items(), .keys() returns its
datatype, called dict_keys (line 4). To extract the list of keys from the dict_keys, we can use the built-
in function 1ist (). Finally, to extract dictionary values, we use the method .values() (line 7), which

returns the list of values embedded in another datatype called dict_values. Once again, to extract
the list of values, we use 1ist () (line 9).

How do we extract a specific value and how do we change it? Let’s run cell 4.

print ("Wrong title: " + classics["Joyce"]) print Wrong title: concatenated
with classics at key Joyce

classics["Joyce"] = "Ulysses" classics at key Joyce is assigned
Ulysses

print ("Corrected title: " + classics["Joyce"]) print Corrected title: concatenated

with classics at key Joyce
Wrong title: Ulyssessss
Corrected title: Ulysses

To slice a value, the syntax is dictionary[key] (pronunciation: dictionary at key), as we can see in
classics["Joyce"] (line 1). Isn't it similar to the slicing syntax for lists? Let’s analyze some similar-
ities and differences between dictionaries and lists with the help of Figure 24.1. In a list, there are
elements (e.g., "burger", "salad", "coke")—which are the content of a list—and corresponding indices
(e.g.,0,1,2)—which define the position of each element. When we want to extract (or slice) an element,
we write the name of the list and the index of the element that we want in between squared brack-
ets (1ist[index]). Thus, todays_menu[@] gives us "burger". Similarly, in a dictionary, there are values
(e.g., "Pride and Prejudice", "Frankenstein", "Ulysses")—which are the content of a dictionary—
and keys (e.g., "Austen", "Shelley", " Joyce")—which define the position of each value. When we want
to access (or slice) a value, we indicate the name of the dictionary and the key corresponding to the
value that we want in between squared brackets. (dictionary[key]). Thus,classics["Austen"] gives
us "Pride and Prejudice". The main difference between lists and dictionaries lies in the way we de-

203

Part 7. Dictionaries and overview of strings

fine the position of an element or value. In lists, indices order elements from position @ to position
len(1list)-1,in aconsecutive and progressive way (we cannot skip a position!). On the other side, in
dictionaries, keys are in no specific order. Also, note that numbers cannot be used as keys!

List Indices

Slicing a list element

todays_menu[Q]

todays_menu = | "burger" "salad" "coke" Elements
Dictionary Keys Values Slicing a dictionary value
classics = "Austen" "Pride and Prejudice"
"Shelley" "Frankenstein" classics["Austen"]
"Joyce" "Ulysses"

As we cannot change indices but only elements in lists, we cannot change keys but only values in dic-
tionaries. As you might have noticed, in the item "Joyce":"Ulyssessss", we need to correct
"Ulyssessss" to "Ulysses". To do so, we overwrite the value "Ulyssessss" using the same syntax as
that used in slicing: classics["Joyce"] = "Ulysses" (line 2). Once more, this is the same syntax as
that used in lists (e.g., if we want to change "coke" to "water", we write todays_menu[2] = "water").

At the end of cell 4, we check the correction by printing astring ("Corrected title: ")concatenated
with the sliced new value (classics["Joyce"], whichis "Ulysses"; line 3).

How do we add a new key : value pair to an existing dictionary? There are two ways. Let’s learn them
incell 5!

adding the first book (syntax 1)
classics["Swift"] = "Gulliver's travels"

print (classics)

adding the second book (syntax 2)
classics.update({"Bronte":"Jane Eyre"})

adding the first book (syntax 1)

classics at key Swift is assigned
Gulliver's travels

print classics

adding the second book (syntax 2)
classics dot update Bronte:Jane Eyre

print (classics) print classics

{'Austen': 'Pride and Prejudice', 'Shelley': 'Frankenstein', 'Joyce': 'Ulysses',
'Swift': 'Gulliver's travels'}

{'Austen': 'Pride and Prejudice', 'Shelley': 'Frankenstein', 'Joyce': 'Ulysses',
'Swift': 'Gulliver's travels', 'Bronte': 'Jane Eyre'}

The first way is to use a slicing-like syntax, where we write: (1) dictionary name (classics); (2) new
key in between square brackets (["swift"]); (3) assignment symbol (=); and (4) new value
("Gulliver's travels") (line 2). The second way is to use the method .update(). As an argument,
we use a key : value pair in between curly brackets—that is, a dictionary! (line 6). To make sure that
we added items correctly, we print the dictionary after every modification (lines 3 and 7).

204

Chapter 24. Inventory at the English bookstore

What about deleting items? Let’s look into the last cell!

deleting the first book (syntax 1) deleting the first book (syntax 1)
del classics["Austen"] del classics at key Austen
print (classics) print classics
deleting the second book (syntax 2) deleting the second book (syntax 2)
classics.pop("Joyce") classics dot pop Joyce
print (classics) print classics
{'Shelley': 'Frankenstein', 'Joyce': 'Ulysses', 'Swift': 'Gulliver's travels',
'Bronte': 'Jane Eyre'}
{'Shelley': 'Frankenstein', 'Swift': 'Gulliver's travels', 'Bronte': 'Jane Eyre'}

Alsoin this case, there are two possibilities. The first way to delete an item is to use the keyword del,
followed by the dictionary name and the key enclosed within square brackets (classic["Austen"];
line 2). The second way is to use the method . pop (), with the key of the item to delete as an argument
(line 6). (Once more, this is similar to lists, where we use the method .pop() to delete an element
based on its position.) After each deletions, we print the dictionary to check for correctness (lines 3
and 7).

In this chapter, you have learned five dictionary methods. Summarize what they do by completing the
following table.

Dictionary method What it does

.items ()

.keys ()

.values()

.update()

-pop ()

e Adictionary is a Python type containing a sequence of key:value items separated by comma, and in
between curly brackets {}

e Thedictionary methods .items(), .keys(),and .values() are used to access items, keys, and values,
respectively

e To change a dictionary value, we overwrite the existing value using slicing

e To add a new item, we use a slicing-like syntax or the method .update()

e Todelete anitem, we use the keyword del or the method . pop()

205

Part 7. Dictionaries and overview of strings

Canwe have lists of dictionaries? Yes! When dealing with them, we just have to remember that
they are lists—and not dictionaries! Let’s see how they work. Find the code below in Notebook
24,

e Given the following list of dictionaries:

countries = [{"name": "China", "capital": "Beijing"} countries is

{"name": "France":"capital": "Paris"}] assigned name:China,
capital:Beijing,
name:France, capital:Paris

print (countries) print countries
[{'name': 'China', 'capital': 'Beijing'}, {'name': 'France', 'capital': 'Paris'}]
We create a list called countries, composed of two elements that are dictionaries—that is,
{"name":"China", "capital":"Beijing"}and {"name":"France", "capital":"Paris"}.Each
dictionary is composed of two items, where the keys are "name" and "capital" (linel). At line
2, we print countries.

e Add alist element:

countries.append({"name": "Brazil", countries dot append name:Brazil,
"capital": "Brasilia"}) capital:Brasilia
print (countries) print countries
[{'name': 'China', 'capital': 'Beijing'}, {'name': 'France', 'capital': 'Paris'},
{'name': 'Brazil', 'capital': 'Brasilia'}]

Because country is a list (and not a dictionary!), we use the method .append() (and not
.update!). As an argument, we write the new dictionary that we want to add as the third el-
ement of the list (i.e., {"name": "Brazil", "capital": "Brasilia"};line 1). Then, we print to
check for correctness (line 2).

e Slice the second element:

print (countries[1]) print countries in position 1
[{'name': 'France', 'capital': 'Paris'}

To slice the second element, we use the usual syntax, 1ist[index], and we obtain the desired
element (line 1).

e Print list elements using a for loop through elements and a for loop through indices:

for loop though elements for loop though elements
print ("-> for loop though elements") print -> for loop though elements
for country in countries: for country in countries
print (country) print country
for loop though indices for loop though indices
print ("-> for loop though indices") print -> for loop though indices
for i in range (len(countries)): for i in range len countries
print (countries[i]) print countries in position i

206

Chapter 24. Inventory at the English bookstore

-> for loop though elements

{'name': 'China', 'capital': 'Beijing'}
{'name': 'France', 'capital': 'Paris'}
{'name': 'Brazil', 'capital': 'Brasilia'}
-> for loop though indices

{'name': 'China', 'capital': 'Beijing'}
{'name': 'France', 'capital': 'Paris'}
{'name': 'Brazil', 'capital': 'Brasilia'}

In the for loop through elements (lines 3-4), country browses the list elements, which are dic-
tionaries. Thus, in the first loop, country is {"name": "China", "capital": "Beijing"}; in
the second loop, country is {"name": "France", "capital": "Paris"}; and in the third loop,
countryis {"name": "Brazil", "capital": "Brasilia"}.Intheforloop throughindices (lines
8-9), i iterates over the positions @, 1, and 2. Thus, country[i] browses the corresponding
elements—that is, the three dictionaries.

e Print the country names using a for loop through indices and a for loop through values:

for loop though elements for loop though elements
print ("-> for loop though elements") print -> for loop though elements
for country in countries: for country in countries
print (country["name"]) print country at key name
for loop though indices for loop though indices
print ("-> for loop though indices") print -> for loop though indices
for i in range (len(countries)): for i in range len countries
print (countries[i]["name"]) print countries in position i at key
name

-> for loop though elements
China

France

Brazil

-> for loop though indices
China

France

Brazil

To print the country names, we add a layer of slicing to the for loops that we implemented
in cell 4. As we mentioned above, in the first iteration of the for loop through elements
(lines 3-4), country is the dictionary {"name": "China", "capital": "Beijing"}. To extract
"China", we need to slice at the key "name"—similarly for the other iterations. Thus, we print
country["name"]. Inthe every iteration of the loop through elements (lines 8-9), country[i] is
one of the dictionaries. To extract the value corresponding to the key "name", we have to
write country[i] ["name"]—in other words: country[i] slices the current list element, and
["name] slices the dictionary at the key "name".

207

Part 7. Dictionaries and overview of strings

1. Student’sinformation. For the following scenario, create code similar to that presented in this chap-
ter. You work in a school Registrar’s Office, and here are the data of a student:

student = {"First name":"Bruce", "Last name":"Zhiang", "Sex":"Male", "Age":21,
"Course":"Literature", "Hobby":"Swimming"}
a. Print all the keys and their values.
b. Print all the keys.
c. Print all the values.
d. Bruce has recently changed his study course from Literature to Foreign Languages, so you up-
date his data.
e. There aretwo pieces of information missing: Address and Phone number, so you add them (use
two different syntaxes).
f. Finally, because of new privacy policies, you have to remove Sex and Hobby.

2. New T-shirts in the store. You are the owner of a clothing store, and you are getting ready for the
summer season. Your supplier has just provided a new set of trendy T-shirts.

a. Youcreate adictionary containing characteristics of the new T-shirts: they are red, of size M,
and have a round neck.

b. Then, you add more information: you received a total of 25 T-shirts and their logo’s color is
blue (use two different syntaxes).

¢. Summer is over, and your sales went well. You have sold 20 T-shirts, so you add a new item
containing the number of sold T-shirts.

d. Finally, you number the amount of T-shirts accordingly (calculate the quantity using the pre-
viously created item).

3. Colosseum. You are helping your neighbor’s kid with her history assignment. She needs to collect
data about the Colosseum. So, you go to the Wikipedia page (https://en.wikipedia.org/wik
i/Colosseum) and look for some information.

a. You start with some information in a table on the right side of Wikipedia’s page. Thus, you
create a dictionary containing location (Rome), construction years (70-80 AD), and type of
structure (amphitheater).

b. Thenyou readthetext,andinthe first paragraph, you learn that construction beganin 72 AD
and was completed in 80 AD. So, you remove the previous key about the year of construction.
Then, you add two separate keys, one for the starting year and one for the completion year
(using two different syntaxes).

c. How many years did it take to build the Colosseum?

d. How many years have passed since its construction started?

4. Ata pet clinic. You are a vet at a pet clinic, and here are some of the pets you are currently taking
care of:

pets = [{"name":"Toby", "animal type":"dog", "age":2},
{"name":"Kitty", "animal type":"cat", "age":5},
{"name":"Tiki", "animal type":"parrot", "age":1}]

208

https://en.wikipedia.org/wiki/Colosseum
https://en.wikipedia.org/wiki/Colosseum

Chapter 24. Inventory at the English bookstore

a. You have just received a new patient, a 4-year-old horse called Sugar, and you add it to the

list.

b. Now, you need to print all the animal names. Do it first with a for loop through elements and

then with a for loop through indices.

c. Finally, you add an item that states that all the animals are currently in the clinic (what

datatype do you use?).

5. Juices! You own a juice stand, and you need to keep track of juices and sales.

a.

Create alist of dictionaries containing 3 juice flavors (orange, lemon, and pomegranate), their
prices, and their colors.
For each juice, add a new item where the key is 'in shop, and the value is a Boolean.

c. You just received a new order (grape juice), and you add it to your list.

. What is the average price of ajuice?

209

25. Trip to Switzerland

Dictionaries with lists as values

In the previous Chapter, you learned about dictionaries and lists of dictionaries. In this Chapter, you
will learn to code with dictionaries whose values are lists. Follow along with Notebook 25!

e Your friend is planning a trip to Switzerland, and he has asked you for some tips. You start with an
empty dictionary to fill out:

tips = {} tips is assigned an empty dictionary

e He would like to visit some cities and taste typical food. Therefore, you add some recommenda-

tions:
tips["cities"] = ["Bexrn", "Lucern"] tips at key cities is assigned Bern,
Lucern
tips["food"] = ["chocolate", "raclette"] tips at key food is assigned chocolate,
raclette
print (tips) print tips

e Because his stay is four days, you add two more cities and two more dishes:

tips["cities"].append("Lugano") tips at key cities dot append Lugano

print (tips) print tips

tips["cities"] += ["Geneva"] tips at key cities is incremented by Geneva
print (tips) print tips

tips.get("food").append("onion tarte") tips dot get food dot append onion tarte
print (tips) print tips

tips["food"] = tips.get("food") + ["fondue"] tips at key food is assigned tips dot
get food concatenated with fondue
print (tips) print tips
e You want to check that the dictionary is correct, so you print all items one by one:

for k,v in tips.items(): for k v in tips dot items
print (k,v) print k v

e Finally, you improve the print for improved readability:

for k,v in tips.items(): for k v in tips dot items
print ("{:>6}: {}".format(k,v)) print symbols dot format k v

210

Chapter 25. Trip to Switzerland

1. There are at list 3 ways to add an element to a list that is a dictionary’s value. T F
2. .get()isalist method, and .append() is a dictionary method T F
3. The built-in function print () can take comma-separated variables as an argument T F
Let’s start analyzing the code above by running the first cell:
tips = {} tips is assigned an empty dictionary
We initialize an empty list by assigning curly brackets to the variable tips (line 1).
Let’s run the second cell:
tips["cities"] = ["Bern", "Lucern"] tips at key cities is assigned Bern,
Lucern
tips["food"] = ["chocolate", "raclette"] tips at key food is assigned chocolate,
raclette
print (tips) print tips
{'cities': ['Bern', 'Lucern'], 'food': ['chocolate', 'raclette']l}

We fill out the empty dictionary tips with two new items. The first item has the string "cities" as
a key and the list ["Bern", "Lucern"] as avalue (line 1). The second item has the string "food" as a
key and the list ["chocolate", "raclette"] asavalue (line 2). To check for correctness, we print the
dictionary (line 3).

We want to add new elements to the two lists that are tips’s values. How do we go about doing so?
Let’s see four possibilities, one in each of the next four cells. In the first two cells we will add a city,
and in the last two cells we will add two types of food. In all cases, the command will be composed of
two steps: (1) extracting the value (i.e., the list) corresponding to a certain key, and (2) adding the
new element to the list.

Let’s add the first city, which is "Lugano":

tips["cities"].append("Lugano") tips at key cities dot append Lugano
print (tips) print tips
{'cities': ['Bern', 'Lucern', 'Lugano'], 'food': ['chocolate', 'raclette']}
First, we slice the list from the dictionary—tips["cities"] is ["Bern", "Lucern"]. Then, we add the

new elements to the list using . append() (line 1). Finally, we print to check for correctness (line 2).

Let’s add the second city, that is, "Geneva":

tips["cities"] += ["Geneva"] tips at key cities is incremented by Geneva
print (tips) print tips
{'cities': ['Bern', 'Lucern', 'Lugano', 'Geneva'], 'food': ['chocolate', 'raclette']}

Like above, we slice the list from the dictionary—tips["cities"] is now ["Bern", "Lucern",
"Lugano"]. Then, we use list concatenation as an alternative to the method .append(). As you might
remember, when using list concatenation we must reassign the changed value to the variable. In this
example, we combine assignment and concatenation with the += operator—the extended command

211

Part 7. Dictionaries and overview of strings

istips["cities"] = tips["cities"] + ["Geneva"] (line 1). Atline 2, we print tips to check the dic-
tionary’s content.

Let’s now add the first type of food, which is "onion tarte":

tips.get("food").append("onion tarte") tips dot get food dot append onion tarte
print (tips) print tips
{'cities': ['Bern', 'Lucern', 'Lugano', 'Geneva'], 'food': ['chocolate',6 'raclette',

'onion tarte']}

Asanalternative toslicing, we can extract avalue using the dictionary method . get (), which takes the
corresponding key as an argument. In our case, .get("food") returns the list ["chocolate",
"raclette"]. Then,we add the new element ("onion tarte")usingthe list method .append() (line 1).
As you might have noticed, we created a “chain” of methods, combining a dictionary method (. get())
that returns alist, with a list method (. append()) that modifies the list. At the end of the cell, we print
tips to check for correctness (line 2).

Finally, let’s add the second type of food, that is, " fondue":

tips["food"] = tips.get("food") + ["fondue"] tips at key food is assigned tips dot
get food concatenated with fondue

print (tips) print tips
{'cities': ['Bexn', 'Lucern', 'Lugano', 'Geneva'], 'food': ['chocolate',6 'raclette',
'onion tarte', 'fondue']}

Like above, we use the method . get () to extract the value corresponding to "food", which is the list
["chocolate", "raclette", "onion tarte"]. Then, we use concatenation to add the last element
"fondue". Note that in this case we cannot use the compact operator += because we cannot reassign
to tips.get("food"). We can only reassign the outcome to tips["food"] (line 1). Finally, we print
the dictionary to check for correctness (line 2).

In summary, the four ways that we have to add an element to a list that is a value of a dictionary are a
combination of slicing or dictionary method .get () to slice the value from the dictionary, and of list
method . append() or concatenation to add a new element to the list. When coding, you can choose
to use only one way or to alternate several ways. But it is important to know all ways to understand
code written by somebody else.

Inthe examples above, you might have noticed that reading the print of a dictionary can be hard when
several keys and values are displayed in one long line. Let’s learn how to print a key:value pair per line
to improve readability:

for k,v in tips.items(): for k v in tips dot items
print (k,v) print k v
cities ['Bern', 'Lucern', 'Lugano', 'Geneva']
food ['chocolate', 'raclette', 'onion tarte', 'fondue']

We use a for loop through values with two variables k—for the keys—and v—for the values. The two
names could be different, but conventionally we use the initial of the variable they represent. k and
v simultaneously browse the dictionary items returned by the . items () method (line 1). At eachitera-
tion, we print the current key k with the corresponding value v (line 2). Note that k and v are separated
by comma. This is independent from the fact that we are printing the items of a dictionary. The built-

212

Chapter 25. Trip to Switzerland

in function print () can take variables of different types separated by comma as an argument. For
example, we can use print ("The Swiss cities in the list are", 4) as an alternative to print

("The Swiss cities in the list are" + str(4)).

What if we want to print only the keys or only the values? Let’s have a look!

for k in tips.keys(): for k in tips dot keys
print (k) print k
cities
food

Inthe for loop header, we use only the variable k in combination with the method . keys () (line 1), and
we print k only (line 2). Similarly for the values:

for v in tips.values(): for v in tips dot values
print (v) print v
['Bern', 'Lucern', 'Lugano', 'Geneva'l]
['chocolate', 'raclette', 'onion tarte', 'fondue']

In the for loop header, we use only the variable v in combination with the method .values() (line 1),
and we print v only (line 2).

Finally, let’s have a look at one more elegant way to print dictionaries:

for k,v in tips.items(): for k v in tips dot items
print ("{:>7}: {}".format(k,v)) print symbols dot format k v
cities: ['Bern', 'Lucern', 'Lugano', 'Geneva']
food: ['chocolate', 'raclette', 'onion tarte',6 'fondue']

The for loop header is the same as in cell 7: k and v iteratively browse keys and values returned by
.items () (line 1). The argument of the built-in function print () at line 2 looks a bit more complicated.
Let’s disentangle it! Thereis a string—constituted by red characters in between quotes—followed by
the string method . format (), which takes two arguments: k and v. The symbols in the string con-
tain two pairs of curly brackets, one with the symbols {:>6}, and one empty {}. These pairs of curly
brackets have nothing to do with dictionaries. They are placeholders for the arguments of the string
method . format (). The first argument k will be printed at the place of {:>6} and the second argument
v at the place of {}. What is the meaning of {:>6}? It is composed of three parts: (1) the symbol : in-
dicates to print the whole text; (2) the symbol > specifies that the text is aligned to the right; and (3)
the symbol 6 indicates that the printing space is made of 6 characters—because cities has 6 char-
acters. What about the colon between the two placeholders? It is simply the colon printed between
each key and the corresponding value—e.g., cities: ['Bern' ... Finally,whatisthe function of the
string method . format()? It formats the arguments and inserts them into the placeholders.

213

Part 7. Dictionaries and overview of strings

Insert string, list, and dictionary methods in the right column:

.keys (), .upper(), .insexrt(), .append(), .values(), .copy(), .lower(), .pop(), .count(),
.format(), .capitalize(), .index(), .extend(), .get(), .items(), .title(), .remove(), .clear(),

.update(), .pop(), .reverse(), .sort()

Dictionary methods String methods List methods

To initialize a dictionary, we use a pair of empty curly brackets {}

The dictionary method . get () takes a key as an argument and returns the corresponding value

e There are at least 4 different ways to access and modify dictionary values that are lists, by combin-
ing:

m Slicingor .get() to extract alist from a dictionary

m List operations (such as concatenation) or methods (e.g., . append()) to modify a list

We can use the for loop through values to browse items, keys, and values of a dictionary

The built-in function print () can take several variables as an argument:

m Separated by comma, or

m Using placeholders {} in combination with the string method . format ()

214

Chapter 25. Trip to Switzerland

When coding with dictionaries, key errors can occur. Let’s see what it means and how to fix it!
Let’s consider the same example as in this Chapter, and let’s slice the value corresponding to
the key "cities":

tips ["city"] tips at key city

KeyError Traceback (most recent call last)

Cell In[3], line 1

————> 1 tips ["city"]

KeyExrror: 'city'
As you know, to understand an error, we start from the last line. It says KeyError: 'city’',
which means that we made an error on the key 'city' —it should be 'cities'! To know where
the erroris, we look for the green arrow, which shows that we need to correct at line 1. To fix it,
we justreplace "city",with "cities" inthe code. Note that we can get the same error message

when a key does not exist.

1. For each of the following scenarios, create code similar to that presented in this chapter.

a. Olympic Games. You are a sports journalist, and your task is to collect a dictionary of summer
and winter sports performed at the Olympic Games.
a. Create an empty dictionary that you will fill out with some Olympic Games.
b. Addtwo summer sports and two winter sports.
c. Thelistsinthe valueslook a bit short. Add two more summer sports and two more winter
sports. Add each element with a different method.
d. Print all items one by one in two different ways.
e. Finally, print only the sports lists.

b. Teaching Python. You are teaching Python to some students, and you want to list their names
according to the course they are attending.

a. Create an empty dictionary called students.

b. Sofar, there are two students for the basic course and three students for the advanced
course. Add their names to the dictionary.

c. You have just received four new registrations: three for the basic course and one for
the advanced course. So, you add the new students’ names to the dictionary using four
different ways.

d. After checking the background of the students attending the basic course, you realize
that one of them should be in the advanced course. So you move the student from the
basic to the advanced course.

e. To check for correctness, you print all items one by one in two different ways.

f. Finally, you print the course names and the students’ names separately.

215

Part 7. Dictionaries and overview of strings

2. Furniture store. You are the manager of a furniture store. Here are the pieces of furniture in stor-
age:
store = {"furniture": ["chair", "table", "sofa"],
"amount": [24, 7, 6],
"price" : [200, 500, 1200]}
a. A new customer comes in and buys 4 chairs. Update the dictionary using an arithmetic oper-
ation.
b. After afew days, you receive new pieces of furniture: 9 carpets worth 150 each and 4 lamps
worth 180 each. So, you add them to the dictionary (use different syntaxes).
c. The owner of arestaurant comes to your shop and buys all the tables. Update the dictionary
(use at least 2 different syntaxes).
d. To better visualize what is left, you print the dictionary aligning the keys to the right and the
values to the left.
e. What is the total price of the furniture in storage?

3. Shifting list elements! Given the following dictionary:

dictionary = {"numbers":[2,3,4,5,6,7,8,9,10]1}

a. Add a key:value pair where the key is the string even and the value is a list containing True for
even numbers and False for odd numbers
(Expected result:
{"numbers": [2, 3, 4, 5, 6, 7, 8, 9, 10],

"even": [True, False, True, False, True, False, True, False, Truel})

b. Subtract 1 from each number

c. How do you modify the Boolean list so that it corresponds to the new list of numbers? Hint:
Just shift it!

4. Numbers in a triangle! Ask a player for an integer. Then, print a triangle where each row contains
a consecutive integer between 1 and the number entered by the player. Additionally, each row
should include a list containing the number from that row repeated the same number of times as
the number itself. To do that, use a dictionary and allow the player to play as long as they want!
Example input: 5
Expected output:

1 [1]

2 [2, 2]

3 [3, 3, 3]

4 [4, 4, 4, 4]
5[5, 5,5, 5, 5]

216

26.

What are dictionaries for?

Counting, compressing, and sorting

In this Chapter, the final one dedicated to dictionaries, you will learn some typical situations where
using dictionaries is very convenient. Try to solve each example by yourself before looking into the
solution. You can find the code in Notebook 26!

1. Counting elements

Dictionaries are extremely convenient when we need to save occurrences, that is, the number of
times something happens. Let’s understand what this means with the following example.

e Given the following string:

greetings = "hello! how are you?" greetings is assigned hello! how are you?

e Create adictionary where the keys are the letters of the alphabet found in the string, and the cor-
responding values are the number of times each letter is present. Write the code in two ways: (1)
using if/else; and (2) using .get()

1. Usingif/else:

letter_counter = {} letter counter is assigned an empty

dictionary

- O +H O =T

N <K H o =

R R R R R WRE W NN

for letter in greetings:

if letter not in letter_counter.keys():

letter_counter[letter] = 1

else:
letter_counter[letter] += 1

for k,v in letter_counter.items():
print (k,v)

for letter in greetings

if letter not in letter counter dot keys
letter counter at key letter is assigned
one

else

letter counter at key letter is
incremented by one

for k v in letter counter dot items
print k v

We start with an empty dictionary called 1letter_counter (line 1). We browse each character of the
string greetings using a for loop through elements (line 3)—the for loop through elements works the

217

Part 7. Dictionaries and overview of strings

same way for lists and strings. Then, for each character, we check if it is a key of letter_counter and
we act accordingly (lines 4-7). More precisely, we first evaluate if the current character is not already
a key of letter_counter by checking if letter, which is a string, is not in the output of
letter_counter.keys() (line 4). Note that we can directly check the membership of letter in
dict_keys (returned by .keys()) without having to transform into a list—in other words, we do not
need towrite list (letter_counter.keys()). If the condition at line 4 is satisfied, then we add a new
key:value pair, where the key is letter, and the value is 1 (line 5). On the other hand, if the current
characteris already akeyin letter_counter (else atline 6), then we add 1 to the already existing cor-
responding value (line7)—the explicit command is letter_counter[letter] =
letter_counter[letter] + 1. To better understand this, let’s look at what happens at the third and
fourth loops. At the third loop, 1letter is 1 (hello). Because 1 is not already a key in letter_counter
(line 4), we create a new dictionary item, where 1 is the key and 1 is the value (line 5). At the fourth
loop, letter is 1 again (hello). Because this time 1 is already a key (line 6), we slice the value at
letter_counter[1], which is 1, add 1, and we reassign it into the dictionary (line 7). We terminate
the task by printing each letter and its corresponding amount with a for loop through keys and values
(lines 9-10).

2. Using .get():

letter_counter = {} letter counter is assigned an empty
dictionary
for letter in greetings: for letter in greetings
letter_counter[letter] = letter counter at key letter is assigned
letter_counter.get(letter, 0) + 1 letter counter dot get letter zero plus
one
for k,v in letter_counter.items(): for k v in letter counter dot items
print (k,v) print k v
h 2
e 2
12
o3
11
3
w1l
al
ril
y 1
ul
?21

Similarly to cell 2, we start with the empty dictionary letter_counter (line 1), continue with a for loop
through elements (line 3), and conclude by printing the obtained dictionary to check the correctness
of the results (lines 6-7). As opposed to what we saw above, the four lines of code containing the
if/else construct (lines 4-7, cell 2) are replaced by one single line containing the following: an assign-
ment, the method .get(),and asum (line 4). The method .get () contains two arguments, letter and
0, and it acts as follows: if the key does not exist, .get() returns the second argument; if the key
already exists, .get() returns the corresponding value. Thus, this is what happens at line 4:

218

Chapter 26.

Counting, compressing, and sorting

e Ifthecurrentkeyletter doesnotexist yet—asinthethird loopwhere letteristhefirstlinhello—
then .get(letter, @) returns @. Then, we add 1 to @, and we create a new key:value pair in the

dictionary by assigning the result to letter_counter[letter].

e Ifthecurrentkeyletteralreadyexists—asinthefourthloopwhereletteristhesecondlinhello—
then .get(letter, @) returns the value corresponding to letter—that is, 1. We add 1 to the re-
turned 1 to increment the count, and we update the existing key:value pair in the dictionary by

reassigning.

Why do we use 0 as the second argument? Since in this line of code we need to have +1 to update the
counts of the already existing letters, the only way we have to obtain 1 for a new letter is to sum to o.

Dictionaries are extremely convenient for compressing redundant information: for example, to store
signals acquired by sensors over along time. Think of a sensor used to detect vibrations in the case of
an earthquake. Most of the time, the sensor just records zeros as there is no seismic event. However,

when an earthquake occurs, the sensor registers a spike (or a group of spikes) whose magnitude is
different from zero. Saving days and days of zeros in a list would require a significant amount of com-
puter memory, and it would be somewhat pointless because the signal information is in the spikes. To
reduce the amount of storage memory while keeping the information, we can use a dictionary. How

would you do it? And how would you then go back from the dictionary to the original list?

e Given the following list:

sparse_vector = [0, 0, 0, 1, @, 7, 0, O,
4, 0, 0, 0, 8, 0, 0, 0, 6, 0, 0, 0, 0, O,
e, 0, 9, 0, 0]

sparse vector is assigned a list of
numbers

We start with a list called sparse_vector, containing many zeros and a few integers spread among

the zeros. (Note: in linear algebra, sparse vectors are vectors where the majority of components are

zeros.)

e Convertitinto adictionary:

create the dictionary
sparse_dict = {}

for i in range (len(sparse_vector)):
if sparse_vector[i] != 0:

sparse_dict[i] = sparse_vector[i]

save the list length
sparse_dict["length"] = len(sparse_vector)

print
for k,v in sparse_dict.items():
print (k,v)

create the dictionary

sparse dict is assigned an empty
dictionary

for i in range len of sparse vector

if sparse vector in position i is not
equal to zero

sparse dict at key i is assigned sparse
vector in position i

save the list length
sparse dict at key length is assigned
len of sparse_vector

print

for k v in sparse dict dot items
print k v

219

Part 7. Dictionaries and overview of strings

31

57

8 4

12 8

16 6

24 9
length 27

We start with an empty dictionary called sparse_dict (line 2). Then, we browse the list
sparse_vector with a for loop through indices (line 3) to select and save the information—that is, the
nonzero integers and their positions in the list. If the current list element sparse_vector[i] is not
equal to zero (line 4), then we add a new item to the dictionary sparse_dict, where the key is the
position of the element in the list—that is, [i]—and the value is the current nonzero element—that
is, sparse_vector[i] (line 5). After the loop, we save an item where the key is the string "length",
and the value is the actual length of the list (1en(sparse_vector); line 8). This key: value pair will be
useful to convert the dictionary back into a list, like we will see in the next cell. Finally, we print each
dictionary item with a for loop through elements to check the correctness of our code (lines 11-12).

e How do we get back to the sparse vector?

create a list of zeros create a list of zeros

sparse_vector_back = [0] * sparse vector back is assigned @ times
sparse_dict["length"] sparse dict at key length

add nonzero values add nonzero values

for k,v in sparse_dict.items(): for k v in sparse dict dot items

if k != "length": if k is not equal to length
sparse_vector_back [k] = v sparse vector back at key k is assigned v
print print
print (sparse_vector_back) print sparse vector back

(¢, 0, 0,1, 0,7, 0,0, 4,0,0 0,8 0,0 06,0, 00,0, 0 00, 9, 0, 0]

We start by creating a list of zeros called sparse_vector_back of the same length as the original list
sparse_vector. To create sparse_vector_back, we use list replication, where we replicate a list con-
tainingazero ([@]) for anumber of times equal to the length of the original list—whose value we saved
in correspondence with the key "length". Then, we overwrite the nonzero values into the list. With
a for loop, we browse each key : value pair in the dictionary (line 5). If the current key is not equal to
"length" (line 6)—we need to make sure that we do not access that item—then we assign the current
value v, which represents the magnitude of a spike, to the list sparse_vector_back in position k (line
7). Finally, we print the list to check for correctness (line 10).

In this last example about dictionaries and their applications, we will learn how to sort dictionaries
according to their keys or values. Consider a simplified city registry containing citizens’ names as
keys and their ages as values. Officers might need to sort the registry according to names to send out
letters, or according to age to distinguish the kids from the elderly. Let’s see how to do it!

220

Chapter 26. Counting, compressing, and sorting

e Given the following dictionary:

registry = {"Shaili":4, "Chris":90, registry is assigned Shaili:4, Chris:90,
"Maria":70} Maria:70

e Sort the dictionary items according to their keys:

create a new dictionary create a new dictionary

sorted_registry = {} sorted registry is assigned empty
dictionary

sort the keys sort the keys

sorted_keys = list(registry.keys()) sorted keys is assigned list registry dot
keys

sorted_keys.sort() sorted keys dot sort

fill out the new dictionary fill out the new dictionary

for k in sorted_keys: for k in sorted keys

sorted_registry[k] = registry[k] sorted registry at key k is assigned

registry at key k

print (sorted_registry) print sorted registry
{'Chris': 9@, 'Maria': 70, 'Shaili': 4}

We start with an empty dictionary called sorted_registry that will have the same content as
registry, but the items will be sorted according to the keys (line 2). To sort the keys, we execute two
steps. First, we extract the keys using the dictionary method . keys () and then transform its output—
whose type is dict_keys—into a list using the built-in function 1ist() (line 5). Then, we sort the ob-
tained keys—['Shaili', 'Chris', 'Maria']—in alphabetical order using the list method .sort(),
obtaining ['Chris', 'Maria', 'Shaili'] (line6). Finally,webrowse the list of sorted keys usingafor
loop through elements (line 9) to fill out sorted_registry. For each key k, we extract the correspond-
ing value in registry (registry[k]) and assign it to sorted_registry at key k (sorted_registry[k]),
thus creating a new dictionary item. For example, in the first loop, k is "Chris", so extract 90 from
registry (registry[k]),and we assignitto "Chris" in sorted_registry (sorted_registry[k]). Then,
we do the same for the keys "Maria" and '"Shaili". Finally, we print sorted_registry[k] to check for
correctness (line 12).

e Sort the dictionary items according to their values:

create a new dictionary create a new dictionary

sorted_registry = {} sorted registry is assigned empty dictionary

sort keys according to values sort keys according to values

sorted_keys = sorted(registry, sorted keys is assigned sorted registry key
key = registry.get) is assigned registry dot get

fill out the new dictionary fill out the new dictionary

for k in sorted_keys: for k in sorted keys

sorted_registry[k] = registry[k] sorted registry at key k is assigned

registry at key k

print (sorted_registry) print sorted registry
{'Shaili': 4, 'Maria': 70, 'Chris': 90}

221

Part 7. Dictionaries and overview of strings

To sort a dictionary according to values, we use the same procedure as above: we create an empty
dictionary (line 2); we sort the keys (line 5); we fill out the empty dictionary using a for loop through
elements that browses the sorted keys (line 8) and adds sorted key : value pairs to the dictionary (line
9); and we print to check for correctness (line 11). What is different is the way we sort the keys, that
is, according to dictionary values. To do that, we use the built-in function sorted() (line 5), which
takes two arguments: (1) the dictionary whose keys we want to sort and (2) the dictionary combined
with the method .get (note the absence of round brackets). Note that sorted() can be used also
with lists and strings—mainly with only one argument—as an alternative to the method .sort(). The
differenceis that sorted() returns avariable (e.g., sorted_list = sorted(original_list)), whereas
.sort () directly acts on the list (e.g., original_list.sort()).

e Some typical examples of dictionary use include counting elements, compressing information, and
sorting a dictionary according to keys and values

e The dictionary method .get(key,initial value) is used to initialize a key:value pair in a dictio-
nary and fill it up during a for loop

e The built-in function sorted() is used to sort a dictionary; note that it creates a new variable

Dictionaries have 11 methods. In the past three chapters, we have learned six dictionary meth-

ods: .items(), .keys(), .values(), .get(), .update(), and .pop(). Here are the remaining 5

methods:

e .clear(): Deletes all the elements from the dictionary (makes the dictionary empty)

e .copy(): Provides a copy of the dictionary and thus allows separate modification

e .fromkeys(): Creates a dictionary with the keys specified in a list and a default value

e .popitem(): Removes the last inserted key : value pair

e .setdefault(): Returnsthe value of the specified key. If the key does not exist, thenitinserts
the new key : value pair into the dictionary

In a notebook, write an example for each of the new dictionary methods introduced in the In more
depth section above: .clear(), .copy(), .fromkeys(), .popitem(), and .setdefault(). If you want,
you can start from this dictionary:

fruit_colors = {"strawberry":"red", "banana":"yellow", "kiwi":"green"}

222

Chapter 26. Counting, compressing, and sorting

1. Fromdictionary to list of lists and back! Given the following dictionary:

cars = {"sports car":4, "convertible": 5, "limousine": 2}
a. Transform the dictionary into a list of lists
(Expected result:[['sports car', 4], ['convertible', 5], ['limousine', 2]1])
b. Transform the list of lists back to the original dictionary

2. Multiplication table game! You are a programmer at an educational game company. Your task is
to create a game where a kid enters a number, and you display the corresponding multiplication
table. To implement the game, create a dictionary where the keys are numbers from 1 to 10 and
the values are the results of the multiplications between the key and the value entered by the kid.
Use a for loop and allow the kid to play as long as they want.

(Example input: 4
Example output:

1x4=4
2 x4=238

3 x4=12
4 x 4 =16
5x 4 =20
6 x 4 =24
7 x 4 =28
8 x 4 =32
9 x 4 =36
10 x 4 = 40)

3. Spices and herbs. You work in a grocery store selling spices and herbs. Here are the spices and
herbs in the shop:

spices_herbs = ["basil", "cinnamon", "licorice", "mint", "rosemary", "thyme",
"cardamom", "turmeric", "cilantro", "oregano", "pepper", "chili", "dill",
"cayenne pepper", "ginger", "garlic", "marjoram", "nutmeg", "sage", "saffron",
"star anise", "bay leaves"]

a. You have to change the labels on the containers and give them a more modern look. The
length of the new labels is proportional to the length of the word written on it. Create a dic-
tionary where keys are word lengths and values are lists of words with that length

b. Youneedtoknowhow many labelsyou have to cut for each length. Create another dictionary
where keys are word lengths in an ascending order, and values are the number of labels you
have to cut for each length

c. What is the most common label? How many letters does it correspond to? Compute it!

223

In this Chapter, we will summarize the characteristics of strings, similar to what we did for lists in
Chapter 21. You'll notice a lot of commonalities between the two data types, but also some important
differences. Follow along with Notebook 27. As usual, try to solve the tasks before looking into the
solution. Let’s start!

String slicing works like list slicing (see Chapter 12). Take a look at the two examples below as a re-
fresher.

e Given the following string:
two_ways = "rsecwyadrkd" two ways is assigned rsecwyadrkd
We start with a string of characters (line 1). You might remember that in coding we use the word

characters instead of letters.

e Extract every second character:

print (two_ways[:,:,2]) print two ways from the beginning to the
end with a step of two
reward
The start is the beginning of the string, so we can omit it. Similarly, the stop is the end of the string, so
we can omit it too. The step is 2. The outcome is reward (line 1).

e Extract every second character and invert the outcome:
print (two_waysl[:,:,-2]) print two ways from the beginning to the

end with a step of minus two
drawer

Opposite to the above, the start is the end of the string, and the stop is the beginning of the string;
therefore, we can omit both. Since we are going backwards, the step is -2 (note the minus symbol). In
this case, the outcome is drawer. (Did you know that the reverse of reward is drawer?)

There are two “arithmetic” operations on strings: concatenation and replication. They follow the
same principles as lists do. Let’s quickly look at a refresher on how they work.

224

Chapter 27. Overview of strings

e Concatenate two strings:

first = "sun" first is assigned sun
second = "screen" second is assigned screen
combo = first + second combo is assigned first concatenated with second
print (combo) print combo
sunscreen

Given two separate strings—"sun" (line 1) and "screen" (line 2)—we can merge them using the con-
catenation symbol + to obtain "sunscreen" (line 3). We print the result to check for correctness (line
4).

e Replicate a string 5 times:

one_smile = ":-)" one smile is assigned smiley face
five_smiles = one_smile * 5 five smiles is assigned one smile replicated by five
print (five_smiles) print five smiles

=)i=)i=)i=)i-)
Given astring containing some characters—for example, asmiley face (line 1)—we replicate it by using

the replication symbol * and the number of times we want to replicate (5 in this case; line 2). Finally,
we print the obtained five smileys (line 3).

Substrings are parts of strings. In many of the following examples, we will use substrings composed of
only one character for simplicity. However, the rules in the examples are also valid so for substrings
composed of multiple characters. Let’s learn how to replace or remove substrings in a string based
on a substring position or content. Let’s start by changing a substring based on its position.

e Given the following string:

favorites = "I like cooking, my family, favorites is assigned I like cooking, my
and my friends" family, and my friends

We start with a string containing a sentence (line 1).

e Replace the character at position @ with U using slicing and assignment. What happens?

favorites [0] = "U" favorites in position zero is
assigned U

TypeError Traceback (most recent call last)

<ipython-input-13-ef@756c89224> in

————> 1 favorites [0] = "U"

TypeError: 'str' object does not support item assignment
Why do we get the type error 'str' object does not support item assignment? Because in
Python strings are immutable, that is, they cannot be changed by assignment. To change a string—or
parts of it—we have to use slicing combined with concatenation or string methods. Let’s have a look.

225

Part 7. Dictionaries and overview of strings

e Redo the same task using slicing and concatenation:

from_position_one = favorites [1:] from position one is assigned favorites
from one to the end of the string

favorites = "U" + from_position_one favorites is assigned U concatenated with
from position one

print (favorites) print favorites

U like cooking, my family, and my friends

The first way to change a substring is to use a combination of slicing and concatenation. We slice
the part of the string that we want to keep, that is, from the character in position 1—the space after
I—to the end, and we save it in the variable from_position_one (line 1). Then, we concatenate the
desired character in position @—that is, "U" —to the string from_position_one (line 2). Obviously, we
can compress the two lines of code into one line: favorites = "U" + favorites[1:]—heretheyare
separated for clarity of explanation. Finally, we print out the resulting string (line 3).

e Redo the same task using the string method .split():

favorites = "I like cooking, my family, and favorites is assigned I like cooking,

my friends" my family, and my friends

parts = favorites.split("I") parts is assigned favorites dot split
I

print (parts) print parts

favorites = "U" + parts[1] favorites is assigned U concatenated
with parts in position one

print (favorites) print favorites

['", ' like cooking, my family, and my friends']

[U like cooking, my family, and my friends]

The second way to change a substring is to combine the method .split() and concatenation. We
start with the string to modify (line 1)—we need to rewrite the original string because we changed it
in the previous cell. Then, we apply the method .split(), whose argument is the substring around
which we want to split the original string—in our case, the character "1"—and we assign the out-
put to the variable parts (line 3). As we can see from the print of parts (line 4), .split() returns a
list with two elements. The first element contains the characters that are before the argument "1"—
that is, an empty string because "1" is in position @. The second element represents the characters
that are after the argument "1"—thatis, ' 1like cooking, my family, and my friends' (notice the
spaceinthefirst position). As another example, if we want to split the string at the word "cooking", we
can write: parts = favorites.split("cooking"), and we obtain ['I like ', ', my family, and
my friends']. We conclude the string modification by concatenating "u" with the second element
in parts (line 6), and we print the final result (line 7).

226

Chapter 27. Overview of strings

What if we want to modify a substring based on its content instead of position? Let’s have a look!

e Replace the commas with semicolons using the string method: . replace():

favorites = "I like cooking, my family, favorites is assigned I like cooking, my

and my friends" family, and my friends

favorites = favorites.replace(",", ";") favorites is assigned favorites dot
replace comma semicolon

print (favorites) print favorites

[T 1ike cooking; my family; and my friends]

We start by rewriting the original string (line 1). Then, we use the method .replace(), which takes
two arguments: the substring that we want to remove, and the substring that we want to add. Note
that we reassign the outcome to the original string favorites to make the change effective (line 2).
Finally, we print to check for correctness (line 3).

What about removing substrings? If we want to remove based on position, we can just use acombina-
tion of slicing (or .split()) and concatenation. For example: if we want to remove cooking from the
string favorites, we can write: favorites[:6] + favorites[15:],and we get: I like my family,
and my friends. On the other side, to remove a substring based on its content, we need to use a
trick. Let’s have a look at it!

e Remove the commas:

favorites = "I like cooking, my family, favorites is assigned I like cooking, my

and my friends" family, and my friends

favorites = favorites.replace(",", "") favorites is assigned favorites dot
replace comma empty string

print (favorites) print favorites

[I like cooking my family and my friends]

After rewriting the original string (line 1), we use the method .replace(), where the first argument
is a comma—the substring we want to remove—and the second argument is an empty string. With
this trick, we remove the unwanted substring and we do not substitute it with any new substring
(line 2). Finally, we print favorites as a check (line 3). Fun parallel: How does the meaning of the
sentence change when you remove the comma?

How do we find a substring in a string? Let’s see below!

e Given the following string:
us = "we are" us is assigned "we are"

We start with a short string named us (line 1).

e Find the positions of the character e using the method . find():

positions = us.find("e") positions is assigned us dot find e
print (positions) print positions

227

Part 7. Dictionaries and overview of strings

We use the method . find() that takes the substring that we want to find as an argument—in our
case, "e". We assign the outcome to the variable positions (line 1) and we print it (line 2). Anything
unexpected in the outcome? We get only the position 1, whereasinus, "e" is at positions 1 and 5. This
happens because the method . find() returns only the position of the first substring that it finds.
How can we find the position of all substrings "e"? Try to answer this question before looking into
the solution below!

e Find the positions of the character e using an alternative way:

initializing positions initializing positions
positions = [] positions is assigned empty list
find all positions of e find all positions of e
for i in range (len(us)): for i in range len of us
if us[i] == "e": if us in position i is equal to e
positions.append(1i) positions dot append i
print (positions) print positions
[1, 5]

We initialize the variable positions—which will contain the positions of all the substrings e—as an
empty list (line 2). Then, we create a for loop through indices to browse all the positions in us (line
5). If the character at the current position i is equal to "e" (line 6), then we append i to the list
positions (line 7). Finally, we print positions to check for correctness (line 8).

What happens if we look for a substring that is not in the string? Let’s have a look!

e Find the positions of the character f using the method . find():

positions = us.find("f") positions is assigned us dot find f
print (positions) print positions
-1

Similarly to cell 13, we use the method . find() to look for the substring "f" in the string us, and we
assign the outcome to the variable positions (line 1). Then, we print positions (line 2). The outcome
is -1. Thus, when we search for a substring that is not in the string, . find () returns -1. Thisis a trick
thatis often used in conditions,such as: if us.find("f") == -1: print("Character not found!").

e Given the following string:

hobbies = "I like going to the movies, hobbies is assigned I like going to the
traveling, and singing" movies, traveling, and singing

We start with a string containing text about hobbies (line 1).

e Count the numbers of substrings ing using the method . count ():

n_substrings = string.count("ing") n substrings is assigned string dot count ing
print (n_substrings) print n substrings

228

Chapter 27. Overview of strings

We use the method . count () which takes the substring whose occurrence we want to count—in our
case "ing"—as an argument, and we save the outcome in the variable n_substrings (line 1). Then we
print the result (line 2). The substringis present 4 times: I 1like going to the movies, traveling,

and singing.

It can be convenient to separate the words in a string into list elements or to merge strings that are
elements of alist into a single string. Let’s see how to do both operations.

e Given the following string:
string = "How are you" string is assigned How are you

We start with a string containing three words: How, are, and you (line 1).

e Transform the string into a list of strings where each element is a word:

list_of_strings = string.split() list of strings is assigned string dot
split
print (list_of_strings) print list of strings
['How', 'are', 'you']

Words are separated by spaces. Thus, we can use the method .split(" ") with a space as an argu-
ment. However, an empty string " " is the default argument for .split(), thus we can omit it—in
other words, writing .split() is equivalent to writing .split(" "). We assign the outcome to the
variable list_of_strings (line 1), and we print it (line 2). As you can see, list_of_strings
is a list containing three elements, each of them corresponding to one of the words in string.

How do we go back to alist? Let’s learn it in the next cell!

e Transform the list of strings into a string using the method . join():

string_from_list = " ".join(list_of_strings) string from list is assigned space dot
join list of strings
print (string_from_list) print string from list

How are you

The method . join() connects the elements of the list in the argument, separating them with the
string it refers to. In our case, the list in the argument is 1ist_of_strings, which contains the three
strings "How", "are", and "you". The string to which . join() is applied is a space—that s, " " (line 1).
The command might look peculiar at first because we apply the method directly to the string value—
" " join().Asan alternative, we could assign the space to a variable—space = " "—and then apply
the method to the variable—space. join(). To conclude the task, we print 1ist_of_strings to check
for correctness (line 2).

There are several options when changing character cases. Let’s have a quick look at them with the
simple example below.

229

Part 7. Dictionaries and overview of strings

e Given the following string:
greeting = "Hello! How are you?" greeting is assigned Hello! How are you?

We start with a string where the first character of "Hello" and "How" are uppercase and all the other
characters are lowercase.

e Modify the string to uppercase and lowercase; change to uppercase only the first character of the
string, and then each word of the string; finally, invert the cases:

uppercase uppercase

print (greeting.uppex()) print greeting dot upper

lowercase lowercase

print (greeting.lowex()) print greeting dot lower

change the first character of the change the first character of the string
string to uppercase to uppercase

print (greeting.capitalize()) print greeting dot capitalize

change the first character of each word change the first character of each word
to uppercase to uppercase

print (greeting.title()) print greeting dot title

invert cases invert cases

print (greeting.swapcase()) print greeting dot swapcase

HELLO! HOW ARE YOU?
hello! how are you?
Hello! how are you?
Hello! How Are You?
hELLO! hOW ARE YOU?

To change the string to uppercase, we use the method .upper() (line 2) and we get: HELLO! HOW ARE
You?. Inversely, to change the string to lowercase, we use . lower () (line 4) and we obtain: hello! how
are you?. To change to uppercase only the first character of the string, we use the method
.capitalize() (line 6), and the string becomes Hello! how are you?, where only the H of Hello is
uppercase. To change to uppercase the first characters of all the words, we use the method . title()
(line _8). In our example, the outcome isHello! How Are You? ,whereH,H, A, andY are uppercase. Fi-
nally, to swap characters from uppercase to lowercase and vice versa, we use the method . swapcase()
(line _10). We obtain: hELLO! hOW ARE YOU?, where h from hELLO and h from how are lowercase, and
all the other characters are uppercase.

Printing is particularly useful in coding to check for correctness of operations and algorithms. In the
previous chapters, we learned that the arguments of the built-in function print () can be either con-
catenated variables (Chapter 2), variables separated by commas (Chapter 25), or a string in combina-
tion with the method . format () (Chapter 25). Beyond refreshing these printing modalities and point-
ing out some peculiarities, we will learn f-strings and easier ways to better print numerical variables.
Let’s start!

e Given the following string:

part_of_day = "morning" part of day is assigned morning

230

Chapter 27. Overview of strings

We start with the variable part_of_day containing the string "morning" as a value (line 1).

e Print Good morning! in 4 different ways, using (1) string concatenation, (2) comma separation, (3)
the method . format (), and (4) f-strings:

(1) string concatenation (1) string concatenation

print ("Good " + part_of_day + "I") print Good concatenated with part of day
concatenated with !

(2) variable separation by comma (2) variable separation by comma

print ("Good", part_of_day, "!") print Good part of day !

(3) the method .format() (3) the method .format()

print ("Good {}!".format(part_of_day)) print Good placeholder ! dot format part
of day

(4) f-strings (4) f-strings

print (f"""Good {part_of_day}!""") print f Good part of day !

Good morning!
Good morning !
Good morning!
Good morning!

To print Good morning! using concatenation, we concatenate part_of_day to two strings:
"Good "and"!"(line2). Notethat "Good " containsaspace asthe last character; without that space,
we would print "Goodmorning!". As an alternative to concatenation, we can use comma separation—
that is, we separate the variables by comma (line 4). Note that the printed line contains a space be-
tween morning and the exclamation mark (morning !). This happens because in comma-separated
printing, variables are always separated by a space. Another way is to use the string method
.format (), which placesits argument in the placeholder {} inthe string (line 6). In our case, the value
of part_of_day—which is the argument of . format()—is positioned in the curly brackets in "Good
{y!". Alast method is to use f-strings, where f stands for formatted. Within the round brackets of
print(), we write: (1) f, (2) tree opening double quotes """, (3) what we want to print, and (4) tree
closing double quotes """. In our case, what we want to print is composed of some characters (e.g.,
Good and !) and a variable that must be enclosed in a pair of curly brackets—that is, {part_of_day}
(line 8).

What if we want to print a string combined with a numerical variable? Let’s have a look!

e Given astring and a numerical variable:

part_of_day = "morning" part of day is assigned morning
time_of_day = 10 time of day is assigned ten

We consider two variables: part_of_day—containing the string "morning" (line 1)—and
time_of_day— containing the integer 10 (line 2).

e Print
Good morning!
It's 10a.m.
using the same four methods above (note that the sentences are on two separate lines):

231

Part 7. Dictionaries and overview of strings

(1) string concatenation (1) string concatenation
print ("Good " + part_of_day + "!\nIt's " print Good concatenated with part of
+ str(time_of_day) + "a.m.") day concatenated with ! backslash n

It's concatenated with str time of day
concatenated with a.m.

(2) variable separation by comma (2) variable separation by comma
print ("Good", part_of_day, "!\nIt's", print Good part of day ! backslash n It's
time_of_day, "a.m.") time of day a.m.
(3) the method .format() (3) the method .format()
print ("Good {}!\nIt's {}a.m." print Good placeholder ! backslash n It's
.format(part_of_day, time_of_day)) placeholder a.m. dot format part of day
time of day
(4) f-strings (4) f-strings
print (f"""Good {part_of_day}! print f Good part of day !
It's {time_of_day}a.m.""") It's time of day a.m.
Good morning!
It's 10a.m.
Good morning !
It's 10 a.m.
Good morning!
It's 10a.m.
Good morning!
It's 10a.m.

When using string concatenation (line 2), we have to consider a few aspects. First, we embed the
escape character \n—which indicates newline—into the string "!\nIt's", where ! is the last charac-
ter of the first line, and 1t's is the beginning of the second line. Second, since time_of_day is an
integer, we need to transform it into a string by using the built-in function str() for concatenation.
And finally, we have to leave a space after Good and It's to have the correct spaces in the printout.
When using comma separation (line 4), the code looks similar to concatenation. However, we do
not need to change the numerical variable time_of_day into a string. Also, we do not need to add
spaces in the strings "Good" and "!\nIt's". In the printout, we can notice again that there is a space
between morning and !, and between 10 and a.m.. When using . format (), we have to include two
placeholders, one for part_of_day and one for time_of_day. Note that both variables are arguments
of .format() (line 6). Finally, when using f-strings, we include the two variables directly in between
their placeholders—that is,{part_of_day} and {time_of_day}. We also can go to the new line without
having to write \n, but just by writing the text on two consecutive lines (lines _8-9).

What about printing numbers with a reduced number of decimals? Let’s see the following examples.

e Given the numerical variable:
number = 1.2345 number is assigned 1.2345

We start with a variable containing a float with 4 decimals (line 1).

e Print The number is 1.23—note only the first two decimals—using the four methods above:

(1) string concatenation (1) string concatenation
print ("The number is

+ str(round(number, 2))) print The number is concatenated
with str round number two

(2) variable separation by comma (2) variable separation by comma
print ("The number is", round(number, 2)) print The number is round number
two

232

Chapter 27. Overview of strings

(3) the method .format() (3) the method .format()

print ("The number is {:.2f}".format(number)) print The number is colon dot two f
dot format number

(4) f-strings (4) f-strings

print (f"""The number is {numbexr:.2f}""") print f The number is number colon
dot two f

The number is 1.23
The number is 1.23
The number is 1.23
The number is 1.23

When using string concatenation (line 2) or comma separation (line 4), we can use the built-in func-
tion round (), which takes two arguments: the variable that we want to round (number) and the num-
ber of decimals that we want to keep (2). As we have seen previously, when using concatenation, we
need to transform the numerical variable into a string, whereas we do not when using comma sep-
aration. When using . format (), we add : .2f in the placeholder, where : indicates the start of the
formatted part and . 2f specifies that we want to keep 2 floating digits after the dot (line 6). A similar
formatting is present in f-strings, with the addition that before the colon :, we need to indicate the
variable to print—that is, number (line 8).

At this point, you might wonder, Which of these four ways should | use when printing? The answer
is the one that you prefer! It is just recommended to use one single way thought your code for con-
sistency.

In this Chapter, we have summarized or introduced several ways of dealing with strings, using opera-
tions such as concatenation, assignment, or slicing, and methods. Strings have a total of 47 methods,
and we have learned 11 of them so far. We will learn 6 more methods in Chapter 30. For the remaining
methods, you can consult the many resources that you’ll find at the end of this Chapter.

In this chapter, you have learned or refreshed 11 string methods. Summarize what they do by com-
pleting the following table (continued on the next page).

String method What it does

.capitalize()

.count()

.find()

.format()

.join()

.lower ()

.replace()

.split()

233

Part 7. Dictionaries and overview of strings

.Swapcase()

Ltitle()

.upper ()

e In strings, slicing and the “arithmetic” operations (concatenation and replication) work the same
way as for lists

e Strings are immutable and thus assignment is not possible

e Strings have 47 methods. Of these, the 11 methods learned so far are: .capitalize(), .count(),
.find(), .format(),.join(), .lower(), .replace(),.split(),.swapcase(),.title(),and .upper()

e There are at least four ways to combine strings and numerical variables when printing: concatena-
tion, comma separation, method . format (), and f-strings

e Toround a number to a wanted number of decimals, we can use the built-in function round()

Escape characters are special characters that can be used when creating strings or when print-

ing. Let’s see some examples:

e \n (newline): It is used to print a new line. All the characters or variables after \n will be
printed on a new line. For example:

print ("Shopping list:\napples\noranges") Shopping list: apples oranges
Shopping list:
apples
oranges

e \t (horizontal tab): It is used to create a tab, that is, to indent text towards the right. For

example:
print ("Dear friend,") print Dear friend,
print ("\tI hope you are doing fine. I have print I hope you are doing
some news...") fine. I have some news...

Dear friend,
I hope you are doing fine. I have some news...

e \" (double quote): It is used when you need to print double quotes in string delimited by dou-
ble quotes. For example:
print ("The wise said: \"To live a happy print The wise said: "To live

life...\"") a happy life..."
The wise said: "To live a happy life..."

234

Chapter 27. Overview of strings

e \' (single quote or apostrophe): Similarly to above, it is used to print a single quote when the
string is enclosed in between single quotes. For example:

print ('It\'s the best time!") print It's the best time!
It's the best time!

1. Famous quotes. Given the following string:

quote = "The future belongs to those who believe in the beauty of their dreams -

Eleanor Roosevelt"

Use string methods to:
a. Remove to those who
Replace belongs with until
Add seems impossible after future
Remove The future
Replace believe in the beauty of their dreams withit's done

-~ ® 2 0 T

Replace Eleanor Roosevelt with Nelson Mandela
g. Add 1t always at the beginning of the string

What quote will you get at the end? Make sure that words are separated by spaces.
2. Commonalities. Given the following strings:
dessert = "lemon meringue pie"

sweet = "honeypot"
a. What characters do the two strings have in common? Save the common characters in alist.
b. How many times do the common characters appearindessert? Savetheresultinadictionary
created in two different ways, that is, using (1) a dictionary method, and (2) a string method.

3. Palindromes. Palindromes are words that read the same backward as forward, such as anna or
madam. Given the following list of strings:

words = ["noon", "dog", "dad", "elephant", "jungle", "otto", "night", "bright",

nkayakn’ "yeah", "WOW"]

Save palindrome words in a new list of strings. Hint: Consider using string slicing.

235

Part 7. Dictionaries and overview of strings

In the following table, you can find all the 47 string methods available in Python. The methods with
an asterisk are presented in this book—including the ones that will be introduced in Chapter 30.

What it does

Converts the first character to uppercase and all the others to lowercase

String method

.capitalize()*

.casefold()

.center()

.count()*

.encode()

.endswith()

.expandtabs ()

.find()*

.format()*

.format_map()

.index()*

.isalnum()*

.isalpha()*

.isascii()

.isdecimal()

.isdigit()*

.isidentifier()

236

E.g.: print("hello".capitalize()) returns: Hello

Converts a string into lowercase. Differently from .lower(), it can handle more
complex cases.

E.g.: print("StralRe".casefold()) returns: "strasse".
print("StraRe".lower()) returns: "straBe" (Strafeis street in German)

Returns a string centered within a given number of characters.
E.g.:print("hi".center(6)) returns:" hi "

Returns the number of times a specified value is present in a string
E.g.: print("singing".count("ing")) returns: 2
Returns an encoded version of the string using the specified encoding—encodings

define how characters are rendered on a screen.
E.g.: print("hello".encode(encoding="'utf-8")) returns: .b'hello"

Returns true if the string ends with the specified value.
E.g.: print("hello".endswith('lo')) returns: True

Make the tabs in the string of the length defined by the arguments.
E.g.: print("h\te\tl\tl\to".expandtabs(3))returnssh e 1 1 o

Return the first position of a substring

E.g.:print("singing".find("ing")) returns: 1

Formats the string using the specified arguments

E.g.: print("Hello, {}".format("how are you?")) returns: Hello, how are
you?

Formats specified values—defined in a dictionary—in a string

E.g.:print("My dog name is age years old".format_map({"name":"Ninja",
"age":7})) returns:My dog Ninja is 7 years old

Finds the first substring of a substring
E.g.:print("hello".index("1")) returns: 2

Checks if all characters in the string are alphanumeric
E.g.: print("123hello".isalnum()) returns: True

Checks if all characters in the string are alphabetic
E.g.: print("hello".isalpha()) returns: True

Checks if all characters in the string are ASCII.
E.g.:print("é".isascii()) returns: False

Checks if all characters in the string are decimals
E.g.:print("123".isdecimal()) returns: True

Checks if all characters in the string are digits
E.g.:print("123".isdecimal()) returns: True

Checks if the string is a valid identifier, that is, if it only contains alphanumeric let-
ters (a-z and 0-9) or underscores (_), and it does not start with a number nor contain
spaces

E.g.:print("my string".isidentifier()) returns: False

Chapter 27. Overview of strings

.islower()*

.isnumeric()

.isprintable()

.1sspace()

Jistitle()*

.isupper()*

.join()*

.1just()

.lower()*

Astrip()

.maketrans()

.partition()

.removeprefix()

.Temovesuffix()

.replace()*

.xrfind()

.rindex()

.rjust()

.rpartition()

.rsplit()

Checks if all characters in the string are lowercase
E.g.:print("hello".islowex()) returns: True

Checks if all characters in the string are numeric
E.g.: print("123".isnumeric()) returns: True

Checks if all characters in the string are printable
E.g.:print("\n".isprintable()) returns: False

Checks if all characters in the string are space
E.g..print(" ".isspace()) returns: True

Checks if the string is title-cased
E.g.: print("Hello, How Are You?".istitle()) returns: True

Checks if all characters in the string are uppercase
E.g.: print ("HELLO".isuppex()) returns: True

Joins the strings of a list with the specified separator
E.g.:print(", ".join(["hello", "hi"])) returns: hello, hi

Left-justifies the string

E.g.:print("hello".1ljust(1@, '-')) returns: hello-----

Converts the string to lowercase
E.g.: print ("HELLO".lower()) returns: hello

Removes characters at the beginning of the string (I is for left)
E.g.: print("hhello".1lstrip("h")) returns: ello

Transforms the transformation of the characters of the first argument into the char-
acters of the second argument. To print the outcome, we need to use the method
.translate()

E.g.: transformation = "bake".maketrans("b","c");

print ("bake".translate(transformation)) returns: cake

Partitions the string into tuple elements
E.g.: print("hello, how are you?".partition(" ")) returns: ('hello,',
', 'how are you?')

Removes the specified prefix from the string
E.g.: print("hello, how are you?".removeprefix("hello, ")) returns: how
are you?

Removes the specified suffix from the string
E.g.:print("hello, hi".removesuffix(", hi")) returns: hello

Replaces substrings in strings
E.g.: print("Hello, how is she?".replace("she", "he")) returns: Hello,
how is he?

Finds the last substring of a string (r is for right)
E.g.: print("hello".xrfind('1")) returns: 3
Finds the last substring of a string

E.g.: print("hello".rindex('11')) returns: 2
Right-justifies the string
E.g.:print("hello".rjust(10,

Partitions the string into tuple elements starting from the end
E.g.:print("hello, how are you?".rpartition(" "))returns: ('hello,"',
', 'how are you?')

'-")) returns: ----- hello

Splits the string from the end
E.g.: print("hello, how are you".rsplit(",")) returns: ['hello',
are you']

' how

237

Part 7. Dictionaries and overview of strings

.rstrip()

.split()*

.splitlines()

.startswith()

.strip()

.swapcase()*

.title()*

.translate()

.upper ()*

.zfill()

238

Removes characters from the end of the string
E.g.:print("!!!hello!!!" . rstrip("!")) returns: !!!hello

Splits the string into a list
E.g: print("hello, how are you?".split(",")) returns: ['hello', ' how
are you?']

Splits the string at line breaks
E.g.: print("hello\nhow are you?".splitlines()) returns: ['hello', 'how
are you?']

Checks if the string starts with the specified prefix
E.g.:print("hello, how are you?".startswith("hello")) returns: True

Removes characters on the left and on the right
E.g.:print("!!'hello!!!" . strip("!")) returns: hello

Swaps the case of all characters in the string

E.g.. print("Hello, How Are You?".swapcase()) returns: hELLO, hOW aRE
you?

Converts the string to title case

E.g.: print("hello, how are you?".title()) returns:Hello, How Are You?

Maps the character of a string through a given translation table (see .maketrans())
E.g.: transformation = "bake".maketrans("b","c");
print ("bake".translate(transformation)) returns: cake

Converts the string to uppercase
E.g.: print("hello".upper()) returns: HELLO

Adds 0 at the beginning of the string until the string reaches the defined length
E.g.:print("5".zfill(4)) returns: 0005

PART 8
FUNCTIONS

In this part, you will learn how to use the coding syntax and computational thinking that you have
learned so far to create units of code called functions. Let’s get started!

To this point, we've learned Python data types—Ilists, strings, Booleans, dictionaries, integers, and
floats. We've also learned how to combine these data types with operators—assignment, member-
ship, arithmetic, comparison, and logical—to create commands—that is, statements, if/else condi-
tions, for loops, and while loops. The next step is to learn how to combine commands into units of
code called functions. We are already somewhat familiar with functions because we have frequently
used Python built-in functions, such as print (), 1en(), range(), etc. In this Part, we will learn what'’s
behind functions and how to write them. Let’s begin in this Chapter by learning the components of a
function and how to provide inputs. Let’s start! Follow along in Notebook 28.

e You recently hosted a party, and you want to send Thank you cards to those who attended. Create
a function that takes a first name as an argument and prints a Thank you message containing an
attendee’s name (e.g., Thank you Maria):

def print_thank_you (first_name): def print thank you first name
"""Prints a string containing Prints a string containing Thank you and
"Thank you" and a first name a first name
Parameters Parameters
first_name : string first name : string
First name of a person First name of a person
print ("Thank you", first_name) print Thank you first name

e Print two Thank you cards:

print_thank_you ("Maria") print thank you Maria

print_thank_you ("Xiao") print thank you Xiao

What canyou deduce about functions from this example? Get some hints by completing the following

exercise!

1. defisthe keyword that introduces a function definition T F
2. first_name is afunctioninput T F
3. Function documentation is enclosed in single double quotes T F
4. print ("Thank you", first_name) (line 10)is executed when we run the first cell T F
5. print_thank_you ("Maria") and print_thank_you ("Xiao") are function calls T F

241

Part 8. Functions

Computational thinking and syntax

Let’s start by analyzing how a function works. Let’s run the first cell:

def print_thank_you (first_name): def print thank you first name
"""Prints a string containing Prints a string containing Thank you and
"Thank you" and a first name a first name
Parameters Parameters
first_name : string first name : string
First name of a person First name of a person
print ("Thank you", first_name) print Thank you first name

What happens? Apparently nothing! Let’s run the two following cells:

print_thank_you ("Maria") print thank you Maria
Thank you Maria

print_thank_you ("Xiao") print thank you Xiao
Thank you Xiao

For each cell, a message is printed that says "Thank you" followed by the name of a person—that is,
"Maria" in cell 2 and "Xiao" in cell 3. So, how do functions work?

In cell 1, there is a function definition, which specifies what a function does. When we run cell 1, we
just tell our computer to “memorize” the function. To actually execute the function—that is, to make
it do what we want it to do—we must call the function, which is what we do at cells 2 and 3—each of
them containing a function call. If we do not call a function, then the function will never be executed!

How do we get "Thank you Maria" after running cell 2 and "Thank you Xiao" after running cell 3?
Let’s understand it with the help of Figure 28.1.

def print_thank_you (first_name): def print_thank_you (first_name):
"""Prints a string contffaining 2 """Prints a string contfaining
"Thank you" and a first] name "Thank you" and a first] name
Parameters Parameters
first_name : string 6 first_name : string
7 First name of a perfon 7 First name of a perfon
v v
10 print ("Thank you", first_name) 10 print ("Thank you", first_name)
print_thank_you ("Maria") print_thank_you ("Xiao")
Thank you Maria ¢————— Thank you Xiao <

Figure 28.1. Path of a function input.

242

Chapter 28. Printing Thank you cards

Let’s start with the printed text "Thank you Maria" (left side of Figure 28.1). In cell 2, we provide the
string "Maria" tothe function call asaninput —i.e., print_thank_you("Maria"). Whenwe runthecell,
"Maria" passes from the call to the variable first_name located in the function headerincell 1, line 1
(yellow arrow). The variable first_name—which now contains the value "Maria"—is then used in the
command at line 10 (black line), which produces the print "Thank you Maria" (orange arrow). Let’s
now see how we get "Thank you Xiao" (right side of Figure 28.1). Similarly to before, in cell 3, we call
the function print_thank_you() with the string "Xiao" as an input. When we run the cell, the value
"Xiao" is assigned to the variable first_name in the function header (yellow line), then used in the
function command (black line), and finally printed to screen (orange line). In summary, when we call
a function, we pass the variables from a function call (cell 2 or 3) to a function definition (cell 1) as
an input. Then, the variable will be used in the function commands. To be more precise, in Python,
we call the input variable parameter when it is in the function definition—first_name incell 1is a
parameter—and argument when it is in the function call—"Maria" in cell 2 is an argument, as well
as "xiao" in cell 3. Finally, note that the same mechanism applies when we call any Python built-in
function. For example, when we write 1en("hello"), we pass the argument "hello" to the definition
of 1en(), which has a syntax similar to the function in cell 1 and contains commands that count the
number of characters.

Let’s now look into function syntax. In cell 1, we define the function print_thank_you(). Any function
definition—which we usually just call a function—is composed of two parts: a header (line 1) and a
body (lines 2-10). The header is made of: (1) keyword def; (2) function name; (3) parameters em-
bedded in round brackets; and (4) a colon (line 1). Function names follow the same rules as variable
names, that is, they are lowercase and the words that compose them are separated by an underscore.

A function body contains two components: (1) documentation (lines 2-8) and (2) code (line 10), and it
isalways indented with respect to the header. In Python, the documentationis embedded in between
double quotes repeated three times ("""; lines 2 and 8) and is called docstring, which is a compact
word for “documentation string”. Afunction documentation can follow various styles, and in this book
we will use the NumPy style, which has the following structure:

e Short summary (line 2): A one line summary about what the function does. It is written next to the
three opening double quotes

e Parameters (lines 4-7): A description of the parameters—that is, the inputs—of the function. It
contains: (1) the title Parameters (line 4); (2) a sequence of minus signs that act as an underline
(line 5); and (3) a list of parameters (lines 6-7)—there is only one parameter in this example; there
will be more in the coming examples. Each parameter is described on two consecutive lines. In the
first line, we include: (1) a parameter name (first_name); (2) a space; (3) a colon; (4) a space; and
(5) a parameter type (i.e., string) (line 6). In the second line, we write a short description of the
parameter. Note that this line is indented

e Other specifications that we will see in the next Chapter.

Finally, the code component of afunction body can contain as many lines of code as needed to execute
the desired task—in this initial example, there is only one command (line 10).

243

Part 8. Functions

Let’s conclude this first example by providing a formal definition of function:
A function is a block of code that accomplishes a specific task

What about the inputs? Must a function have inputs? No, there can be functions without inputs (see
exercise 4 in the Let’s code session at the end of this Chapter). Can a function contain more than one
input? Yes! Let’s look into the next example—the differences with the function in cell 1 are under-
lined.

2. Formal Thank you cards

e Afterasecondthought, youdecidethatitis moreappropriate to print formal Thank you cards. Mod-
ify the previous function to take three arguments—prefix, first name, and last name—and to print

a thank you message containing them (e.g., Thank you Mrs Maria Lopez):
def print_thank_you (prefix, def print thank you prefix first name

first_name, last_name): last name

"""Prints a string containing
"Thank you" and the inputs

Parameters

prefix : string
Usually Ms, Mrs, Mr

first_name :

string
First name of a person
last_name : string

Last name of a person

print ("Thank you", prefix,
first_name, last_name)

e Print two formal Thank you cards:

print_thank_you ("Mrs", "Maria","Lopez")
Thank you Mrs Maria Lopez

print_thank_you ("Mz",
Thank you Mr Xiao Li

"XiaO","Li”)

Prints a string containing Thank you and
the inputs

Parameters

prefix : string
Usually Ms, Mrs, Mr
first name : string
First name of a person
last name : string

Last name of a person

print Thank you prefix first name last
name

print thank you Mrs Maria Lopez

print thank you Mr Xiao Li

Computational thinking and syntax

In this function with several inputs (cell 4), we observe three changes with respect to the same func-
tion with one single input (cell 1). First, in the function header, there are now three parameters—
prefix, first_name, and last_name—which are separated by comma. Then, in the docstrings (lines
6-11), we describe each parameter in the same order as in the function header—that is, first prefix,

244

Chapter 28. Printing Thank you cards

then first_name, and finally 1ast_name. Note that for each parameter we use the same syntax that we
described above—that s, parameter name and type in the first line, and parameter descriptionin the
second line. Finally, we must use all parameters in the function code. In this example, the parameters
are used in one single line of code to print the desired message (line 14), but in general, parameters
can be used in one or more lines of code.

What about the function calls (cells 5 and 6)? When we call the function, we have to make sure that we
insert the inputs in the same order as in the function header—that is, first prefix, then first_name,
and finally 1ast_name. What happens if one of the arguments is missing like in the example below?

print_thank_you ("Mx", "Xiao")

TypeExrror Traceback (most recent call last)

<ipython-input-13-ef@0756c89224> in

———=> 1 print_thank_you("Mr, "Xiao")

TypeError: print_thank_you() missing 1 required positional argument: 'last_name'
We get an error message saying that the function is missing 1 required positional argument:
'last_name'. This means that we did not write the third argument in the call. How can we modify
the function to avoid this error? Let’s have a look at cells 7-9! Like before, the function modifications
are underlined.

3. Last name missing!

e You are very happy with the Thank you cards, but you suddenly realize that some participants did
not provide their last names! Adapt the function so that the last name has an empty string as a
default value:

def print_thank_you (prefix, def print thank you prefix first name
first_name, last_name = ""): last name is assigned empty string
"""Prints a string containing Prints a string containing Thank you and
"Thank you" and the inputs the inputs
Parameters Parameters
prefix : string prefix : string
Usually Ms, Mrs, Mr Usually Ms, Mrs, Mr
first_name : string first name : string
First name of a person First name of a person
last_name : string last name : string
Last name of a person. The default Last name of a person. The default value
value is an empty string is an empty string
print ("Thank you", prefix, print Thank you prefix first name last
first_name, last_name) name

e Print two Thank you cards, one with a last name and one without a last name:

print_thank_you ("Mrs", "Maria", "Lopez") print thank you Mrs Maria Lopez
Thank you Mrs Maria Lopez

245

Part 8. Functions

print_thank_you ("Mx", "Xiao") print thank you Mr Xiao
Thank you Mr Xiao

Computational thinking and syntax

In the function header, we assign a default value to the input that can be missed when calling the
function. In our case, we assign an empty string to the variable 1ast_name (line 1). We call 1ast_name
default parameter, and we specify the default value in its description in the docstrings (line 11).

What happens when we call the function? If we provide all three arguments (cell 8), then the function
works exactly like its version in cell 4—that is, "Mxs" is passed to prefix, "Maria" to first_name, and
"Lopez" to last_name. If we provide only prefix and first_name but not 1ast_name (cell 9), the func-
tion prints "Mr" for prefix and "Xiao" for first_name, and the default empty string for 1ast_name—we
donotseeit printed! What if the missing parameter is not the last one but, for example, the first one—
i.e., prefix? Let’s have a look:

print_thank_you ("Xiao", "Li")

TypeExrrox Traceback (most recent call last)

<ipython-input-13-ef@0756c89224> in

———=> 1 print_thank_you("Xiao, "Li")

TypeError: print_thank_you() missing 1 required positional argument: 'last_name'
We skipped the prefix, but the error tells us that we skipped the last name! This is because the func-
tion always assumes that the missing argument is the last one. If we want to skip arguments in other
positions—that is, prefix or first_name—then we have to make a final modification to our function,
as you can see underlined in the code below.

4. Prefix and/or first name missing!

e Finally, you realize that prefix and/or first name are also missing for some guests. Modify the func-
tion accordingly:

def print_thank_you (prefix = "", def print thank you prefix is assigned
first_name = "", last_name = ""): empty string first name is assigned
empty string last name is assigned empty
string
"""Prints each input and a string con- Prints a string containing Thank you and
catenating "Thank you" and the inputs the inputs
Parameters Parameters
prefix : string prefix : string
Usually Ms, Mrs, Mr. The default Usually Ms, Mrs, Mr. The default value
value is an empty string is an empty string
first_name : string first name : string

First name of a person. The default First name of a person. The default
value is an empty string value is an empty string

246

Chapter 28.

Printing Thank you cards

last_name : string
Last name of a person. The default
value is an empty string

last name : string
Last name of a person. The default value

is an empty string

print ("Prefix:", prefix) print Prefix: prefix

print ("First name:", first_name) print First name: first name

print ("Last name:", last_name) print Last name: last name

print ("Thank you", prefix, print Thank you prefix first name last

first_name, last_name)

e Print a Thank you card where the first name is missing:

name

print_thank_you (prefix = "Mrs", print thank you prefix is assigned
last_name = "Lopez") Mrs last name is assigned Lopez
Prefix: Mrs

First name:
Last Name: Lopez
Thank you Mrs Lopez

e Print a Thank you card where the prefix is missing:

print_thank_you (first_name = "Xiao", print thank you first name is
last_name = "Li") assigned Xiao last name is assigned
Li
Prefix:

First name: Xiao
Last Name: Li

Thank you Xiao Li

In the function header, we assign a default value to each parameter—in our case, an empty string
(line 1)—and we add this information to the docstrings (lines 7 and 11). In this example, we also print
each parameter to clarify what happens when we call the function (lines 14-16), as you will see in a
bit.

What about the function calls? When we call print_thank_you with the arguments prefix="Mrs"
and last_name="Lopez" (cell 11), first_name is automatically assigned its default value, that is, an
empty string—see the print from line 15. Similarly, when we call the function with the arguments
first_name="Xiao" and last_name="Li" (cell 12), prefix is assigned the default empty string—see
the print from line 14. In addition, in the print Thank you Mrs Lopez (from line 17), there are two
spaces between Mrs and Lopez. This occurs because when we print using comma separation, aspaceis
automatically inserted between variables. Thus, one space separates Mrs and the first name—which
is missing—and one space separates the first name and Lopez. In the same way, in the print Thank
you Xiao Li, there is an extra space due to the absence of a prefix. What if we want to be pre-
cise and ensure that there is one single space between the variables? We could write an if/elif/else
construct like the following: if prefix == "": print("Thank you", first_name, last_name) elif

first_name=="": print ("Thank you", prefix, last_name) else: print ("Thank you", prefix,

247

Part 8. Functions

first_name).

Finally, do we always need to provide default values to the parameters in a function? Not necessarily,
especially when there are no appropriate default values or when it’s essential that all arguments are
specified when calling the function.

At this point, you might wonder, why do we need to create functions? Can we not just write the
print () command whenever we need it? The functions in cells 1, 4, and 7 contain only a single line of
code, so writing a function might seem unnecessary. However, consider the functionin cell 10. It has
four lines of code, and if we want to reuse them in several cases, we have to keep copying and pasting.
As you might remember, minimizing copy-pasting is crucial not only because it is tedious, but doing so
also reduces the risk of errors. Grouping lines of code into a function is a very efficient way to reuse
code across various parts of a project. In addition, functions help us divide and conquer tasks (see
Chapter 16). Each function should contain commands that solve one specific subtask, allowing us to
modularize our code—that is, breaking it into manageable chunks that are easier to read, modify, and
reuse.

e Functions are blocks of code that accomplish a specific task. They are crucial for code reuse and
modularization

e Afunction comprises at least three components:
m A header, which starts with the keyword def, followed by the name of the function, and round

brackets containing the parameters separated by comma. Parameters can have default values

m Docstrings, which describe what the function does and its parameters
m Code that solves a task

e Tocallafunction, we write the function name followed by round brackets containing the arguments
separated by comma

e Parameters and arguments are function inputs. Technically, we call parameters the variables listed in
the function header, and arguments the variables in the function call

e Docstrings are fundamental when writing and using functions and can be accessed using the built-in
function help()—see the In more depth session below

Writing docstrings is fundamental for both our future selves and for others who may use our
code. When we write a function, there is a good chance that we will need to reuse it months
or even years later. Without function documentation, it could take us hours to recall what the
function does or the types of its inputs—and outputs, as you will see in the next Chapter. In-
vesting a few minutes in writing clear documentation can save us countless hours in the future!

248

Chapter 28. Printing Thank you cards

Similarly, if somebody else needs to use our functions, they need to understand what the func-
tion does and the type and roles of its inputs and outputs. Have you ever tried to use an un-
documented function? It can be incredibly frustrating! Moreover, how do we access function
documentation? Do we always have to look at the function definition? Fortunately no! We
can use the built-in function help()! For example, let’s have a look at the documentation of the
function print_thank_you() that we created earlier in this Chapter.

help (print_thank_you) help print thank you
Help on function print_thank_you in module __main__:

print_thank_you(prefix='"', first_name='"', last_name='")
Prints each input and a string containing "Thank you" and the inputs

Parameters

prefix: string

Usually Ms, Mrs, Mr. The default is an empty string
first_name: string

First name of a person. The default is an empty string
last_name: string

Last name of a person. The default is an empty string

As you can see, help() displays the docstrings we wrote in cell 10. Notice that help() requires
only the function name as an argument—without round brackets or parameters. Finally, be
aware that help() can be used for any functions, including Python built-in functions, like you
can see in the following example:

help (len) help len
Help on built-in function len in module builtins:

len(obj, /)
Return the number of items in a container.
The descriptionis a bit technical, but you can think of containers as data types like lists, strings,
or dictionaries. So, Return the number of items in a container means that len() gives us
the number of elements in a list, or characters in a string, or key/value pairs in a dictionary, etc.
We will learn more about returning in the next Chapter.

. String cases. Write a function that prints a given string in lower case, upper case, title case, capi-
talized, and with swapped cases. Then, call the function twice. Do so once using a string made of
one word, and once using a string made of at least two words. Finally, call the function for each
element of the following list of strings using a for loop: summer_vacation = ["Hiking trails",

"weekEnd campIng", "enjoying nature", "fishing"].

249

Part 8. Functions

250

. String lengths. Write a function that takes a list of strings and an integer, and prints only the strings

whose length matches the given integer. Call the function using two different word lengths.

. Multiple numbers. Write a function that takes a list of numbers and an integer, and prints only the

numbers divisible by the integer. If the user does not provide a number, then the function divides
by 2 by default. Call the function using two different divisors. Finally, call the function without a
divisor.

Doubling numbers. Write a function that asks a user for a number and prints a dictionary where
the keys are numbers up to the input number, and values are the double of each key. Note that
the function does not take any argument. The input () function to ask for the number is inside the
function.

(Example user input: 5

Expected print: {1: 2, 2: 4, 3: 6, 4: 8, 5: 10})

In the previous Chapter, we learned about functions and their inputs. In this Chapter, we will dive
into function outputs. In addition, we'll take a look at designing and organizing multiple functionsina
larger project. Let’s tackle all this by solving the following task. Follow along with Notebook 29!

e You are the owner of an online store and need to securely store the usernames and passwords of
your customers. Create a database where usernames are composed of the initial of the customer’s
first name followed by their last name (e.g., “jsmith”), and passwords consist of a four-digit code

First we have to create a database. A database is an organized collection of data that can be easily
accessed and managed. Examples of databases include an inventory at a grocery store, a library cata-
log, or a phone contact list. In our case, the database will be a collection of customers’ usernames and
passwords. In general, simple databases can be implemented as dictionaries.

How would you create this database, and how would you insert usernames and passwords? What
variables would you use and of what types? How many functions would you write, and what would
each function do? Take some time to think about your solution before proceeding to the next para-
graph!

To solve our task, the first thing to do is to “divide and conquer” by defining what variables and func-
tions we need to create. Let’s start with the variables and their data types. For each customer, we
need two strings—one for the username and one for the password. We'll save them in a dictionary—
that is, a database—where the usernames will be the keys and the passwords will be the values. Let’s
now think about how to modularize the code—that is, how to organize it into functions. We can write
three functions: one to create a username, one to create a password, and one that calls the previous
two functions and adds the created usernames and passwords to a database. Let’s take a closer look
at how to implement this solution!

Read the following text and code and try to deduce what the code does.

e Writeafunctionthat creates ausername composed of theinitial of the first name and the last name:

def create_username (first_name, last_name): def create username first name last
name
"""Creates a lowercase username made of Creates a lowercase username made of

initial of first name and full last name initial of first name and full last
name

251

Part 8.

Functions

Parameters
first_name : string

First name of a person
last_name : string

Last name of a person

Returns

username : string

Created username

concatenate initial of first name

Parameters
first name : string
First name of a person
last name : string
Last name of a person

Returns

username : string

Created username

concatenate initial of first name and

and last name last name

username = first_name[@] + last_name username is assigned first name in

position @ concatenated with last name
make sure the username is lowercase make sure the username is lowercase
username = username.lower() username is assigned username dot lower
return username return username

return username return username

e Test the function for two customers:

username_1 = create_username("Julia", "Smith") username one is assigned create
username Julia Smith
print (username_1)

jsmith

print username one

username_2 = create_username("Mohammed", "Seid") wusername two is assigned create
username Mohammed Seid
print (username_2)

mseid

print username two

What's going on in the three cells above? Get some hints by solving the following exercise!

True or false?

—
n

1. The function has three parameters

2. Indocstrings, we must specify the name, type, and description of the output (alsocalled T F
return), like we do for the parameters

3. Theusername is composed of first name and last name

—
M

4. returnisthe keyword used to return function outputs T F

Computational thinking and syntax

In cell 1, there is a function that creates a username. It takes two parameters—first_name and
last_name (line 1)—which are used to create a username in two consecutive steps. First, we concate-
nate the initial of the first name—that is, first_name in position e—with the last name, and we assign

252

Chapter 29. Login database for an online store

the result to the variable username (line 18). Then, we apply the method . lower () to username to en-
sure it is lowercase (line 20). What happens at line 23? We return username, meaning that we “push”
username out of the function. Where does it go? Let’s look into the function calls. In the first line
of cell 2, we call the function create_username() with the arguments "Julia" and "Smith". The two
arguments are automatically passed to the function header (cell 1, line 1). In the function, the first
character of "Julia" and the whole string "Smith" are concatenated into "JSmith" and saved in the
variable username (line 18). In the following command, username is modified to lowercase and be-
comes "jsmith" (line 20). At the end of the function, we return username (line 23)—that is, "jsmith" is
sent out of the function—and we assign it to the variable username_1 (cell 2, line 1). Finally, we print
username_1 (cell 2, line 2). Similarly, in the second function call (cell 3, line 1), we pass the arguments
"Mohammed" and "Seid" tothe function create_username() (cell 1,line 1), where the username "mseid"
is created (lines 18 and 20). The username is returned (line 23) to be assigned to the variable
username_2 (cell 3, line 1) and then printed (cell 3, line 2). As above, we use return to send a vari-
able from a function body back to the function call. You can see the path of the output variables in
Figure 29.1.

def create_username (first_name, last_name): def create_username (first_name, last_name):
"""Create a lowercase username made """Create a lowercase username made
of initial of first name and last name of initial of first name and last name
Parameters Parameters
first_name : string first_name : string
First name of a person First name of a person
last_name : string last_name : string
Last name of a person Last name of a person
Returns Returns
username : string username : string
Created username Created username
concatenate initial of first name # concatenate initial of first name
and last name and last name
username = first_name[@] + last_name username = first_name[@] + last_name
make sure username is lowercase # make sure username is lowercase
username = username.lower() username = username.lower()
return username # return username
return username return username
username_1 = create_username("Julia", "Smith") username_2 = create_username("Mohammed", "Seid")
print (username_1) print (username_2)
jsmith mseid

As is now clear, return is the keyword we use to transfer output variables from the function body
to the function call. But it has another important property: it marks the end of a function. This
means that any line of code written after return will never be executed! You might have realized that
you have already used numerous returned variables throughout our learning journey. For example,
the Python built-in function int (14.45) returns 14, which means that in the function int (), the last
line of code is something similar to return integer_number. Similarly, the method .lower() applied
to the string "Jsmith" returns "jsmith" because the last line of code is something similar to return

lower_case_string.

253

Part 8. Functions

Finally, let’s have a look at the documentation of the function in cell 1. As you can see, we specify
the returned variables (lines 11-14). The syntax is the same as for the Parameters (lines 4-9). First,

we write Returns as a title (line 11), followed by a series of minus signs that act as an underline (line
12). Then, for each returned variable—in this example, there is only one—we write (1) variable name
(e.g.,username), (2) space, (3) colon, (4) space, and (5) type (e.g., string) (line13). On the following line,
indented, we write the definition of the returned variable (line 14).

We need to implement a function that creates a password composed of four integers. How would you
doit? Try to implement it yourself before looking at the solution below.

e Write a function that creates a password composed of four random integers:

impoxt random

def create_password ():
"""Create a password composed of
four random integers

Returns
password : string
Created password

nun

create a random number with four digits
password = str(random.randint(1000,9999))

return password
return password

e Test the function for two customers:

password_1 = create_password()
print (password_1)
4883

password_2 = create_password()
print (password_2)
5005

import random

def create password
Create a password composed of four
random integers

Returns
password : string

Created password

create a random number with four digits
password is assigned str random dot
randint 1000 9999

return password
return password

password one is assigned create password
print password one

password two is assigned create password
print password two

To generate a password with four integers, we'll use a simple trick: we create a random number be-
tween 1000 and 9999, which is the range of all the existing numbers with four digits! Then, we trans-
form the obtained number into a string—using the built-in function str () —and we assign the result
to the variable password (cell 4, line 13). Why are we converting the four-digit integer into a string?
Because a password does not have any numerical meaning—that is, we do not use it in arithmetic

operations such as addition or multiplication. Finally, we return password at line 16. Note that this

function does not have any inputs. Thus, there are no parameters in between the round brackets in

254

Chapter 29.

Login database for an online store

the header (line 3), there is no Parameters session in the documentation (lines 4-10), and we do not
write any arguments in between the round brackets when we call the function (cells 5 and 6, line 1).

Thereturned variable password (cell 4, line 16) is saved as password_1 and password_2, at line 1 of cells
5 and 6, respectively. Finally, we print the passwords to check for correctness (cells 5 and 6, line 2).

3. Creating a database

e Write a function that, given a list of lists of customers, creates and returns a database—i.e., a

dictionary—of usernames and passwords. The function also returns the number of customers in
the database:

1
2

N oo AW

(o]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36

def create_database (customers):
"""Creates a database as a dictionary with
usernames as keys and passwords as values

Parameters

customers list of lists
Each sublist contains first name and
last name of a customer

Returns
db : dictionary

Created database (shorted as db)
n_customers : int

Number of customers in the database

initialize dictionary (i.e. database)
do = {}

for each customer
for customer in customers:

create username
username = create_username (
customer[@], customer [1])

create password
password = create_passwoxrd()

add username and password to db
db[username] = password

compute number of customers
n_customers = len(db)

return dictionary and its length
return db, n_customers

def create database customers
Creates a database as a dictionary
with usernames as keys and passwords
as values

Parameters

customers list of lists
Each sublist contains first name and
last name of a customer

Returns

db : dictionary

Created database (shorted as db)

n customers : int

Number of customers in the database

initialize dictionary (i.e. database)
db is assigned empty dictionary

for each customer
for customer in customers

create username

username is assigned create username
customer in position zero customer in
position one

create password
password is assigned create password

add username and password to db
db at key username is assigned password

compute number of customers
n customers is assigned len db

return dictionary and its length
return db n customers

255

Part 8. Functions

Let’s analyze the function before calling it in the cells below. Let’s begin with the input and the out-
puts. The input is a variable called customers, as we can see in the function header (line 1). From the
documentation, we learn that customexs is a list of lists where each sublist contains a first name and
alast name (lines 6-7). The outputs are two variables called db and n_customers, as we can see in the
last line of the function after the keyword retuzxn (line 36). From the documentation, we learn that
db is a dictionary that will contain the database (lines 11-12), whereas n_customers is an integer that
will store the number of customers in the database (lines 13-14). Let’s continue with the analysis of
the function body. We initialize the variable db as an empty dictionary (line 18), which we will fill out
within the function and eventually return. Then, for each customer in the list of lists (line 21), we per-
form three actions. First, we create a username by calling the function create_username() that we
wrote in cell 1. The inputs are the first name—customer[0] —and the last name—customer[1] —of the
current customer. We save the output in the variable username (line 24). Then, we create the pass-
word by calling the function create_password() from cell 4, and we save the output in the variable
password (line 27). Finally, we add the username and the password to the database by assigning the
variable password as a value to the corresponding key username in the database db (line 30). Once
we complete the creation of username and password for each customer and exit the loop, we calcu-
late the number of customers, which corresponds to the length of the dictionary. We use the built-in
function len(), and we save the output in the variable n_customers (line 33). Finally, we return both
db and n_customers (line 36). As you can see, to return multiple variables, we write them after the
keyword return and separated by commas.

It is always very important to test the correctness of a function by calling it. So let’s call the function
and test its behavior!

e Given the following list of customers:

customers = [["Maria", "Lopez"], ["Julia", customers is assigned Maria Lopez
"Smith"], ["Mohammed", "Seid"]] Julia Smith Mohammed Seid

We create a list of lists called customers that contains three sublists (cell 8).

e Create the database using two different syntaxes:

create the database - separate returns create the database - separate
returns

database, number_customers = database number customers is

create_database(customers) assigned create database customers

print the outputs print the outputs

print ("Database:", database) print Database: database

print ("Number of customers:", number_customers) print Number of customers: number
customers

Database: {'mlopez': '7097', 'jsmith': '6891', 'mseid': '3189'}

Number of customers: 3
When returning multiple outputs, there are two possible syntaxes for a function call. In this first
case (cell 9), we create two output variables separated by a comma (line 2). The first variable—
database—contains the returned variable db from cell 7, line 36. When we print it at line 5, we see the
dictionary containing usernames and passwords for each customer. Similarly, the second variable—

256

Chapter 29. Login database for an online store

number_customers—contains the returned variable n_customers (cell 7, line 36). When we print
number_customers at line 6, we see the dictionary length, which is 3. Let’s look at the other possible
syntax for the outputs.

create the database - single return create the database - single
return

outputs = create_database(customers) outputs is assigned create
database customers

print ("Output tuple:", outputs) print Output tuple: outputs

get and print the database get and print the database

database = outputs [0] database = outputs in position
zero

print ("Database:", database) print Database: database

get and print the number of customers get and print the number of
customers

number_customers = outputs [1] number customers is assigned
outputs in position one

print ("Number of customers:", number_customers) print Number of customers: number
customers

Output tuple: ({'mlopez': '635@0', 'jsmith': '7863', 'mseid': '1953'},3)

Database: {'mlopez': '6350', 'jsmith': '7863', 'mseid': '1953'}

Number of customers: 3
In this second case, we assign both returned variables to a single variable called outputs (line 2). As
we can see from the print (line 3), outputs is a tuple that contains the database and the number of cus-
tomers. As you might recall from Chapter 22, a tuple is a sequence of elements separated by commas
and contained within round brackets. Tuple elements are immutable, which means that we cannot
overwrite, add, or delete any element. However, we can extract the elements by using the same slic-
ing principles that we learned for lists and strings. Thus, to get the dictionary, we slice outputs in
position @ (line 6), and we print it as a check (line 7). Similarly, to get the number of customers, we
slice outputs in position 1 (line 10) and print it as a check (line 11). Obviously, we could have directly
printed the sliced variable in both cases—that is, print ("Database:", outputs [@]) and

print ("Number of customers:", outputs [1]).
Main Function Satellite Functions
first_name | ¢
Inputs customers " last_name nputs
Function create_database() create_username() create_password() Function
Outputs db username password Outputs

n_customers

Figure 29.2. Modular organization of code: Main and satellite functions.

257

Part 8. Functions

Before concluding this Chapter, let’s briefly analyze how we modularized our code with the help of Fig-
ure 29.2. We created three functions, each of them with a different role. The function
create_database()—on the left side of Figure 29.2—is the main function, because it (1) receives the
input for the task to solve—a list of customer first names and last names; (2) performs the flow of
operations needed to solve the task—that is, it creates the database of usernames and passwords;
and (3) provides the final output—that is, it returns the dictionary and the number of customers. In
some coding examples outside this book, you may find that the the main function is actually called
main(). The other two functions—create_username() and create_password()—are satellite func-
tions because each of them performs one specific task. How do main function and satellite functions
interact? Through the flow of inputs and outputs! The main function sends inputs to the satellite
functions—in our case, first_name and last_name are sent to create_username() (orange line in Fig-
ure 29.2)—and receives outputs—username from create_username() and password from
create_password() (yellow lines). The received outputs can then be used to create new variables—
such as the dictionary db in our example—or as inputs for subsequent satellite functions, as you will
see in the coding exercise at the end of the Chapter.

WE'll conclude this chapter with an important note about the joy and difficulties of coding. Most
likely, when you read the task at the beginning of this Chapter and started drafting your own solution,
what came to your mind was somewhat different from the solution you found. Maybe your idea was
more complicated, maybe less structured, or maybe you got stuck and frustrated. Want to know a
secret? The solution that you learned in this chapter did not come out of my mind the way it looks
now. The initial idea was messy, redundant, and at times | was uncertain about what to do. In some
cases, | started with the lines of code that do the actual job and then wrote a function around them.
Other times, when things were very clear to me, | just wrote a function from top to bottom. It required
hours of tweaking, corrections, and adjustments to get the code to be structured, clean, and simple-
looking. So, don't worry if it takes you quite some time before coming to a final, clean solution when
solving a task. That’s normal! Do you remember the In more depth session in Chapter 17 entitled
Writing code is like writing an email? We write a draft solution, then we modify it, then we modify it
again, and again, and finally we arrive at a satisfactory result. The most important thing in coding is
persistence!

e The keyword return has two roles:

m Ittransfersoutput variables from the function body to the function call. When multiple variables
arereturned, they are separated by commas both in the function body and in the function call. In
the latter, they can also be collected into a tuple

m It marks the end of a function. Commands written after return do not get executed

e Tuples are a data type where elements are immutable, meaning they cannot be changed. Tuple
slicing follows the same rules as list (or string) slicing
e Indocstrings, the syntax of returned variables is the same as the syntax of input parameters

258

Chapter 29. Login database for an online store

e Itisimportant to test function correctness by calling them with appropriate arguments
e Aprojectisoften composed of a main function and some satellite functions. The main function exe-
cutes the solution to the whole task, whereas each satellite function executes one specific subtask

Have you ever got None as an output when running a function? The keyword None indicates
that the function has no return. In other words, at the end of the function there is no keyword
return followed by one or more variables. Let’s look at the following example, modified from

cell 4:

impoxt random impoxt random

def create_password (): def create password
"""Create a password composed of Create a password composed of
four random integers four random integers
Returns Returns
password : string password : string

Created password Created password

create a random number with four digits create a random number with four
digits

password = str(random.randint(1000,9999)) password is assigned str random
dot randint 1000 9999

print password print password
print (password) print password

At line 16, we substitute return password with print (password). Let’s see what changes when
calling the function:

password_1 = create_password() password one is assigned create
password
print (password_1) print password one
4883
None

The first print—4883—comes from the command print (password) in cell 4, line 16. The second
print—None—is fromthe command print (password_1) incell 5, line 2. Because we did not return
password at the end of the function body (cell 4, line 16), password_1 will contain the keyword
None, which is what we see when printing at line 2.

259

Part 8.

Functions

1. What does Bill Gates tweet about? Bill Gates is highly active on Twitter (now known as “X”), with

65.7 million followers as of November 2024. But what does he tweet about? To answer this ques-

tion,

in this exercise, you'll learn how to extract the most common words from some text using

basic techniques from natural language processing (NLP), an interesting and challenging compu-
tational field focused on analyzing human language. In exercises a, b, and c, you will implement

some techniques to preprocess text—that is, to clean text for the main analysis—and in exercise d,
you will create the main function to identify the most common words Bill Gates uses.

a.

260

Removing punctuation. When preprocessing text, a common initial step is to remove punctu-
ation. Write a function that, given a string, returns the same string without any punctuation.
Hint: You can use this punctuation string: ! "#$%&'+,-./:;<=>?2@[1/_"{| }~

(Example input: Hello! How are you?

Expected output: Hello How are you)

Converting to lowercase and segmenting into words. The next steps are to standardize all words
to lowercase and to segment the text, that is, to split the text into individual words. Write
a function that, given a string: (1) converts the string to lowercase; (2) segments the text by
splitting itinto a list of words; and (3) returns the list of words. Hint: You only need two string
methods!

(Example input: Hello How are you

Expected output: ['hello', 'how', 'are', 'you'l])

Removing stop words. Another important step in NLP is removing stop words, which are com-
mon words that typically don’t add meaningful information to the text (e.g., prepositions).
Write a function that, given a list of strings, returns the list without stop words. Hint: Use the
following list of stop words: ["all", "how", "to", "what", "are", "the", "a", "of",

1n|| , ||it|| , " .Fl.omn , uandn , n .FOI" , naboutll , n n n n

my", "on", "can"].
(Example input: ['hello', 'how', 'are', 'you'l

Expected output: ['hello', 'you'l])

. Counting the most common words. It’s finally time to answer our question: What does Bill

Gates tweet about? Create a function that calls the previous functions and returns the most
common words in the tweets. More specifically, write a function that, given a list of strings,
(1) executes text preprocessing—that is, removes punctuation, converts to lowercase, seg-
ments text into words, and removes stop words; (2) creates a dictionary in which the keys
are each unique word and the values are their corresponding counts; and (3) returns the 10
most frequent words from the dictionary. Hint: To sort dictionary keys based on their values
you can use the following command:

sorted_keys = sorted (my_dictionary, key=my_dictionary.get, reverse=True)

Use the following list of strings as an input:

tweets = ["Meaningful action from business leaders will require the courage to take risks
that many companies aren't used to taking.",

"Thanks to @andersoncooper, @SeaArtslLectures, and everyone who joined our virtual
conversation about climate change. Great to have so much support from my hometown for this
important work.",

Chapter 29. Login database for an online store

"Great to see this important step as the United States resumes our global leadership on
climate change. Looking forward to working with @POTUS and Congress on a plan to ensure
we reach net zero by 2050.",

"Thanks to @streickercenter for hosting the launch of my virtual book tour. It was great
to hear so many thoughtful questions about what we can all do to help avoid a climate
disaster.",

"When I talk to people about climate change, I almost always get asked the same question:
What can I do to help? Here are some actions individuals can take to move us closer to a
zero-carbon future",

"Thanks for inviting me on the podcast, @karaswisher.",

"Thank you, AlokSharma_RDG. We have a lot of work ahead of us to reach net-zero emissions
by 2050 and avoid a climate disaster. Your leadership of #COP26 is critical. Thanks also
tohowtoacademy, penguinlive and Waterstones for hosting the London stop of my virtual book
tour!",

"It was great to talk with @alroker about my new book and the solutions we need to fight
climate change."

"Thanks for another great conversation @Trevornoah!",

"I wrote How to Avoid a Climate Disaster because I see not just the problem of climate
change; I also see an opportunity to solve it. Here’'s how: http://gatesnot.es/3dh2kQy",
"I had a great time working with @FortuneMagazine on this special digital issue about
climate change. The entire business community has a role to play—and we need to start
now.",

"How to Avoid a Climate Disaster is available now. I hope you'll check out the book,

but more importantly, I hope you'll do what you can to help keep the planet livable for
generations to come: http://b-gat.es/climatebook"]

261

30.

Input validation and output variations

Free ticket at the museum

What happens if we provide wrong inputs to a function? Sometimes the function breaks—meaning we

get an error—and some other times we get a meaningless result. In both cases, it might be difficult to

understand what went wrong. In this chapter, we will learn how to make sure that function inputs are

of the right type and value. In addition, we will also learn how to return outputs in specific cases, that

is, based on conditions or directly as values. Let’s tackle all this through the example below. Follow
along with Notebook 30!

e You work at a museum and have to update the online system to buy tickets. The update is that

people who are 65 and older now qualify for a free ticket. Write a function that asks visitors to

enter their prefix, last name, and age; checks the types and values of these inputs; and returns a

message telling the visitor if they are eligible for a free ticket.

18
19
20
21
22
23
24

25

262

def free_museum_ticket (prefix, last_name,

age):
"""Returns a message containing inputs
and free ticket eligibility based on age

E.g. Mrs. Holmes, you are eligible for a
free museum ticket because you are 66

Parameters
prefix : string
Ms, Mrs, Mr
last_name : string
Last name of a visitor
age : integer
Age of a visitor

Returns

string
Message containing inputs and
eligibility

--- checking parameter types ---

the type of prefix must be string

if not isinstance (prefix, str):
raise TypeError ("prefix must be a
string")

def free museum ticket prefix last
name age

Returns a message containing inputs
and free ticket eligibility based on
age

E.g. Mrs. Holmes, you are eligible for
a free museum ticket because you are
66

Parameters

prefix : string

Ms, Mrs, Mr

last name : string
Last name of a visitor
age : integer

Age of a visitor

Returns

string
Message containing inputs and
eligibility

checking parameter types

the type of prefix must be string
if not isinstance prefix str
raise TypeError prefix must be a
string

Chapter 30.

Free ticket at the museum

26
27
28

29
30
31
32

33
34
35
36
37
38
39

40
41
42
43

44
45
46

47

48
49
50
51
52
53

54
55

the type of last_name must be string

if not isinstance (last_name, str):
raise TypeError ("last_name must be
a string")

the type of age must be integer
if not isinstance (age, int):
raise TypeError ("age must be an
integer")

--- checking parameter values ---

prefix must be Ms, Mrs, or Mr

if prefix not in ["Ms", "Mrs", "Mr"]:
raise ValueError ("prefix must be Ms,
Mrs, or Mr")

last_name must contain only characters
if not last_name.isalpha():
raise ValueError ("last_name must
contain only letters")

age has to be between @ and 125
if age < @ or age > 125:

raise ValueExrror ("age must be between

@ and 125")
--- returning output ---
if age >= 65:

" n

return prefix + + last_name +
", you are eligible for a free museum
ticket because you are " + str(age)

else:
return prefix + ". " + last_name +
", you are not eligible for a free
museum ticket because you are " +
str(age)

True or false?

1. Inthe docstrings, after the description, we can add an example for further clarification T

the type of last name must be string
if not isinstance last name str
raise TypeError last name must be a
string

the type of age must be integer
if not isinstance age int
raise TypeError age must be an integer

checking parameter values

prefix must be Ms, Mrs, or Mr

if prefix not in "Ms" "Mrs" "Mr":
raise ValueError prefix must be Ms,
Mrs, or Mr

last name must contain only characters
if not last name dot isalpha

raise ValueError last name must
contain only letters

age has to be between @ and 125

if age less than zero or age greater
than 125

raise ValueError age must be between 0
and 125

returning output

if age greater than 65

return prefix concatenated with dot
space concatenated with last name
concatenated with you are eligible
for a free museum ticket because you
are concatenated with str age

else

return prefix concatenated with dot
space concatenated with last name
concatenated with you are not eligible
for a free museum ticket because you
are concatenated with str age

-n

2. Thebuilt-infunction isinstance() checks a variable type and returns an integer T F

3. raise TypeError() and raise ValueError() stop the function and provide an error T F

message

4. raiseisafunction

5. intandstrarethesameasint() andstr()

263

Part 8. Functions

Let’s beginto analyze the function by taking alook at what it does. In the docstring description, we see
that the aim of free_museum_ticket () is to return a message composed of a concatenation of the in-
puts and the eligibility for a free ticket based on age (line 2). The description is followed by a message
example, for further clarification (line 3). Adding an example is good practice to make the function
outcome more quickly and easily understood. Let’s continue by looking at the inputs. The function
has 3 parameters: prefix, last_name, and age (line 1), whose types and values are described in the
documentation (lines 5-12) and further checked in the first 6 blocks of code (lines 20-47). The blocks
have asimilar structure, composed of anif condition followed by a raise statement. Let’s have acloser
look. The first three blocks check the parameter types (lines 20-32). In the first block (lines 22-24),
we check if the first parameter prefix is a string. To do so, we write an if condition (line 23) com-
posed of (1) the keyword if, (2) the logical operator not, and (3) the built-in function isinstance(),
which checks if avariable is of a specific type. It takes 2 parameters: the variable to check—prefix—
and the wanted type—that is, str. Other possibilities for type are int, 1ist, dict, etc. Types are not
followed by round brackets and should not be confused with the built-in functions str (), int(), etc.
The function isinstance() returns a Boolean, that is, True if the variable is of the desired type—e.g.,
if prefixis a str—and False otherwise. Why do we use the logical operator not in the if condition? To
make the condition true when we want it to be executed. In Boolean terms, we can say that if prefixis
not a string, then the command if not isinstance () becomesif not False, which is the same as
if True (see Chapter 19), and thus the following statement gets executed. The statement is com-
posed of (1) the keyword raise, which stops the function, and (2) the built-in exception TypeErrorx (),
which specifies the nature of the error—type—and provides a message indicating what must be done
to avoid the error (line 24). To see the effect of these lines of code, let’s call the function using the
wrong type for prefix and analyze what happens.

checking prefix type checking prefix type
message = free_museum_ticket (1, "Holmes", 66) message is assigned free
museum ticket one Holmes 66
print (message) print message
TypeError Traceback (most recent call last)

Cell In[2], line 2
1 # checking prefix type

————> 2 message = free_museum_ticket(1l, "Holmes", 66)
3 print (message)

Cell In[1], line 24, in (prefix, last_name, age)
20 # --- checking parameter types ---
21

22 # the type of prefix must be string
23 if not isinstance (prefix, str):
————> 24 raise TypeError ("prefix must be a string")
25
26 # the type of last_name must be string
27 if not isinstance (last_name, str):

TypeError: prefix must be a string

264

Chapter 30. Free ticket at the museum

Weuse 1forprefix—thatis,anintegerinstead of astring—and correct typesfor last_name—astring—
and age—an integer—to test one parameter at the time (line 2). We assign the function output to the
variable message, and we print it (line 3). We get an error message. Let’s dig deeper! As usual, we
start from the last line. Here, we read the type of exception—TypeError()—and the string we wrote
as an argument—prefix must be a string. Do you remember seeing type errors before? In the In
more depth sections of Chapter 9, entitled Dealing with TypeError, and Chapter 14, entitled Don’t name
variables with reserved words!, we learned how to read type error messages and how to fix the code
to avoid them. Now, we know what’s behind the scenes, that is, how to create a TypeError message!
We've learned quite a lot since then, haven't we? Let’s complete the analysis of the error message by
looking at the arrows pointing at specific lines of code. The top arrow points at line 2 of cell 2, telling us
where the error happens in the current cell—that is, where we called the function. The second arrow
points at line 24 of cell 1, whichis where the error originated, that is, where we raised the TypeError ().
Note that since the error happens at cell 2 and thus the code stops, we do not see any print because
the command at line 3 is not executed.

Let’s continue by checking the type of the second parameter last_name (lines 26-28). As for prefix,
last_name must be a string. Thus, we simply reuse the commands at lines 23-24, substituting prefix
with last_name in the if statement (line 27) and in the TypeError() message (line 28). Let’s test
whether the type error works, by calling the function with the wrong type for 1ast_name—starting
from this cell, only the relevant part of the error message is reported from brevity.

checking last_name type checking last name type

message = free_museum_ticket ("Mrs", 1.2, 66) message is assigned free

museum ticket Mrs 1.2 66
print (message) print message

Cell In[3], line 2
————> 2 message = free_museum_ticket("Mrs", 1.2, 66)

Cell In[1], line 28, in (prefix, last_name, age)
27 if not isinstance (last_name, str):
=——==> 2 raise TypeExror ("last_name must be a string")

TypeError: last_name must be a string

As expected, in the last line of the message, we get TypeError: last_name must be a string, which
isthe error that occurred at line 2 of the current cell, and originated at line 28 of cell 1.

Let’s conclude the check of the parameter types with age (lines 30-32). In this case, the parame-
ter must be an integer, not a string. Thus, in the built-in function isinstance(), the two inputs are
the variable age and the type int (line 31). In TypeError(), the message becomes age must be an
integer (line 32). Let’s test the correctness of this code with the following function call.

265

Part 8. Functions

checking age type checking age type

message = free_museum_ticket ("Mrs", "Holmes", "Hi") message is assigned free
museum ticket Mrs Holmes Hi

print (message) print message

Cell In[4], line 2

————> 2 message = free_museum_ticket("Mrs", "Holmes", "Hi")

Cell In[1], line 32, in (prefix, last_name, age)
31 if not isinstance (age, int):

=== 2 raise TypeExrror ("age must be an integer")

TypeError: age must be an integer

We enter the string "Hi" as the third parameter. As expected, the error occurs at line 2 of cell 4 and
originated at line 32 of cell 1.

The following three blocks of code of free_museum_ticket () check the parameter values (lines 35-
47). Similarly to before, each block contains an if construct composed of an if condition and a state-
ment raising an exception. In the condition, we assess the parameter values by establishing some
criteria specific to the context of the task. For example, for prefix, we establish that the possible
values are "Ms", "Mrs",or "Mx". Thus, we enclose the three strings into a list, and we check if the value
of prefix is in that list (line 38). If not, we raise a ValueErrox () in the following statement (line 39).
ValueError() is the exception specific for value errors, and it works the same way as TypeError().
Within the round brackets, we write a message indicating what must be done to avoid the error—in
our case, prefix must be Ms, Mrs, or Mr. Let’s check what happens when raising the value error
for prefix in the following function call.

checking prefix value checking prefix value
message = free_museum_ticket ("Dr", "Holmes", 66) message is assigned free

museum ticket Dr Holmes 66
print (message) print message

Cell In[5], line 2

————> 2 message = free_museum_ticket("Dx", "Holmes", 66)

Cell In[1], line 39, in (prefix, last_name, age)

38 if prefix not in ["Ms", "Mrs", "Mr"]:

=== 2 raise ValueError ("prefix must be Ms, Mrs, or Mr")

ValueError: prefix must be Ms, Mrs, or Mr
For prefix, we use "Dr", which is not in the list of possible values, ["Ms", "Mrs", "Mr"]. Thus, we
get a value error, as the message in the last line specifies. The error happens at line 2 of cell 5 and

originated at line 39 of cell 1, as we can see from the two arrows in the pink area.

Let’s continue with checking the possible values for 1ast_name. What condition should we use? Should
we list all the possible last names in the world? What if some are not registered or new? In cases
like this, we can look into the types of characters composing the string. For last names, we can re-
quire that all the characters are letters of the alphabet and, to do so, we can use the string method
.isalpha()(line 42)—for simplicity, we’'ll consider only last names composed of characters and not
containing punctuation, such as O’Connor, or a space, such as Garcia Lopez. In other contexts, we can
perform the check using methods such as .isalpha(), .isdigit(), .isalnum(), .islower(),
.isupper(), .istitle()—see Chapter 27—dependingonthe characteristics that the string must have.

266

Chapter 30. Free ticket at the museum

If the condition is not met, then we raise a value error saying that the last name must contain only
letters (line 43). Let’s test the execution of these two lines of code by calling the function with an
incorrect value for 1ast_name.

checking last_name value checking last name type

message = free_museum_ticket ("Mrs", "82", 66) message is assigned free
museum ticket Mrs 82 66

print (message) print message

Cell In[6], line 2

————> 2 message = free_museum_ticket("Mrs", "82", 66)
Cell In[1], line 43, in (prefix, last_name, age)
42 if not last_name.alpha()
————> 43 raise ValueErroxr ("last_name must contain only characters")

ValueError: last_name must contain only letters

In the function call (line 2), we use the string "82" for 1last_name. We get the value error with the
message that we entered at line 43 incell 1.

Let’s finally check the value of the last parameter age. What constraint should we use this time? One
reasonable option is to raise a value error if age is not within the range of a human lifetime. How do
we define the range? The minimum is obviously O years old. What about the maximum? According to
Wikipedial, the oldest person ever was Jeanne Calment who died when she was 122 years and 164
daysold! So, we can keep a bit of margin and define 125 as the maximum. Therefore, we check if age is
less than O or greater than 125 (line 46). If so, we raise the ValueErrox () with the message suggesting
the proper age range to use (line 47). Let’s test these commands by calling the function with an age

out of range!
checking age value checking age type
message = free_museum_ticket ("Mrs", "Holmes", 130) message is assigned free
museum ticket Mrs Holmes 130
print (message) print message

Cell In[7], line 2

————> 2 message = free_museum_ticket("Mrs", "Holmes", 130)

Cell In[1], line 47, in (prefix, last_name, age)
46 if age < @ or age > 125:

=3 A7 raise ValueError ("age must be between @ and 125")

ValueError: age must be between @ and 125

In the function call (line 2), we provide the integer 130 for the parameter age, and we get the value
error that we created at line 47 of the function, as expected.

At this point, you might ask yourself: do | have to implement the input check in every function | write?
Nope! In Python, we assume that the docstrings clearly indicate expected type and value of the pa-
rameters and that a coder passes valid arguments to a function. So, why did we learn it? Because a
parameter check is useful in main functions or when there are user-provided inputs—for example,
when using the built-in function input (), as you will see in the coding exercise at the end of this chap-
ter.

1https://en.wikipedia.org/wiki/List_of_the_verified_oldest_people

267

https://en.wikipedia.org/wiki/List_of_the_verified_oldest_people

Part 8. Functions

Let’s conclude by analyzing the returns. In free_museum_ticket (), we return different outputs based
on conditions (lines 50-55). To do that, we use an if/else construct where each statement contains
the keyword return. If the age of the visitor is greater than or equal to 65 (lines 52), then we return the
stringindicating the eligibility to a free ticket (line 53), otherwise (line 54) we return a string indicating
theineligibility to afree ticket (line 55). As you might remember from the previous chapter, return not
only “pushes” the variable out of a function, but it also stops the function. Thus, any command follow-
ing the executed return statement (line 53 or 55) will never be executed. In this function, we also di-
rectly return a value without creating an intermediate variable—this can be done in any function. In
other words, we do not create a variable called message to which we assign the concatenation prefix
+ ". "+ last_name + ", you are eligible for a free museum ticket because you are " +
str(age), and then return it as return message. We directly return the concatenation. Note that in
the docstrings we only indicate the type—string—as there is no variable name (line 16).

Let’s conclude by calling the functions with the correct input types and values to test the correctness
of the two returns.

person is eligible person is eligible
message = free_museum_ticket ("Mrs", "Holmes", 66) message is assigned free
museum ticket Mrs Holmes 66

print (message) print message
Mrs. Holmes, you are eligible for a free museum ticket because you are 66

person is not eligible person is not eligible

message = free_museum_ticket ("Mrs", "Choi", 38) message is assigned free
museum ticket Mrs Choi 38

print (message) print message
Mrs. Choi, you are not eligible for a free museum ticket because you are 38
In both cells, the inputs pass the type and value checks, thus the function executes the code and re-
turns a message according to age. In the first case (cell 8), the age is 66 (line 2)—which is greater than
65—so the visitor is eligible for a free ticket. In the second case (cell 9), the age is 38 (line 2)—which is
less than 65—so the visitor is not eligible for a free ticket.

Review what you have learned in this chapter with the following exercise:

1. raiseisa a. built-in function
2. TypeError() andValueError() are b. keyword

3. intisa ¢. built-in function
4. int()isa d. exceptions

5. isinstance()isa e. type

268

Chapter 30. Free ticket at the museum

e We implement parameter checks in main functions or in presence of external inputs. The check is
executed using an if/else construct. In the if condition:

m When checking a type, we use the logical operator not followed by the built-in function
isinstance(), whose parameters are the variable to check and the wanted type. Possible types
are str, int, list, dict, etc.

» When checking a value, we have to define constraints. We can use membership to a list, variable
methods—such as .isalpha() for strings—or intervals for numbers

Inthe statement, we use raise followed by the exception TypeError() or ValueError() with a mes-

sage indicating how to avoid the error

e When we want to return different outputs based on conditions, we can use an if/else construct
where the statements contain the keyword return followed by the wanted output

e ltis possible to return values instead of variables. In this case, in the docstrings we indicate only
the type

e Indocstrings, it is possible to write an example after the function definition to enhance clarity

As you learned in this chapter, raise TypeError() and raise ValueError() stop the func-
tion and provide an error message. But what if we do not want to interrupt the flow of
our code? Imagine that free_museum_ticket() is a satellite function called by the main
function within a larger project. Every time the type or value of an input is not correct,
free_museum_ticket () stops, displays the “pink” error, and the flow of the whole project is in-
terrupted, creating inconvenience. What can we do to avoid that? One possibility is to make
the satellite function provide a Boolean as a return. For example, line 24 of the first block of
code of free_museum_ticket () could be modified as following:

the type of prefix must be string the type of prefix must be string
if not isinstance (prefix, str): if not isinstance prefix str
return prefix, False return prefix False

The main function—which calls free_museum_ticket ()—would receive both prefix and False,
indicating that there is something wrong about prefix. Then, the following code in the main
function could handle the situation by asking the user to reenter a correct prefix. The coding
exercise at the end of this chapter—especially point c—contains a more complete example of
this concept. So, let’s start coding!

269

Part 8.

Functions

1. Let’s play hangman! Everybody knows hangman! It is a game where the aim is to guess a hidden

word by suggesting letters. You have all the knowledge to implement hangman by yourself! Think
about the task you have to implement (divide!) and go for it (conquer!). You can then compare
your implementation with the one suggested in the following exercises. The first three exercises

will invite you to implement satellite functions, each of them representing a sub-task. The last

function will suggest how to write the main function.

a.

Pick a random word. Create a satellite function that given a list of words, returns a randomly

selected word in lowercase.

(Example input: ["spoon", "Fork", "KNIFE"]

(Example output: "fork")

Show the guessed letters. Create a satellite function that given a word and a guessed letter,

shows the word with the guessed letter revealed inits correct positions, whereas the remain-

ing, unguessed letters are shown as underscores.

(Example input: ("1", "hello")

Exampleoutput: _ _ 11 _)

Check the user input. Create a satellite function that takes a string as an argument and re-

turns the same string in lowercase and a Boolean, which is True if the string is a letter, and

False otherwise. In addition, the function prints specific messages depending on the input

string. If the string:

e Is composed of multiple letters, print: Please, enter a single letter

e |s composed of one or more numbers, print: Please, enter a letter not a number

e Iscomposed of a combination of letters and numbers, print: Please, enter a letter, not a com-
bination of letters and numbers

e Contains a symbol, print: Please, enter a letter, not a symbol

(Example input: e1

Example output: el, False

Hint: Which strings methods will you use? See the table in the appendix of Chapter 27)

d. Assemble the hangman game. Create a main function that given a list of words:

270

e Randomly chooses a word from the list

e Displays the word with missing letters

e Asks the player for a character. If the character is a valid letter, then the game continues;
otherwise, the player is prompted until they enter a valid letter

e Checks for repeated guesses. If the player had already guessed that letter, print the mes-
sage You already guessed this letter. Choose again!

e Checksifthe letterisin the word, and updates the word accordingly. Make sure to update
also when letters are double (e.g., double "1" in "hello")

e Keeps asking for a new letter until the word is complete

e At the end, congratulates the player and asks them if they want to play again. If so, the
game restarts with a new word, otherwise the game stops.

(Exanuﬂeinput:[“garden", "cave", "quilt", "bubble", "secretary", "1ight"ﬂ

31. Factorials

Recursive functions

In this chapter, you will learn a particular type of function called recursive functions. They can be chal-
lenging to understand and implement, but they are very useful in certain situations, as you will see.
To better understand how recursive functions work, let’'s compute factorials. Have you ever heard of
them? A factorial is the product of all positive integers that are less than or equal to a given positive
integer. For example, the factorial of 4 is 24, calculated as 1x2x3x4—or 4x3x2x1. How would you
write a function that calculates the factorial of an integer? Write your own function before looking

at the proposed solution below. You will find the code for this chapter in Notebook 31.

e Write a function that calculates the factorial of a given integer using a for loop:

1 def factorial_for (n): def factorial for n
2 """Calculates the factorial of a given Calculates the factorial of a given
integer using a for loop integer using a for loop
3
4 Parameters Parameters
58 @00 -
6 n : integer n : integer
7 The input integer The input integer
8
9 Returns Returns
10 @ -------
11 factorial : integer factorial : integer
12 The factorial of the input integer The factorial of the input integer
13 e
14
15 # initialize the result to one initialize the result to one
16 factorial = 1 factorial is assigned one
17
18 # for each integer between 2 and for each integer between two and the
the input integer input integer
19 for i in range (2, n+l): for i in range two n plus one
20 # multiply the current result multiply the current result by the
by the current integer current integer
21 factorial *= i factorial multiply by and reassign i
22
23 # return the result return the result
24 return factorial return factorial
25

26 # call the function call the function
27 fact = factorial_for(4)
28 print (fact)

24

fact is assigned factorial for four
print fact

Does your implementation look similar to the one above?

271

Part 8.

Functions

e Compare the previous iterative function with the following recursive function:

def factorial_rec (n):

"""Calculates the factorial of a given
integer using recursion

Parameters
n : integer
The input integer

Returns
integer
The factorial of the input integer

if integer is greater than 1
if n > 1:
execute the recursion
return factorial_rec(n-1) * n
otherwise
else:
return 1
return 1

call the function
fact = factorial_rec(4)
print (fact)

def factorial rec n

Calculates the factorial of a given
integer using recursion

Parameters

n : integer
The input integer

Returns

integer
The factorial of the input integer

if integer is greater than 1

if n is greater than 1

execute the recursion

return factorial rec n minus one times n
otherwise

else

return one

return one

call the function
fact is assigned factorial rec four
print fact

What similarities and differences do you notice between the two functions? Get some hints while

solving the following exercise!

True or false?

1. Both functions have one parameter and one return

>

Both function contain a for loop
In the recursive function, there is only one return statement in the if/else construct
We can call a function in the same cell where we write the function

Computational thinking and syntax

- = 4 -

m M M m

Let’s start by analyzing the function factorial_foxr() incell 1. Inthe docstrings, we see that the input

is an integer called n—as in number—(lines 4-7) and the output is another integer called factorial
(lines 9-12). In the function body, we first initialize the output factorial to 1 (line 16). Then, we
create a for loop where the index i will be assigned all the consecutive numbers from 2 to the input

number n plus 1 (line 19)—do you remember the plus one rule for the stop in range () from Chapter
8? Within the loop, we calculate the product between the current value of factorial and the cur-

272

Chapter 31. Factorials

rent value of i, and we reassign the result to factorial (line 21). Let’s quickly go through the three

iterations for more clarity:

e Inthe firstiteration, factorialis 1 andiis 2, so the result of factorial*i—thatis, 1*2—is 2, which
is reassigned to factorial

e In the second iteration, factorial is 2 and i is 3, so the result of factorial*i—that is, 2*3—is 6,
which is reassigned to factorial

e Inthethirditeration, factorialis6andiis4,sotheresult of factorial*i—thatis, 6*4—is 24, which
is reassigned to factorial—and is the final value.

We conclude the function by returning factorial (line 24). To test the function, we call it with the

number 4 as an input, and we assign the returned value to the variable fact (line 27), which we print

in the following command (line 28). Note that a function code and call can be in the same cell for con-

venience. In general, we call functions like factorial_for () iterative functions because they contain

a loop to repeat some parts of their code.

Let’s now move to the recursive function factorial_rec() (cell 2) and identify similarities and differ-
ences with factorial_foxr() (cell 1). From the docstrings, we see that the function takes an integer
n as an input (lines 4-7)—similarly to factorial_ for()—and returns a value as an output (lines 9-
12)—differently from factorial_fox (), which returns the variable factorial. The main difference is
in the function body, where factorial_for() contains a for loop, whereas factorial_rec() contains
anif/else construct (lines 15-22). In this construct, if nis greater than 1 (line 16), we return the output
of factorial_rec() calculated for the consecutive smaller integer—that is, n-1—multiplied by n (line
18), otherwise (line 20), we return 1 (line 22). Noticed anything unusual? In the first statement (line
18), we call factorial_rec() itself! This is because a recursive function is a function that calls it-
self several times, until it reaches a base case. In other words, recursive functions create a cascade
of function openings and executions until a certain point where the path is reversed to return the
outputs and close the functions. Let’s understand this mechanism better with the help of Figure 31.1.

fact = factorial_rec(4)

4
def factorial_rec(n):

if n > 1:
3 4 .
return factorial_rec(n-1) % n def factorial_rec(n):
eUSe: if n > 1:
2 B et factorial_rec(n):
@ return 1 return factorial_rec(n-1) * n SUREaCEO LAl SLECHIL

2
: if 1:
- A - else: wn= 0

1 2 .
return 1 return factorial_rec(n-1) * n def factorial_rec(n):

E _ . ellser if n > 1:

wl return factorial_rec(n-1) * n
= else:

*
Way down - calling the function

(d) return 1
. Way up - returning the output

273

Part 8. Functions

Figure 31.1 contains four major components. First, there is the initial function call
fact = factorial_rec(4) (correspondingtoline 25incell 2)—see the top left of Figure 31.1. Second,
there are four simplified representations of factorial_rec() in cascade, each of them contained in a
gray rectangle and indicated as (a), (b), (c), and (d), respectively. Third, there are orange arrows and nu-
merical squares representing the “way down”, that is, the consecutive openings of several
fact = factorial_rec() withtheir currentinputs. And fourth, there are black arrows and numerical
squares constituting the “way up”, that is, the return of the outputs and the closure of the functions.

Now, let's see how these components interact with each other. When we call

fact = factorial_rec(4),webeginthe“waydown’—asindicated by thefirst, straight orange arrow—

and open a cascade of functions as follows:

e In (a), n is 4—that is, the initial input—thus the header of the function is def factorial_rec(4).
The if conditionis if 4>1, which is true, so we move to the following statement containing the call
factorial_rec(3)—3 is calculated from n-1, that is, 4-1. From here, we follow the orange arrow
and move to (b), leaving the function open in (a) and temporarily disregarding all its remaining code

e In (b), nis 3, so the header is def factorial_rec(3). The if condition is now if 3>1, which is true
again, so we move to the following statement where we call factorial_rec(2). Thus, we follow the
orange arrow and move to (c), leaving the function open in (b) and temporarily disregarding all its
remaining code

e In(c),nis 2, thus the headeris def factorial _rec(2). Theif conditionisif 2>1, whichistrue once
more, so we move to the following statement where we call factorial_rec(1). Again, we follow
the orange arrow and move to (d), leaving the function open in (c) and temporarily disregarding all
its remaining code

e In (d), nis 1, thus the header is def factorial_rec(1). The if condition is if 1>1, which is false!
Therefore, we skip the statement under the if and we directly go to the statement under the else,
which says return 1.

We have reached the so-called base case. At this point, we start the “way up”. Let’s go through the

black numerical squares and arrows to collect the returned values and close the functions:

e In(d), the returnis 1 and we pass it to the function call in (c), as indicated by the black arrow. The
functionin (d) is terminated

e In (c), we complete the return statement under the if conditions—that s,
return factorial_rec(1)*2. Thus, we multiply the output of factorial_rec(1),—whichis 1 from
(d)—by 2, obtaining 2, which we pass to the function call in (b), as indicated by the black arrow. The
function in (c) is terminated

¢ In(b), we complete again the return statement under the if conditions. Thus, we multiply the output
of factorial_rec(2),—whichis 2 from (c)—by 3 and we obtain 6, which we pass to the function call
in (a), as indicated by the black arrow. The function in (b) is terminated

e Finally, in (a), we complete the return statement under the if condition for the last time. We multi-
ply the output of factorial_rec(3),—which is 6 from (b)—by 4, obtaining 24, which we pass to the
output variable fact in the initial call, as indicated by the last black arrow. The function in (a) is
terminated, as well as the whole recursion.

274

Chapter 31. Factorials

Now that the functioning mechanism is clear, let’s briefly formalize the syntax of recursive functions.
They typically contain an if/else construct where statements return or print a value. One of the two
statements is called base case because it ensures that the recursion will stop—in our example, return
1 (line 22). The other statement is called recursive case because it contains a call to the function
itself—in our example, return factorial_rec(n-1)*n (line 18).

Let’s conclude with some advantages and disadvantages of recursive functions. On the one hand,
recursive functions contain compact code and are appropriate when solving intrinsically recursive
problems—see the In more depth session at the end of this Chapter. On the other hand, they are com-
putationally expensive because each call occupies space in memory, which is released only when
closing the functions during the “way up”. Finally, recursive functions can be challenging to debug.

Iterative functions contain a loop to repeat some code

Recursive functions call themselves to repeat some code

Recursive functions typically contain an if/else construct, where one statement is the base case,
and the other is the recursive case

Recursive functions contain compact code and are appropriate for intrinsically recursive problems.
However, they use a large amount of computational memory and can be harder to debug

Recursive functions are helpful to solve intrinsically recursive problems, that is, when re-
peated patterns are present. Examples include the calculation of factorials—as you learned
in this Chapter; computations of Fibonacci numbers—see the coding exercise below; and algo-
rithmstosearch charactersinastring—behind methods like . find () there are usually recursive
functions. Another common recursive problem is traversing decision trees, which are sort of
flowcharts used to make consecutive decisions among defined alternatives. Nowadays, they
are very popular as they are one of the most valid algorithms in machine learning. As an exam-
ple, let’s have a look at Figure 31.2. In this decision tree (top left), we have to decide where to
go this weekend, and we must choose among three options: Park, Movie Theater, or Stay Home.
After this first choice—for example, Park—we must make another more detailed choice—that
is, between Walk and Picnic. At each step of the tree, we repeat the same recursive action—that
is, taking a choice—that can be conveniently represented by a recursive function—see a simpli-
fied example in Figure 31.2 (bottom). Why are decision trees called as such? Because if we turn
them upside down, the starting point is like the roots of a tree, the paths through intermediate
options are like branches, and the final options are like leaves—see Figure 31.2 (top right).

275

Part 8.

Functions

Where do I go this
weekend?

Movie
Theater

Walk Picnic RosEg Sfptieler= Cooking | |Gardening
Hill Man
1 def browse_activities (activity, activities, indent=0):
2
3 Recursively browse the activities dictionary and print its content
4
5 Parameters
5 =
7 activity : string
8 The current activity to be printed and explored
9 activities : dictionary
10 A dictionary where keys are activity names and values are lists of sub-activities
11 indent : integer
12 The number of spaces used for indentation when printing (default is @)
13
14
15 # print the current activity
16 print(" " % indent + activity)
17
18 # if the activity has sub-activities (that is, the value is not an empty list)
19 if activitieslactivity] != [1:
20 # for each sub-activity
21 for sub_activity in activities[activity]:
22 # recall the function
23 browse_activities(sub_activity, activities, indent + 2)
24 # otherwise
25 else:
26 # stop recursion (base case)
27 return

28
29

30 # input decision tree as a dictionary

31 activities = {

32 "Weekend activity": ["Park", "Movie Theater", "Stay Home"l,
33 "Park": ["Walk", "Picnic"],

34 "Movie Theater": ["Notting Hill", “Spider-Man"l,

35 "Stay Home": ["Cooking", "Gardening"l,

36 "Walk": [1,

37 "Picnic": [1,

38 "Notting Hill": [],

39 "Spider-Man": [I,

40 "Cooking": (I,

4 "Gardening": [1}

42

43 # call the recursive function
44 browse_activities("Weekend activity", activities)

Weekend activity

Park
Walk
Picnic

Movie Theater
Notting Hill
Spider-Man

Stay Home
Cooking
Gardening

Figure 31.2. Example of decision tree (top left); upside-down version of the decision tree to illustrate
the similarity to a natural tree (top right); and simplified code to traverse the decision tree (bottom).

Let’s code!

1. Fibonacci numbers. You might remember that the Fibonacci sequence is an infinite sequence of
numbers where each number is the sum of the two previous numbers.

a. Modify the code you implemented in Exercise 6 of Chapter 14 into an iterative function that,
given a positive integer, returns the Fibonacci number in that position—and not the whole
sequence! Make sure to check the input type.

276

(Example input: 15
Example output: 610)

b. Re-implement the function above into a recursive function. Hint: this implementation has 2

base cases!

In Part 8, we have learned how to write functions, organize them in projects, handle their inputs and
outputs, and implement recursion. We also mentioned that functions are a useful way to reuse code
because by calling them we avoid copy/pasting long sequences of commands multiple times. But what
if we need the same function in more than one notebook? We obviously don’t want to copy/paste it
across notebooks! The solutionis to use Python modules. In this chapter, you will learn how to create
amodule, how toimportitinto a notebook and use its functions, and how to modify it. In other words,
you will learn a new way of working! As an example, we will reuse the functions to create username,
password, and a database that we implemented in Chapter 29. Follow along with Notebook 32! On
the website, you will also find the whole module that we will build in this chapter.

Do you remember what amoduleis? In Chapter 15, while learning about random, we defined a module
as a unit containing functions for a specific task. Let’s now refine this definition to be more precise,
as follows:

A module is a file containing functions for a specific task and whose extension is .py

Let’s jumprightin and create amodule! The first thing to do is to open an integrated development en-

vironment (IDE)1. As we mentioned in the Introduction of this book, there are several IDEs, all equally

valid. Out of convenience, we will use Spyder because it is part of the suite of tools offered by Ana-

conda. Open Anaconda and double click on the Launch button in the Spyder tile—box 1 in Figure 32.1.

Spyder will open, and you should see something very similar to the graphical user interface (GUI) rep-

resented in Figure 32.1 (right). On the left side of the GUI, there is a panel to browse and edit modules

(box 2). In this case, there’s only one open module, named the default untitledO.py (box 3). When using

modules, we can perform standard file actions using mouse clicks or keyboard shortcuts, such as:

e Close a module: Click on the x on the left side of the file name (box 3); or click on File (box 4), and
then Close

e Create a new module: Click on the New file icon (box 5); or click on File (box 4), and then New file; or
press command if you are on Mac—control if you are on Windows—and the letter N simultaneously
on the keyboard

e Save a module: Click on the Save file icon (box 6); or click on File (box 4), and then Save; or press
command if you are on Mac—control if you are on Windows—and the letter S simultaneously on the
keyboard.

Try to open, create, and save one or more modules to get familiar with them.

Modules can also be opened in JupyterLab by clicking on File, New, and Python File. However, IDEs are usually preferred
when working with modules

277

Part 8. Functions

{0 ANACONDA NAVIGATOR

ece Pythan nn Soursa n Dobig Consos Profocts Tools View Hlp

Applicationson | base (roo) <] Pe

No variables to show

Fles. Expl l

Col1 UTF-8 LF RW MemB8a%

Figure 32.1. Spyder launcher in Anaconda (left) and Spyder graphical user interface (right).

Now, let’s create a module for the setup of a database of usernames and passwords. Create a new
module file—using mouse clicks or keyboard presses, as you have just learned. Save the module as
setup_database.py in the same folder as Notebook 32. The rules for module naming are the same
as for variable naming—lowercase and word separation by underscore. You should get something
similar to what is shown in box 1 in Figure 32.2.

Python File Edit Search Source Run Debug Consoles Projects Tools View Help
00 Spyder (Python 3.9)
[] [0 2 @ .../se aretti/lpwj/notebooks/setup_database. py
../serenabonaretti/1pwj/notebooks/setup_database. py .

0 % setup_database.py Name = Type

username str csailor

6

Help Variable Explorer Debugger | Plots | Files

O x console 1A

Python 3.9.6 (default, Oc
Type " , “credits" or "li e information.

5

IPython Console History

b Inline Custom: usr (Python 3.9.6) v LSP: Python Line1,Col23 UTF-8 LF RW Mem 84%

Figure 32.2. Function call from a module in Spyder.

The module starts with two default comments containing information for our computer (lines 1 and
2)—you can keep or delete them, as you wish. Then, there are the docstrings containing the mod-
ule documentation (lines 3-9). Like for functions, module docstrings are enclosed in double quotes

278

Chapter 32. How can I reuse functions?

repeated three times. Spyder automatically creates docstrings, and you can edit them as you wish.
In their default version, they contain the date of the file creation (line 4) and the name of the author
(line 6). We add a simple description of the module content for completeness (line 8). Paste the func-
tion create_username() from Chapter 29 below the docstrings (lines 11-33). Congratulations, you
have just created your first module!

Canwe execute create_username () directly in Spyder? Yes! First, we need to click the Run file button
(box 2)—this is one of several convenient methods. By doing so, the folder where the file is saved (box
3) and the working folder—that is, where the code is executed—(box 4) become the same, making
the content of the module available. Then, we move to the IPython console (box 5)—or simply con-
sole. There, we call the function by typing username = create_username("Chris", "Sailor") and
we press enter on the keyboard to execute the code—differently from Jupyter Notebook where we
press shift enter. In the following line, we type print (username), press enter, and see the username
csailor printed to screen. As you might have noticed, each coding line starts with In []:, where
Instandsforinput and the square brackets [] contain the order of execution of the current command,
asifitwas a Jupyter Notebook cell. This is because IPython is a precursor of Jupyter Notebook—and
is still its basic engine. Obviously, in the console you can write any Python command as you would in
a Jupyter notebook! Finally, in Spyder, we can keep control of the created variables in the Variable
Explorer (box 6). In our case, we have only one variable whose name is username, type is str, size is
7—that is, it is composed of seven characters—and value is csailor. Try creating new variables in the
console and then take a look at how they are represented in the Variable Explorer!

Let’s go back to our notebook and call create_username() from there! We need to (1) import the
module and (2) call the function. There are four ways to doit. Let’s go through them!

e Import the module as is, then call the function:

impoxt setup_database import setup database
username = setup_database.create_username (username is assigned setup database dot
"John", "Gelb") create username John Gelb
print (username) print username
jgelb

We import the module using (1) the keyword import followed by (2) the module name without the
extension .py (line 1). By doing this, we essentially instruct Python to locate the file setup_database.py
and make its content available in the current notebook. Now, we can call the function. The syntax is
(1) module name, (2) dot, and (3) function name —as in setup_database.create_username() (line 3).
We complete the function call by addingits arguments—"John" and "Gelb"—and we assign the output
to the variable username, which we print to check for correctness (line 4). Does this syntax remind you
of anything? These are the rules that we learned for the module random (Chapter 15), which—now,
you know!—is simply a file called random.py hosted in a folder somewhere on your computer. To im-
portthe random module, we write import random,and tocallitsfunctionswetype random.randint() or
random.choice(), as we do for any other module. As you can see, we are unveiling more and more se-

279

Part 8. Functions

crets of Python!

e Import a module and create an alias, then call the function:

import setup_database as sdb import setup database as sdb
username = sdb.create_username ("John", "Gelb") username is assigned sdb dot create
username John Gelb
print (username) print username
jgelb

When the module name is long, it can be tedious to retype it every time we call a function. To over-
come this, we can use an alias—usually an an abbreviation. In our example, we import the mod-
ule setup_database and we rename it as sdb (line 1). The syntax is (1) keyword import, (2) module
name, (3) keyword as, and (4) alias. Then, we call the function (line 3) using (1) alias—instead of the
full name—(2) dot, and (3) function name—that is, sdb.create_username(). Like before, we add the
arguments—"John" and "Gelb"—and we assign the output to username, which we print to check for
correctness (line 4). Note that the use of aliases is especially common when using Python packages—
you might have seen import pandas as pdor import numpy as np. Packages are just collections of
modules—that is, of files ending in .py—and whose imports and function calls work the same way as
for modules.

e Import one single function from a module, then call the function:

from setup_database import create_username from setup database import create
username
username = create_username ("John", "Gelb") username is assigned create username
John Gelb
print (username) print username
jgelb

We consider the case where we need only one function from a module that contains several
functions—we will see how to create such modules in a bit. Importing the entire module could oc-
cupy excessive space in memory that instead we want to use for computations. Thus, we import only
one single function by writing (1) keyword from, (2) module name, (3) keyword import, and (4) function
name without round brackets (line 1). To call the function, we directly use the function name without
the module name (line 3). Finally, we print to check the function output (line 4).

e Import the function from a module and create an alias, then call the function:

from setup_database import create_username as cu from setup database import create
username as cu

username = cu ("John", "Gelb") username is assigned cu John Gelb
print (username) print username
jgelb

In this last case, we import one single function whose name is very long, and thus, we want to rename
it with an alias. To import the function, the syntax s (1) keyword from, (2) module name, (3) keyword
import, (4) function name, (5) keyword as, and (6) alias (line 1). To call the function, we directly use the
alias—that is, cu—(line 3). Finally, we print the output (line 4). Note that this solution is rarely ideal

280

Chapter 32. How can I reuse functions?

because it can compromise code readability.

Let’s conclude this section with two important remarks about imports. First, in a notebook, imports
should be grouped in the very first cell, before any computation—here, they are spread across differ-
ent cells for sake of explanation. Second, we can import modules into other modules. For example,
we can import the module random in setup_database, if needed. Like in notebooks, all the imports
should be grouped at the very beginning of the file to favor code readability.

What if we want to use a module that is in a different folder than the notebook? As you can guess, we
donotwant to have multiple copies of the same module! Asanexample,the module setup_databaseis
inthefolder "/Users/serenabonaretti/lpwj/notebooks" onmycomputer (box 3inFigure 32.2.). Let’s
saythatlneedtomoveitto"/Users/serenabonaretti/lpwj/code". How can Python know wherethe
module is now? We tell Python where to find a module using the following commands.

e Restart the kernel, then add the module folder and import the module:

impoxt sys import sys
sys.path.append("/Users/serenabonaretti/lpwj/code") sys dot path dot append Users
serenabonaretti lpwj code

import setup_database import setup database

We restart the kernel to clear the previous imports and make sure that we are correctly testing the
code in this section. Then, we import a built-in module called sys (line 1), which manages file
locations—among other things. From sys, we call the command sys.path.append() (line 2), which
takes a string containing the module path—that is, its location—as an argument—in this example,
"/Users/serenabonaretti/lpwj/code". Note that we have to insert the whole module path, which
starts with /Users in MacOs, and with C: \—or another letter of the alphabet—in Windows. Now that
Python knows where setup_database is, we can import it (line 3). Let’s call the function
create_username() using the same commands as in cell 1 of section 2.

e Call the function:

username = setup_database.create_username (username is assigned setup database
"John", "Gelb") dot create username John Gelb
print (username) print username

jgelb

Why don’t you test these commands? Move your module setup_database to another folder, then add
the new file locationto sys.path.append(""). Go back to your notebook, import the module, and call
the function!

For the next section, let’s bring the module back to the same folder as the notebook for convenience.

What if we need to make a change to the function that we call in the notebook? Let’s call
create_username() before and after a change and see what happens!

281

Part 8. Functions

e Restart the kernel, then call the function before the change:

import setup_database import setup database
username = setup_database.create_username (username is assigned setup database
"John", "Gelb") dot create username John Gelb
print (username) print username
jgelb

Werestart the kernel to clear all previous imports and variables from memory. Then, we use the same
code as we used in cell 1 to import the module (line 1), call the function (line 3), and print the output
(line 4).

Now, let’s go to the module in Spyder and make LU
a simple change to the function. For example, Fersmecers

let'sadd print (first_name, last_name) atthe :ff;?"aﬁgﬂ;ga person

beginning of the function body (line 28 in Fig- Rtu e e perer

ure 32.3). After a change, always remember to usernane: string

Created username

save the file! Tip: when the module is not saved,

print inputs
. . . . print (first_name, last_name)
you will see an asterisk in the name tab in the # con ate initial of first name and last name
username = first_name[@] + last_name

module panel. The asterisk will disappear after e O i LT

username = username. lower()

you save the file (see Figure 32.4). et e rmane

return username

Figure 32.3. Module function modified at line 28.

O X setup_database.py* o X setup_database.py

1 #!/usr/bin/env python3 1 #!/usr/bin/env python3
—— coding: utf-8 —k— 2 # —k— coding: utf-8 —k—

Figure 32.4. Module tab before saving (left) and after saving (right).

Time to call the function again and see what happens!

e Call the function after the change:

username = setup_database.create_username (username is assigned setup database
"John", "Gelb") dot create username John Gelb
print (username) print username

jgelb

We call create_username() (line 1) and print the output (line 2). We get only one print, that is, the
username from line 2, although we expected to see also first name and last name from line 28 of the
module. Why does this happen? Because the module and the notebook are not automatically syn-
chronized! When we import a module, the notebook memorizes it as is and does not automatically
detect any change that we make afterwards. To synchronize notebook and module, we need to use
autoreload, an IPython extension that automatically re-imports all modules every time we execute
acell—as you will see in a bit. What is an IPython extension? It is a module that adds extra function-
alities to IPython—the core of Jupyter notebook. Extension commands often start with a percentage
symbol—they are called magic commands!—and can be used only in Notebooks—not in Python. Let’s
see autoreloadin action!

282

Chapter 32. How can I reuse functions?

e Restart the kernel, then run autoreload:

%load_ext autoreload percentage load ext autoreload
%autoreload 2 percentage autoreload 2
Similarly to above, we restart the kernel to have a clear memory. Then, we load autoreload (line 1),
and we run autoreload with the parameter 2, which indicates that we will reload all the imported
modules every time we run a cell (line 2). Note that these two lines of code must always be located in
the very first cell of the notebook—that is, even before the imports—to be effective. Now, let’s call
the function before—comment out line 28 in the module!—and after the change to test autoreload.

e Call the function before the change:

impoxrt setup_database import setup database
username = setup_database.create_username (username is assigned setup database
"John", "Gelb") dot create username John Gelb
print (username) print username
jgelb

As expected, we get the print jgelb from line 4. Now, let’s make the change in the module again by
re-adding print (first_name, last_name) atline 28 of the module. Don’t forget to save the file! It
is a common mistake not to see the changes reflected in the output because we forgot to save the
file! Let’s call the function once more, and finally see the effect of autoreload.

e Call the function after the change:

username = setup_database.create_username (username is assigned setup database
"John", "Gelb") dot create username John Gelb
print (username) print username

John Gelb

jgelb

Finally, we get the print from line 28 of the module—John Gelb. This is because autoreload
automatically—and secretly!—imported the latest version of setup_database before executing the
Python commands.

As you can imagine, we can add as many functions as we want to a module. However, we should add
only the functions that jointly solve a specific problem or serve a specific task. For example, in the
module setup_database, it's meaningful to add create_password() and the main function
create_database() from Chapter 29—see Figure 32.5 It would be inappropriate to add a function
that implements—Ilet’s say—a calculator because it would be off topic—for that, we would create a
separate module. When adding a new function, it is always important to remember three aspects:
first, to update the description of the module content—see line 8 in Figure 32.5; second, add all the
imports at the very beginning of the module—see import randomatline 11 in Figure 32.5; and third,
position the functions in a logically meaningful place within the file—in our example, first the satel-
lite functions create_username() (lines 13—35) and create_password() (lines 38—51), and then the
main function create_database() (lines 55-90).

283

Part 8. Functions

Created on Wed Jan 29 12:25:45 2625
@author: serenabonaretti

This module contains functions to create usernames and passwords, and add them |to a database

import random

create_username {first_name, last_name)
""Create a lowercase username made of Initial of first name and last name

Parameters

first_name: string

First name of a person
last_name: string

Last name of a person

Returns
username: string
Created username

initial first name a
first_name[@] + last_name
£ m Ire usern is L
username = username.lower

return
return username
create_password():
""Create a password composed of four random integers
Returns
password: string

Created password

i

n nu h f digi
password = str(random.randint(1060,9999))

r irn
eturn password
create_database (customers):
"""Creates a database as a dictionary with usernames as keys é nasswords las values
Parameters

customers : list of lists
Each sublist contains first name and last name of a customer

Returns

db : dictionary

Created database (shorted as db)
n_customers : int

Number of customers in the database

i

te u

username = create_username (customer[@], customer[1])

rd
create_password()

mpute num
n_customers

return dictionary a
turn db, n_customers

Figure 32.5. The module setup_database.

284

Chapter 32. How can I reuse functions?

Copy create_password() and create_database() from Chapter 29 to the module setup_database.
Then, let’s move to the notebook and call each function to check that they correctly work.

e Call create_password():

password = setup_database.create_password() password is assigned setup database
dot create password
print (passwoxrd) print password
4056

e Call create_database():

customers = [["Maria", "Lopez"], ["Julia", customers is assigned Maria Lopez
"Smith"], ["Mohammed", "Seid"]] Julia Smith Mohammed Seid
db, n = setup_database.create_database(customers) db n is assigned setup database
dot create database customers
print ("Database", db) print Database db
print ("Number of customers:", n) print Number of customers n
Database: 'mlopez': '4476', 'jsmith': '5092', 'mseid': '3543'
Number of customers: 3
Asyoumight have guessed, the call of any function from a module follows the syntax that we learned —
that is, (1) module name, (2) dot, and (3) function name (line 1 in cell 4, and line 2 in cell 5). Note that
we did not need to restart the kernel because we previously ran autoreload, and thus the addition of

create_password() and create_database() are automatically detected.

In this chapter, we learned a new way of working that allows us to reuse functions across various
projects. In general, we use Jupyter Notebooks to draft code, test it quickly, and integrate narra-
tive for context—and to learn Python! On the other side, we use Python modules to store functions
that can be called in various execution environments, including Spyder, Jupyter notebook, and the
terminal—as you will see in the In more depth session at the end of this Chapter. Play around with
these tools and find your most comfortable way of coding!

Groupthe newsyntaxand concepts from this Chapterin the following table for astructured overview.

from, Spyder, random, autoreload, Terminal, import, as, Jupyter notebook, sys

Python Python built-in Jupyter notebook Execution
keywords modules extension environments

285

Part 8. Functions

e Amodule is afile containing functions for a specific task and whose extension is .py

e In Spyder, we can create and manage modules, and call their functions

e Toimport a module we can use four different syntaxes resulting from the combinations of the key-
words import, from, and as

e A package is a collection of modules whose imports and function calls works the same way as for
modules

e To import a module from a separate folder, we use the module sys and its command
sys.path.append()

e An IPython extension is a module that adds extra functionalities to IPython, which is the core of
Jupyter Notebook. Extension commands often start with a percentage symbol and are called magic
commands

e To synchronize a module and a notebook, we use the IPython extension autoreload

e A module can contain as many functions as needed to solve a task. It is good practice to structure
a module with (1) documentation, (2) imports, and (3) functions in a logically meaningful order

e Jupyter Notebook, Spyder, and the terminal are complementary tools to write code

In this chapter, we learned to call functions from a module. However, modules can also be ex-
ecuted directly, that is, without manually running cells or calling specific functions. Have you
ever seen the command: if __name__ == "__main__"? That’s what we need! Let’s go back to
the module setup_database that we created in this chapter and add some extra lines of code
at the end of the file (Figure 32.6 (top)). First, we write the predefined condition if __name__
== "__main__", which tells the computer something like “if you run this file as a module, exe-
cute the following commands” (line 93). Then, we write the code to execute. In our case, we
create the variable customers containing a list of strings with customer names (line 96), call
create_database() (line 99), and print its outputs (lines 102-103).

" ",

if __name__ == "__main__":

input to the main function
customers = [["Maria", "Lopez"l, ["Julia", "Smith"1, ["Mohammed"”, "Seid"]

create the database
database, number_customers = create_database(customers)

print the outputs
print ("“Database:", database)
print (“Number of customers:", number_customers)

M Terminal 1 X | +

—> serenabonaretti@MacBookAir : cd /Users/serenabonaretti/lpwj/notebooks
—> serenabonaretti@MacBookAir : python3 setup_database.py

Database: {'mlopez': '4098', 'jsmith': '6918', 'mseid': '6770'}

Number of customers: 3

-> serenabonaretti@acBookAir

286

Chapter 32. How can I reuse functions?

Modules can be runin Spyder by simply pressing the Run command (box 2 in Figure 32.2). How-
ever, the most common way is to use a terminal, which is usually preferred for larger projects
because it runs code in a fast and automated way (Figure 32.6 (bottom)). To open a termi-
nal, go to JupyterLab, and click on File, New, and Terminal. Note that in a terminal, we can
use only specific command lines—not Python! To execute a module, we need two commands.
First, we tell the terminal where the module is. To do so, we type cd—abbreviation of change
directory—followed by the whole path of the folder containing the module—in this example,
/Users/serenabonaretti/lpwj/notebooks. We press enter to execute the command. Then, we
execute the module by typing (1) the command python3 (or simply python in some terminals),
and (2) module name with the extension .py. We press enter to execute the command. When
the functions are executed, the prints from lines 102 and 103 of the module appear on the ter-
minal, as indicated by the orange arrows in Figure 32.6. Go back to setup_database, add the i f
__name__ == "__main__" construct, and run it from Spyder and from terminal. Which way do
you prefer?

. A module for Bill Gates! Create a module containing the main and satellite functions you wrote
for the coding exercise 1 in Chapter 29 What does Bill Gates tweet about? Import the module in a
notebook and call the main function. Then, execute the module in a terminal.

. A module for hangman! Do the same as in the previous exercise for the functions of the coding
exercise 1in Chapter 30 Let’s play hangman!

287

PART 9

LAST BITS OF BASIC
PYTHON

In this part, you will learn how to read and write files and some final types, keywords, built-in func-

tions, and modules. Enjoy it!

One important aspect in coding is to know how to read and write files. Let’s learn the basics in this
chapter! Below is the task we want to solve—follow along with Notebook 33!

e Three of your friends celebrated their birthday this month, and you bought them presents online.
Now, it’s time to perform a purchase analysis and save it in your records. The purchase amounts
are in the file 33_purchases.txt

How are we going to solve this task? Outline the steps youwould take before jumpinginto the solution
below.

To solve the task, we will divide (and conquer!) the problem in three steps. First, we will read the .txt
file and storeits content into a list. Second, we will analyze the purchases by calculating the minimum,
maximum, and total of the amounts in the list. And third, we will save the analysis into a new .txt file.
Let’s start!

Before we start writing the code, it’s important to see what the input file looks like. Download and
save 33_purchases.txt in the same folder as the notebook and open it by double clicking on it either in
the File Browser—i.e., the left panel—in Jupyter Lab or in the folder where it is located. You will see
something similar to Figure 33.1.

33_purchases.txt X

20.00
15.74
19.10

s WNBRE

The file contains three numbers, each on a separate row, representing purchase amounts. Let’s read
the file and store the three numbers into a list.

e Write a function that reads a .txt file containing one number per row and stores the numbers into

alist:
def read_txt (file_name_in): def read txt file name in
"""Reads a .txt file with one number Reads a .txt file with one number
per row and returns them as a list per row and returns them as a list
Parameters Parameters
file_name_in : string file name in : string
Name of the file to read Name of the file to read

291

Part 9. Last bits of basic Python

8

9 Returns Returns

I

11 numbers : list numbers : list

12 File content in a list of numbers File content in a 1list of numbers

13 e

14

15 # initialize output initialize output

16 numbers = [] numbers is assigned empty list

17

18 # open the file to read open the file to read

19 with open (file_name_in, "r") as file: with open file name in r as file

20

21 # read the file read the file

22 for line in file: for line in file

23 print("line as read:", line) print line as read line

24

25 # remove "\n" from line remove "\n" from line

26 line = line.rstrip("\n") line is assigned line dot rstrip
backslash n

27 print("line after stripping:", print line after stripping line

28 print("----- ") print -----

29

30 # get only the non-empty lines get only the non-empty lines

31 if line != "": if line is not equal to empty
string

32

B8 # transform the number to float transform the number to float

34 number = float(line) number is assigned float line

35

36 # add to the output list add to the output list

37 numbers .append (number) numbers dot append number

38

39 # return the output return the output

40 return numbers return numbers

41

~ e~~~ o~~~ o~~~ o~~~

H X - H DWQ -h DO QO 0 T QO
—_— e — e = — = = = — — ~—

292

42 # call the function and print the output

43 purchases = read_txt ("33_purchases.txt")

44 print("purchases:", purchases)
line as read: 20.00

after stripping: 20.00

as read: 15.74

after stripping: 15.74

as read: 19.10

after stripping: 19.10

call the function and print the
output

purchases is assigned read txt 33
purchases dot txt

print purchases purchases

Chapter 33. Birthday presents

m line as read:

n

)
)

(
(
(o) line after stripping:
(
(

p) -----
q) purchases: [20.0, 15.74, 9.1]

What happens in the function? Get some hints by completing the following exercise!

The variable file_name_inis a string
with and open() are a built-in function and a keyword, respectively
In the for loop, we read the file content one line at the time

Eal I
- = 4 -
m M m M

A file cannot contain empty rows

The function read_txt () reads a text file containing one number per row and returns the numbers
as a list (line 2). The input is the string file_name_in—that is, the name of the file to read (lines 4—
7)—and the output is the list numbers (lines 9—12). In the function body, first we initialize the output
numbers to an empty list (line 16). Then, we open the file and store its content into a variable by us-
ing a standard command composed of four elements (line 19): (1) the keyword with, which supports
proper file opening and automatic closing; (2) the built-in function open(), which opens and reads the
file by taking two arguments—the file name and the string "r" for reading—and returns the file con-
tent; (3) the keyword as to rename the file with its content; and (4) a variable commonly named file—
or file_object, orits abbreviation fo—representing the file with its content—if we print file, we get
something like <_io.TextIOWrapper name='33_purchases.txt' mode='r' encoding='UTF-8'>.
To extract the content, we write an indented for loop through values that, at each iteration, stores
the current file row into the variable 1ine (line 22). When we print 1ine for a check (line 23), we get
paired prints: (a) and (b), (e) and (f), (i) and (j), and (m), and (n). Why does this happen?

= 33_purchases.txt X = 33_purchases.txt X
1 20.00 1 20.00\n

2 15.74 2 15.74spacespacespace\n
3 19.10 3 19.10\n

4 4 \n

5 5

When we humans read the file 33_purchases.txt, we see three numbers, each of them in a separate
row (Figure 33.2, left). When a computer reads the file, it sees four strings, each containing some
digits and some hidden characters, such as \n or space (Figure 33.2, right). Thus, at the first iteration
of the for loop, the variable 1ine contains the string 20.00\n (line 22). As a consequence, the print

293

Part 9. Last bits of basic Python

is 20.00 (print (a)) followed by the empty line due to \n (print (b)). At the second iteration, 1ine con-
tainsthestring 15. 74spacespacespace\n,and thus the printsare 15. 74 followed by three spaces (print
(e))—which we humans do not see!—and an empty line (print (f)). Similarly, at the third iteration,
line contains the string 19.10\n, and thus the prints are 19. 10 (print (i)) followed by empty line (print
(j)). Why is there a fourth iteration? Most likely, who created the file accidentally added a new line
before saving the file! Thus, we see no content (print (m)) followed by an empty line (print (n)). Now
that we know how a computer reads the file, we have to do some cleaning to obtain the list of num-
bers! First, we remove the empty lines by using the string method .xstrip(), which removes its
argument—"\n"—on the right side of each string 1line (line 26). To test for correctness, we print 1line
after stripping (line 27), followed by five dashes to ease visualization (line 28). This time, we obtain the
line content—prints (c), (g), (k), (0)—without subsequent empty lines. Then, to remove the empty line
at the end of the file—whose presence was revealed by the print (n)—we create an if condition that
excludes empty lines from further processing (line 31). Finally, we transform the number in line into
a float using the built-in function fleat (), which automatically ignores spaces while converting a
string into a number (line 34)—like in the case of 15.74spacespacespace\n. As the last step, we assign
the obtained number to the list numbers (line 37) and we return it (line 40). Finally, to execute the func-
tion, we call it with the file name "33_purchases . txt" as aninput (line 43)—if the file is not in the same
folder as the notebook, enter the whole file path! The output is assigned to the variable purchases (line
43), which we print to check for correctness (line 44).

Now that we are aware of the details to consider when reading a file, can we write a more compact
code? Yes! The whole function body (lines 15-40) can be shortened in the following three lines!

open the file open the file
with open (file_name_in, "r") as file: with open file_name_in r as file
read the numbers and transform them read the numbers and transform them
into floats into floats
numbers = [float(number) for number numbers is assigned float number
in file.read().split()] for number in file dot read dot
split
return the output return the output
return numbers return numbers

We open the file (line 16) using the same command that we learned above (cell 1, line 19). Then,
we read the file, clean its content, and create the output list in one single command containing a
list comprehension (line 19). To untangle it, let’s read the command starting from the for loop: for
numbers in file.read().split() assign float(number) tonumbers. The method .read() of the vari-
able file transforms the file content into a long string—that is, '20.00\n15.74 \n19.10\n\n".
Then, the string method . split () divides the obtained string at white spaces or new lines and trans-
form it into a list of strings—that is, ['20.00', '15.74', '19.10']. Finally, at each loop iteration,
each list element is transformed into a float using float (number) and automatically added to the list
numbers. Note that since we are using list comprehension, we do not need to initialize the outcome
variable numbers. At the end of the function, we return the output numbers (line 22)—as we did in cell
1, line 40.

294

Chapter 33.

Birthday presents

Now that the three numbers are in the numerical list, let’s do some simple analysis on them!

2. Analyzing the numbers

e Write a function that takes a list of numbers as an input and returns the minimum, maximum, and

sum as separate variables.

1
2

33
34
35

def calculate_stats (numbers):

"""Returning minimum, maximum, and sum

of a list of numbers

Parameters
numbers : list
Contains numbers

Returns
minimum : float

Minimum of the list
maximum : float

Maximum of the list
total : float

Sum of the list numbers

calculate the minimum
minimum = min(numbers)

calculate the maximum
maximum = max(numbers)

calculate the sum
total = sum(numbers)

return the stats
return minimum, maximum, total

call the function

mn, mx, tot = calculate_stats(purchases)

print("minimum:", mn)
print("maximum:", mx)
print("total:", tot)

minimum: 15.74
maximum: 20.0
total: 54.84

def calculate stats numbers

Returning minimum, maximum, and sum of a

list of numbers

Parameters

numbers : list
Contains numbers

Returns

minimum : float

Minimum of the list
maximum : float

Maximum of the list
total : float

Sum of the list numbers

calculate the minimum
minimum is assigned min numbers

calculate the maximum
maximum is assigned max numbers

calculate the sum
total is assigned sum numbers

return the stats
return minimum maximum total

call the function

mn mx tot is assigned calculate stats
purchases

print minimum mn

print maximum mx

print total tot

295

Part 9. Last bits of basic Python

Computational thinking and syntax

The function calculate_stats() takesalist of numbers as aninput (lines 4—7) and returns three vari-
ables containing minimum, maximum, and total sum of the list numbers, respectively (lines 9-16). To
calculate the minimum, we use the built-in function min(), which takes a list as an input and returns
the minimum number of the list (line 20). Similarly, to calculate the maximum, we use the built-in
function max (), which given a list as an input, returns the maximum number of the list (line 23). Fi-
nally, to calculate the total amount, we use the built-in function sum() that, given a list as an input,
returns the sum of the numbers in the list (line 26). We store the three outputs into the variables
minimum, maximum, and total making sure that we do not use the function names—see the In more
depth section Don’t name variables with reserved words! in Chapter 14. At the end of the function, we
returnthe three variables separately (line 29). Finally, we call the function (line 32) and print the three
variables mn, mx, and tot to test for correctness (lines 33-35).

As the last step of our task, let’s save the results of the analysis into a new text file!

3. Saving the analysis

e Create a function that given the minimum, maximum, and total, writes them to a file on three con-
secutive lines, specifying what they represent:

def write txt file name out minimum
maximum total

def write_txt (file_name_out, minimum,
maximum, total):

296

"""Writing minimum, maximum, and sum
to a file

Parameters
file_name_out : string
Name of the file to write
minimum : float
Minimum of the list
maximum : float
Maximum of the list
total : float
Sum of the numbers in the list

open the file to write
with open (file_name_out, "w") as file:

write the file content
file.write ("minimum: "
+ "\n")

+ str(minimum)

file.write ("maximum:
+ "\n")

+ str(maximum)

file.write ("total: " + str(total))

Writing minimum, maximum, and sum to a
file

Parameters

file name out : string

Name of the file to write
minimum : float

Minimum of the list

maximum : float

Maximum of the list

total : float

Sum of the numbers in the list

open the file to write
with open file name out w as file

write the file content

file dot write minimum: concatenated
with str minimum concatenated with
backslash n

file dot write maximum: concatenated
with str maximum concatenated with
backslash n

fo dot write total: concatenated with
str total

Chapter 33. Birthday presents

call the function call the function
write_txt ("33_purchases_stats.txt", mn, mx, write txt 33 purchase stats dot txt mn
tot) mx tot

What'’s new in this function? Discover it by completing the following exercise.

1. Theargument "w" in open() defines that we want to close a file T F
2. .write() isamethod of the variable file T F
3. Whenwriting a file content, we use string concatenation T F

The function write_txt () takes four inputs, that is, the name of the file to write and the calculated
minimum, maximum, and total (lines 4—13), and it has no return. We begin the function body with a
command that simultaneously creates and opens a new file (line 17) and has the same components as
the command we used to open and read a file (cell 1, line 22). The difference is the inputs of open(),
which now are the name of the file to write and the string "w" for writing—instead of "r" for reading.
Then, indented with respect to the previous line of code, we add the commands to write the file con-
tent. Each command is composed of the variable file followed by its method .write(), which takes
the string to be written into the file as an argument. Thus, to write the minimum, the argument is
"minimum: " concatenatedwiththe minimum convertedintoastring—str(minimum)—andthe special
character "\n" to send the following content to a new row (line 20). Similarly, to write the maximum,
the argument is "maximum: " concatenated with str(maximum) and the special character "\n" (line
21). Finally, to write the total, the argument is "total: " concatenated with the string of total. In
this last case, we do not add "\n" because we do not want to add an empty line at the end of the file
(line 22). To conclude, we call the function (line 25), and we obtain the new file 33_purchases_stats.txt.
Check the file by opening it in the File Browser in Jupyter Lab or in the folder. You will see something
similar to Figure 33.3.

= 33_purchases_stats.txt X

fany

minimum: 15.74
maximum: 20.0
total: 54.84

w N

Inthis chapter, we learned how to read a file, analyze its content, and write a new file. Did you also no-
tice how the various functions interact among each other? = We organized read_txt(),
calculate_stats() andwrite_txt() into apipeline where the output of each functionis the input of
the following function (see Figure 33.4). In general, pipelines are a convenient way to solve problems
with linear solutions and are an alternative to the organization in main and satellite functions—which
we learned in Chapter 29. Depending on the nature of the solution, we can use different function con-

297

Part 9. Last bits of basic Python

figurations to divide and conquer our computational problem!

file_name_out
minimum
maximum
total

| | |

file_name_in numbers

read_txt() calculate_stats() write_txt()
minimum
numbers maximum
total

e Toopen-and-read or create-and-save a file, we use the command with open() as file, where:
m withis a keyword that supports opening and closing a file
m open() is a built-in function whose arguments are the name of the file to read or write and the

strings "r" when reading or "w" when writing the file

m as is a keyword to rename the variable representing the file
m file (or file_object or fo) is a conventional file name for the variable representing the file

e To read a file content, we use either a for loop that goes through each line of the file content, or
the method .read() that returns the file content as a long string. To clean the file content, we use
string methods such as . rstrip() or .split()

e To write content to a file, we use the method .write(), which takes a string (or a concatenation of
strings) as an argument

e To calculate minimum, maximum, and sum of a list, we use the built-in functions min(), max(), and
sum()

e To solve problems with linear solutions, we organize functions in pipelines where the output of the
previous function is the input of the following function

298

Chapter 33. Birthday presents

When coding, we deal with several kinds of files, including modules, notebooks, and data. As
projects become larger and more complex, it is important to organize folders and files properly
to avoid confusion. A common way is to have a hierarchical structure that start with a project
folder enclosing the whole project and containing sub-folders for the sub-projects. Within
each sub-folder, it is common to have one folder for code—which can contain two sub-folders,
one for notebooks and one for modules—one folder for data—with one or more datasets—, and
one folder for documentation—such as a website, a readme file, or any other document (Fig-
ure 33.5, left). This general structure can be adapted to the material of a specific project. For
this book, we cancreate a project folder called learn_python_with_jupyter, containing sub-folders
named after the book chapters and structured based on their specific material. As an example,
the folder 32_modules contains only the subfolder code with the module setup_database.py and
the notebook 32_modules_.ipynb. The folder 33_read_write_file contains two folders, that is, code
with the notebook 33_rw_txt_file.ipynb, and data with the input file 33_purchases.txt and the out-
put file 33_purchases_stats.txt. Finally in the project directory, there is the folder documentation
containing the .pdf of the book (Figure 33.5, right). Every time we approach a new project, let’s
start by organizing folders and files in a structured way. It is the first step to divide and conquer
with clarity!

|:setup_database.py

32_modules.ipynb
|:modu|e_1.py
module_2.py
|:notebook_1.ipynb 233_rw_txt_ﬁle.ipynb
notebook_2.ipynb
|:33_purchases.txt
dataset_1 33_purchases_stats.txt
dataset_2
. pIearn_python_with_jupyter.pdf
website

readme.txt

1. Login database for Hollywood actors. You work at a famous Hollywood agency and need to create
usernames and passwords for the actors’ accounts.

a. Reading input file. Create a function that reads the file actors.txt—download it from the

299

Part 9.

Last bits of basic Python

300

website—and returns a list of lists where each sub-list contains first name and last name of
an actor. Hint: What string method can you use to separate first names and last names?
Creating usernames and passwords. Write a function that reads a list of lists where each sub-
list contains first name and last name of an actor, then computes username and password for
each actor, and finally returns a list of lists where each sub-list contains a username and a
password. Call the functions from the module setup_database (Chapter 32)

. Writing usernames and passwords to file. Create a function that, given a list of lists where each

sub-list contains a username and a password, writes the list to a.txt file where each row con-
tains username and password of an actor. Make sure not to create an empty line at the bot-
tom of the file!

We are getting to the end of our journey in developing computational thinking while learning Python.
Before getting to the last part of this book, where we will learn object oriented programming, let’s
take a moment to analyze a few more data types, keywords, built-in functions, and modules that are
very useful when coding in Python. For the remaining ones, you will be referred to reliable webpages.
Follow along with Notebook 34!

We extensively learned about strings, lists, integers and floats, Booleans, and dictionaries. Let’s now
have a look at the main characteristics of tuples and sets.

We previously learned about tuples as the data type of the output of the built-in function enumerate()
(Chapter 22), of the dictionary method .item() (Chapter 24), and of any function returning more than
one variable (Chapter 29). As you might remember, tuples are a sequence of elements enclosed in be-
tween round brackets and separated by commas. They are immutable—that is, their elements cannot
be replaced, added, or removed—thus, they are the ideal data type for variables that do not change
throughout the code. In addition, tuples have only two methods, that is, . count (), which returns the
number of times an element is present in a tuple, and .index (), which returns the position of an
element in a tuple. Let’s have a look at a simple example of a tuple and its two methods.

e Given the following tuple:

image_size = (256, 256, 3) image size is assigned 256 256 3
print (image_size) print image size
(256, 256, 3)

The tuple image_size contains the dimensions of an RGB image (line 1), where the first element 256
corresponds the number of rows, the second element 256 to the number of columns, and 3 to the color
channels—that is, red, green, and blue, as you might remember from the In more depth section Lists of
lists and images in Chapter 23. In the following line, we print the tuple to check for correctness (line
2).

e Calculate how many times 256 is present:

print (image_size.count(256)) print image size dot count 256
2

We use the method . count () that takes the number whose presence we want to count—that is, 256 —
as an argument and returns the number of times that number is present—that is, 2—which we directly
print (line 1).

301

Part 9. Last bits of basic Python

e Compute the position of 3:

print (image_size.index(3)) print image size dot index three
2
We use the method .index () that takes the number whose position we want to know—that is, 3—as
an input and returns its position—that is, 2—which we directly print (line 1).

Asetisadatatypewhose elements are enclosed in between curly brackets and separated by comma.
Sets have three main characteristics: (1) they are immutable—like tuples; (2) they are unordered, that
is, their elements do not have a fixed position—thus, sets cannot be sliced; and (3) they contain unique
elements, therefore no duplicates are allowed. Let’s have a look at a set.

e Given the following set, print it:

cities = {"Buenos Aires", "Prague", "Delhi", "Delhi"} cities is assigned Buenos
Aires Prague Delhi Delhi

print (cities) print cities

print("The number of elements is:", len(cities)) print The number of elements

is: len cities

{'Delhi', 'Buenos Aires', 'Prague'}

The number of elements is: 3
We create a set called cities containing 4 elements that are strings (line 1) and we print it (line 2).
From the print, we can see that the resulting set is different from what we defined at line 1. Because
sets are unordered—characteristic (2) above—the elements are internally organized differently than
intheir definition, and they might be printed in adifferent order every time. Second, because sets con-
tain only unique elements—characteristic (3) above—"Delhi" is present only once. Thus, cities ac-
tually contains only 3 elements, as we can see when printing its length (line 3).

Given their characteristics, sets are very convenient intermediates for list operations. We can use
set properties to remove duplicates from a list and two set methods—.union() and
.intersection()—to respectively merge two lists and find their common elements—sets have 15
more methods, which you can easily explore on the internet?!. Let’s look at some examples.

¢ Given the following list:

cities = ["San Francisco", "Melbourne", cities is assigned San Francisco
"San Francisco", "Milan"] Melbourne San Francisco Milan

We start with the list cities containing four strings, two of which are the same—
"San Francisco" is both in positions @ and 2.

e Remove the duplicates:

cities = list(set(cities)) cities is assigned list set cities
print (cities) print cities
['Milan', 'Melbourne', 'San Francisco']

1Example:https://www.w3schools.com/python/python_ref_set.asp

302

https://www.w3schools.com/python/python_ref_set.asp

Chapter 34. What’s more in Python?

We use the built-in function set() to transform the list into a set, and thus automatically remove
duplicate elements. Then, we use the built-in function 1ist () to transform the obtained set back to a
list (line 1). From the print, we seethat "San Francisco" isnow presentonly once. Note that the order
of the list elements is now different from the original list (cell 5) because sets are unordered. Thus,
this trick is useful only when the element order is not important! Let’s look into the next examples.

e Given the following lists:

cities_1 = ["Santiago", "Bangkok", cities one is assigned Santiago Bangkok
"Cairo", "Santiago"] Cairo Santiago
cities_2 = ["Cairo", "Cape Town"] cities two is assigned Cairo Cape Town

We start with two lists called cities_1 and cities_2 containing 4 and 2 strings respectively.

e Create anew list that contains unigue elements from both lists:

all_cities = list(set(cities_1).union(all cities is assigned list set cities
set(cities_2))) one dot union set cities two
print (all_cities) print all cities

['Bangkok', 'Cape Town', 'Santiago', 'Cairo']

Let’s understand the nested code at line 1 with the help of Figure 34.1. We transform the two lists
cities_1and cities_2—represented by the orange and yellow rectangles at the top of the figure—
to the corresponding sets—orange and yellow ellipses—using the built-in function set (). Then, we
apply the method .union() to set(cities_1) with set(cities_2) as an argument to merge the el-
ements that are present in both sets—we could have also applied .union() to set(cities_2) with
set(cities_1) as an argument. To the output set, we directly apply the built-in function 1ist() and
obtain all_cities—green rectangle at the bottom of the figure—that is, a list containing the four
unique elements of the two initial lists. At line 2 of the code, we print all_cities to test for cor-

rectness.
Lists
cities_1 = | "Santiago" "Bangkok" "Cairo" |"Santiago" cities_2 = "Cairo" |"Cape Town"
set() set()
Sets T
Santiago P
"Bangkok" CRRLTD "Cape Town"

1list(.union()) xlist(.intersection())

Lists

all_cities = @ "Bangkok" "Cape Town" "Santiago" "Cairo" common_cities = "Cairo"

303

Last bits of basic Python

common_cities = list(set(cities_1).
intersection(set(cities_2)))
print (common_cities)

e Create anew list that contains the elements common to both lists:

common cities is assigned list set cities

one dot intersection set cities two

print common cities

['Cape Town']

We perform the same steps as above but we use the set method .intersection() to extract the
common elements in the sets. We obtain the list common_cities—gray rectangle in Figure 34.1—
containing only the common element "Cape Town". Finally, we print to check for correctness (line
2).

You already know many Python keywords—including for, del, def, if, etc. You can find the complete
list of keywords on several webpages?. In this section, we will focus on lambda.

The keyword 1ambda is used to create one line functions containing one single operation. These com-
pact functions are called anonymous functions—because they do not have a name!—or lambda func-
tions—after the keyword. To understand how they work, let's compare a simple regular function that
calculates the double of a number with its corresponding lambda function.

e Hereis the regular function:

def double number number
Returns the double of a number

def double_number (number):
"""Returns the double of a number

Parameters

number : float
The input number

Returns

float
The double of the input number

return number * 2

Parameters

number : float
The input number

Returns
float

The double of the input number

return number times two

print (double_number(5))
10

print double number five

In the function double_number, the input is a float (lines 1 and 4-7) and the output is the calculated
double (lines 9-12 and 15). We call the function for the number 5 and directly print the output (line
17).

2Example:https://www.w3schools.com/python/python_ref_keywords.asp

304

https://www.w3schools.com/python/python_ref_keywords.asp

Chapter 34. What’s more in Python?

e Hereis the corresponding lambda function:

double_number = lambda number: number * 2 double number is assigned lambda number
number times two
print (double_number(5)) print double number five
10

The typical syntax of a lambda function is represented at line 1 after the assignment symbol. It in-
cludes: (1) the keyword 1lambda; (2) the function input—that is, number; (3) colon; and (4) the operation
that computes the output—that is, number * 2. It is common to assign a lambda function to a vari-
able—in our case, double_number—to call it. To better understand the syntax of a lambda function,
let’s compare it with the syntax of the corresponding regular function, with the help of Figure 34.2.
The input number (orange rectangle) is in between round brackets in the header of a regular function
(line (a)), whereas it is positioned right after the keyword lambda in a lambda function (line (c)). The
operation that computes the output number * 2 (yellow rectangle) is after the keyword returnin a
regular function (line (b)), whereas it is after the colon in a lambda function (line (c)). Finally, the reg-
ular function has aname—e.g., double_number (gray rectangle at line (a))—whereas a lambda function
is often assigned to a variable (gray rectangle at line (c)).

To call alambda function, we write the name of the function variable followed by the input in round
brackets (cell 11, line 2). For convenience, we directly print the output to check for correctness.
Lambda functions are particularly convenient when we want to apply simple operations to list ele-
ments. To do so, we use the built-in function map (), as you will learn in the coming section.

Inthe past chapters, you learned several Python built-in functions, including print (), input (), len(),
sum(), etc. Python has a total of 71 built-in functions, which you can discover in the official Python
documentation®. In this chapter, we briefly explore map ().

The built-in function map () is commonly used to apply a lambda function to each element of a list. It
somehow acts like a for loop that extracts one list element at the time and applies a wanted function
toit. Let’s see how map () works with the following example.

3docs.python.org/3llibrary/functions.html

305

docs.python.org/3/library/functions.html

Part 9. Last bits of basic Python

e Double each list element using a lambda function:

numbers = [3, 5, 7] numbers is assigned three five seven

doubles = list(map(double_number, numbers)) doubles is assigned list map double
number numbers

print (doubles) print doubles

10

We create alist containing three integers and we name it numbers (line 1). Then, we use map () with two
inputs: the lambda function double_number—from cell 11—and the list we want to apply the lambda
function to, that is, numbers from line 1—note that it’s also common to write the lambda function di-
rectly into the map () command: map (lambda number: number * 2, numbers).Becausemap() returns
its own type, we transform the output to a list using the built-in function 1ist () (line 2). Finally, we
print the output to check for correctness (line 3).

Python provides numerous built-in modules that can be found on the official website®. In this section,
we will learn one more function of the module random and introduce the module time.

We already know two functions of the module random, that is, . randint () to generate random num-
bers within a range and . choice() to randomly pick an element from a list. When using these func-
tions, it can be hard to debug code or verify the correctness of results because the generated random
output is different at each execution. For example, when we generate a random number twice, we
obtain two different results, as we can see in the example below.

e Generate arandom integer between 1 and 10 twice:

impoxt random impoxt random
n = random.randint(1, 10) n is assigned random dot randint one ten
print ("n:", n) print n n
n = random.randint(1, 10) n is assigned random dot randint one ten
print ("n:", n) print n n

n: 7

n: 9

We begin by importing the module random (line 1). We use the command .randint () to generate a
random integer between 1 and 10 (line 3), and we print it (line 4). The generated number is 7. Then, we
rewrite the same commands as above (lines 3-4) to generate another random integer between 1 and
10 (lines 5-6). This time, we obtain 9. As expected, the two generated numbers are different. But
how are these numbers created? When we call . randint (), we execute a process similar to the one
shown in Figure 34.3. The core is an algorithm consisting of a set of complicated but deterministic—
that is, well defined—operations that transform an input number into an output number. The input
number is called seed number and is usually determined from the combination of the current time and

“docs.python.org/3/library/

306

docs.python.org/3/library/

Chapter 34. What’s more in Python?

date on our computer—and thus it is unique because time always progresses. The output numberis a
pseudorandom number—not completely random!—because it looks random but is actually generated
by a deterministic process.

deterministic algorithm

% Ay o+ B

/\/+- %/'\ / -

seed number % Aot / A | pseudorandom number
Ao +
% + v %
/ - 0
N VN
% +
N %

Can we generate the same random number—or better, pseudorandom number—every time we run
the code? Yes, when we specify the seed number! Let’s see how it works in the following example.

e Generate arandom integer between 1 and 10 twice, using a seed number:

random.seed(18) n is assigned random dot seed 18
n = random.randint(1l, 10) n is assigned random dot randint one ten
print ("n:", n) print n n
random.seed(18) n is assigned random dot seed 18
n = random.randint(1, 10) n is assigned random dot randint one ten
print ("n:", n) print n n

n: 3

n: 3

From the module random, we call the function .seed(), which takes a seed number as an input (line
1)—in this example, 18. We generate a random number between 1 and 10 using the same commands
as above—that is, lines 2—3 are the same as lines 3-4 from cell 13. We obtain the number 3. Then,
we reuse the same commands to provide the same seed number and generate a new random number
(lines 5-7). As expected, we obtain 3 again. Thus, when using a seed number, the generation of a
random number is reproducible and we can debug code and verify results much easier. Finally, what
number should we pick as a seed number? Any number we want! Our choice of a seed number is the
only real random factor when generating random numbers!

Knowing the computational time—that is, how long a computation takes—is very important, espe-

cially when running large projects. In Python, we can use the module time. Let’s see how it works

with the following example.

e Comparethetimeittakestocreatealist withten,ahundred, and athousand zeros, using a for loop
vs. list replication. What do you think the time difference will be?

307

Part 9. Last bits of basic Python

impoxt time import time
lists lengths lists lengths
n_of_elements = [10, 100, 1000] n of elements is assigned 10 100
1000
for each length for each length
for n in n_of_elements: for n in n of elements
print ("N. of zeros:", len(numbers)) print N. of zeros: len numbers
create the list using the for loop create the list using the for loop
start = time.time() start = time dot time
numbers = [] numbers is assigned empty list
for _ in range (n): for underscore in range n
numbers.append(0) numbers dot append zero
end = time.time() end is assigned time dot time
print ("For loop: :.6f sec".format(end-start)) print For loop: :.6f sec dot format

end minus start

create the list using list replication create the list using list
replication

start = time.time() start is assigned time dot time

numbers = [0]*n numbers is assigned zero list
replication n

end = time.time() end is assigned time dot time

print ("List repl: :.6f sec".format(end-start)) print List repl: :.6f sec dot
format end minus start
N. of zeros: 10
For loop: ©.004142 sec
List repl 0.000001 sec

N. of zeros: 100
For loop: ©.000024 sec
List repl 0.000002 sec

N. of zeros: 1000
For loop: ©.000147 sec
List repl 0.000004 sec

Let’s start by analyzing the code to create the lists. We begin with the list n_of_elements, which con-
tains the lengths of the lists that we are going to create (line 4). Then, we write a for loop that spans
the list lengths (line 7). For each length, first, we print the number of zeros that will be contained in
the list (line 9). Then, we create a list using a for loop (lines 11-17), that is, we initialize the empty
list (line 13), create a for loop through indices that goes from @ (omitted) to the current length (line
14), and we append 0 to the list numbers at each iteration (line 15). Finally, we create a list using list
replication (line 19-23), where we replicate the list [0] by the number of zeros n (line 21). How do we
calculate the time of these computations? First, we import the module time (line 1). Then, before each
list creation, we call the function . time() from the module time and we assign the output to the vari-
able start (lines 12 and 20). This command corresponds to pressing start on a stopwatch. After each
list creation, we call again the function . time() from time, and we assign it to the variable stop (lines
16 and 22)—like we pressed stop on a stopwatch. Finally, we print the difference between stop and

308

Chapter 34. What’s more in Python?

start to know the computational time in seconds (lines 17 and 23). To obtain a clear print, we use
the string method . format () with six digits. As you can see, creating a list with a for loop is much
slower than with list replication, especially for long lists! Finally, the computational time depends on
the amount of processes—for example, emails, opened documents, etc.—that are currently running
on the computer and the characteristics of the computer, thus, it can be different at different times
or across computers.

e Tuples are a data type containing immutable elements and have two methods: .count() and
.index()

e Setsareadatatypewhose elements areimmutable, unordered, and unique. They have 17 methods,
including .union() and .intersection(). Sets can be useful intermediators for list operations such
as duplicate removal, merging two lists, or find the common elements in two lists

e The keyword lambda allows the creation of anonymous functions, which are compact functions
composed of (1) 1ambda, (2) input, (3) colon, and (4) operation generating the output

e The built-in function map () is useful when applying a lambda function to each element of a list

e The function .seed() from the module random allows us to create reproducible random—or more
technically, pseudorandom—numbers

e To calculate computational time, we use the module time. Its function . time () acts like the start or
stop of a stopwatch

A nice trick in Python—but not in many other programming languages!—is the possibility to
swap variables. Let’s see how it works in the example below:

v_1l="a" v one is assigned a
v_2 = "b" v two is assigned b
print ("v_1:", v_1) print v one v one
print ("v_2:", v_2, "\n------ ") print v two v two backslash n dashes
v_1l, v.2 =v_2, v_1 v one v two is assigned v two v one
print ("v_1:", v_1) print v one v one
print ("v_2:", v_2) print v two v two
v_1l: a
v_2: b
v_1: b
a

We create two variables, that is, v_1 to which we assign the string "a" (line 1) and v_2 to which
we assign the string "b" (line 2). We print them for a check (lines 3 and 4). The, we swap the
variables by writing: (1) the two variables separated by a comma, (2) the assignment symbol,
and (3) the two variables separated by a comma in inverted order (line 6). When we reprint

309

Par

t 9. Last bits of basic Python

the variables (lines 8 and 9), we can see that the values are swapped because v_1 now contains
"b" and v_2 now contains "a"!

310

. How long does it take to square numbers? Create a regular function that given a number returns its

square. Then, write the corresponding lambda function. Finally, apply both functions to a list of
10 numbers. How long do all these operations take?

. How long does it take to concatenate lists? Create two lists, one containing integers from O to 10000,

and another containing integers from 10001 to 20000. Hint: use range()—see Chapter 8. Then,
merge the two lists once by adding one element at the time from the second list to the first, and
once by using list concatenation. Which method is faster? By how much?

The cover is inspired by the cover of the book “Working in Public: The Making and Maintenance of
Open Source Software” by Nadia Eghbal. Stripe Press. 2020

A few examples and exercises in the book were inspired from online material, ChatGPT, and the
book “Codingfor Kids: Python: Learnto Code with 50 Awesome Games and Activities” by Adrienne
Tacke. Rockridge Press. 2019

Figure 1.1 is modified from the original by Cy21 and downloaded from https://commons.wiki
media.org/wiki/File:QWERTY-home-keys-position.svg

Figure 16.1is by the U.S. Naval Historical Center Online Library Photograph and downloaded from
https://en.wikipedia.org/wiki/Debugging#/media/File:First_Computer_Bug,_1945
-JPg

The tree in Figure 31.2 is by OpenClipart-Vectors and downloaded from https://pixabay.com/
vectors/tree-nature-drawing-plant-branches-2027899

Theicons in Figures 33.5 are downloaded from www. freepik.com

https://commons.wikimedia.org/wiki/File:QWERTY-home-keys-position.svg
https://commons.wikimedia.org/wiki/File:QWERTY-home-keys-position.svg
https://en.wikipedia.org/wiki/Debugging#/media/File:First_Computer_Bug,_1945.jpg
https://en.wikipedia.org/wiki/Debugging#/media/File:First_Computer_Bug,_1945.jpg
https://pixabay.com/vectors/tree-nature-drawing-plant-branches-2027899
https://pixabay.com/vectors/tree-nature-drawing-plant-branches-2027899
www.freepik.com

Dear coder,

Thanks for learning with me!

Visit www . learnpythonwithjupyter. comto:
e Find more information about the book
e Download the Jupyter Notebooks

e Join the LPWJ Community for exercise solutions and Q&A

Your feedbacks and comments are fundamental to improve the book!
e Fill out the feedback form at: www. tinyurl.com/1pwj-feedback, and/or
e Email me at: serena.bonaretti.research@gmail.com

| am looking forward to hearing from you!

Next release: find the date on www. learnpythonwithjupyter.com

Have fun coding!
Serena

www.learnpythonwithjupyter.com
www.tinyurl.com/lpwj-feedback
www.learnpythonwithjupyter.com

	Text, questions, and art
	Events and favorites
	In a bookstore
	Grocery shopping
	Customizing the burger menu
	Traveling around the world
	Senses, planets, and a house
	My friends' favorite dishes
	At the zoo
	Where are my gloves?
	Cleaning the mailing list
	What a mess at the bookstore!
	Implementing a calculator
	Playing with numbers
	Fortune cookies
	Rock paper scissors
	Do you want more candies?
	Animals, unique numbers, and sum
	And, or, not, not in
	Behind the scenes of comparisons and conditions
	Overview of lists
	More about the for loop
	Lists of lists
	Inventory at the English bookstore
	Trip to Switzerland
	Counting, compressing, and sorting
	Overview of strings
	Printing Thank you cards
	Login database for an online store
	Free ticket at the museum
	Factorials
	How can I reuse functions?
	Birthday presents
	What's more in Python?

