

Dear coder,

Thank you for your choosing Learn Python with Jupyter! I hope the book will help you develop compu-
tational thinking while learning to code in Python!

The e-book version of Learn Python with Jupyter is open and free, and it will remain open and free. A
printed version will be available soon, with a low price to cover printing and distribution costs.

You can read more about the characteristics of the book at www.learnpythonwithjupyter.com and in
the Jupyter Blog post at www.tinyurl.com/LPWJmedium.

If you have any comments or questions, feel free to email me at serena.bonaretti.research@gmail.com.
I’d be happy to hear from you. You can also leave feedback at www.tinyurl.com/LPWJfeedback.

Thank you for learning with me,
Serena

www.learnpythonwithjupyter.com
www.tinyurl.com/LPWJmedium
www.tinyurl.com/LPWJfeedback

Learn Python with Jupyter
Develop computational thinking while learning coding

Serena Bonaretti

www.learnpythonwithjupyter.com

www.learnpythonwithjupyter.com

For the free ebook:
Text license: CC BY-NC-SA. Code license: GNU-GPL v3

For the printed copy:
Copyright ©2021-2025 by Serena Bonaretti. All rights reserved.
No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, or otherwise without the prior written permission
of the author.
While the author has used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the author disclaims all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use or reliance of this
work. Use of the information and instructions contained in this work is at your own risk. If any code
samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

Cover design by Federica Dias (www.behance.net/federicadias)
Editing and proofreading by John Batson

www.learnpythonwithjupyter.com

https://creativecommons.org/licenses/by-nc-sa/2.0/
https://www.gnu.org/licenses/gpl-3.0.en.html
www.learnpythonwithjupyter.com

To Christof, who loves R

Eccoci nuovamente insieme per imparare a leggere e a scrivere.
Io direi, però, di più: per imparare a conoscere meglio il mondo e noi stessi.

Here we are again together to learn how to read and write.
Actually, I would go further: to learn to better understand the world and ourselves.

—Alberto Manzi, Non è mai troppo tardi, It’s never too late

Simple is better than complex.
—Tim Peters, The Zen of Python

Content
About this book
p. xiii

Introduction
What we need to learn when learning coding
p. xvii

Getting ready
The Jupyter/Python environment
p. 3
Downloading the book material
p. 7

Part 1: Creating the basics
Chapter Computational thinking Syntax In more depth
1. Text, questions, and art
p. 11

■ Getting information from a
user

■ Printing to the screen

■ Strings
■ Built-in functions

input() and print()

Our fingers have memory
p. 16

2. Events and favorites
p. 18

■ Creating variables
■ Assigning values to variables
■ Concatenating strings

■ Assignment symbol
■ Concatenation symbol

Dealing with NameError and
SyntaxError
p. 21

Part 2: Introduction to lists and if/ elif
Chapter Computational thinking Syntax In more depth
3. In a bookstore
p. 27

■ List as a collection datatype
■ Executing command based
on binary conditions

■ Lists
■ if/else construct
■ Membership operator in
■ Indentation

Let’s give variables meaningful
names!
p. 30

4. Grocery shopping
p. 32

■ Methods as functions for a
specific datatype

■ Adding and removing
elements to/from a list
based on conditions

■ List methods
.append() and .remove()

Why do we print so much?
p. 35

5. Customizing the burger menu
p. 38

■ Associating a list element to
an index

■ Finding an element index
■ Adding and removing
elements to/from a list
based on index

■ List methods .index(),
.pop(), and .insert()

We code in English!
p. 40

6. Traveling around the world
p. 43

■ Slicing to extract elements
from a list

■ Slicing using positive and
negative indices, and in
direct and reverse order

■ Omitting indices

■ Three-s rule
■ Plus one rule and minus one
rule

Why the plus one rule?
p. 49

7. Senses, planets, and a house
p. 52

■ Replacing, adding, and
removing elements using list
slicing

■ List concatenation
■ Deleting a variable vs. its
content

■ Transitioning from list
methods to slicing

■ Keyword del What is a Jupyter Notebook ker-
nel?
p. 57

Part 3. Introduction to the for loop
Chapter Computational thinking Syntax In more depth
8. My friends’ favorite dishes
p. 63

■ For loop to repeat
commands

■ For loop to automatically
slice a list

■ for loop
■ Built-in functions

range() and str()

Dealing with IndexError and In-
dentationError
p. 68

vii

9. At the zoo
p. 71

■ Binary condition in
command repetition

■ Code commenting

■ Comparison operator ==
■ Built-in function len()
■ # for commands
■ Abbreviating index with i

Dealing with TypeError
p. 75

10. Where are my gloves?
p. 78

■ Searching an element in a
list based on element length
or position, by combining
for loop and
if/else construct

■ Using variables in place of
hard-coded values

■ Comparison operators !=, >,
>=, <, <=

Let’s use keyboard shortcuts!
p. 83

11. Cleaning the mailing list
p. 87

■ Changing list elements in a
for loop with reassignment

■ String methods .lower(),
.upper(), .title(),
.capitalize()

In what list am I changing the el-
ement?
p. 90

12. What a mess at the
bookstore!
p. 93

■ Creating lists in a for loop
■ String slicing
■ Multiple consecutive slicing

■ Special character "\n" Append or concatenate. Don’t as-
sign!
p. 97

Part 4. Numbers and algorithms
Chapter Computational thinking Syntax In more depth
13. Implementing a calculator
p. 103

■ Number variables as strings,
integers, or floats

■ Testing multiple variable
values using elif

■ Combining code in a code
unit

■ Arithmetic operators
■ Built-in functions int(),

float(), type()
■ Keyword elif

Solving arithmetic expressions
p. 110

14. Playing with numbers
p. 112

■ Changing numbers based on
conditions

■ Separating numbers based
on conditions

■ Finding the maximum in a
list of numbers

(No new syntax) Don’t name variables with re-
served words!
p. 115

15. Fortune cookies
p. 118

■ Module as a unit containing
specific functions

■ Importing a module
■ Randomness in coding

■ Keyword import
■ randommodule functions

.randing(a,b) and

.choice(list)

What if I don’t use the index in a
for loop?
p. 120

16. Rock paper scissors
p. 123

■ Testing, debugging, paral-
lelism, divide and conquer,
algorithm

(No new syntax) Why dowe say Debugging, Divide
and conquer, and Algorithms?
p. 128

Part 5. The while loop and conditions
Chapter Computational thinking Syntax In more depth
17. Do you want more candies?
p. 133

■ While loop to ask for
unknown number of inputs

■ Counter
■ Initializing and changing for
the variable in the condition

■ Keyword while Writing code is like writing an
email!
p. 137

18. Animals, unique numbers,
and sum
p. 139

■ Identifying various kinds of
conditions

■ Problem solving using divide
and conquer

(No new syntax) Don’t confuse the while loop
with if/else!
p. 150

19. And, or, not, not in
p. 153

■ Merging conditions
■ Reversing conditions

■ The logical operators and,
or, and not

■ The membership operator
not in

What is GitHub?
p. 158

20. Behind the scenes of
comparisons and conditions
p. 160

■ Booleans as outcomes of
single or several conditions

■ Truth tables
■ Booleans as flags in

while loops

■ Booleans What is the difference between
GeeksforGeeks and Stack Over-
flow?
p. 165

viii

Part 6. Recap of lists and for loops
Chapter Computational thinking Syntax In more depth
21. Overview of lists
p. 169

■ Arithmetic operations on list
elements

■ List concatenation and
replication

■ List assignment
■ Adding and removing list
elements

■ List sorting and searching

■ List methods: .clear(),
.copy(), .count(),
.extend(), .reverse(),
.sort()

Why not use a for loop to re-
move list elements?
p. 177

22. More about the for loop
p. 182

■ For loop as a repetition of
commands

■ For loop through indices,
elements, and indices and
elements

■ List comprehension
■ Tuples
■ Nested for loop

■ Built in functions
list() and enumerate()

Basics of Markdown
p. 190

23. Lists of lists
p. 194

■ Lists of lists
■ Slicing lists of lists
■ For loop to browse lists of
lists

■ Flattening lists of lists

■ (No new syntax) Lists of lists and images
p. 198

Part 7. Dictionaries and overview of strings
Chapter Computational thinking Syntax In more depth
24. Inventory at the English
bookstore
p. 203

■ Dictionary items, keys, and
values

■ Slicing dictionary values
■ Modifing dictionary values
■ Adding and removing
dictionary items

■ Dictionaries
■ Dictionary methods:

.items(), .keys(),

.values(), .update(),

.pop()

Lists of dictionaries
p. 208

25. Trip to Switzerland
p. 212

■ Initializing an empty
dictionary

■ Four ways to modify a
dictionary value that is a list

■ For loop to browse
dictionaries

■ Use of comma separation or
.format() in print()

■ Dictionary method .get()
■ List method .format()

Dealing with KeyError
p. 216

26. Counting, compressing, and
sorting
p. 219

■ Counting elements
■ Compressing information
■ Sorting dictionaries
according to keys or values

■ Dictionary method
.get(key, initial
value)

■ Built-in function sorted()

Remaining dictionary methods
p. 224

27. Overview of strings
p. 226

■ “Arithmetic” operations on
strings

■ Replacing or removing
substrings

■ Searching and counting
substrings

■ Converting strings to a list
and vice versa

■ f-strings
■ Rounding numbers

■ String methods .count(),
.find(), .join(),
.replace(), .split(),
and .swapcase()

■ Built-in function round()

Escape characters
p. 235

ix

Part 8. Functions
Chapter Computational thinking Syntax In more depth
28. Printing Thank you cards
p. 243

■ Function as a unit of code
■ Calling a function
■ Function inputs

■ Function definition
■ Keyword def
■ Function inputs: parameters
and arguments, and default
values

■ Docstrings for function
definition and parameters in
Numpy style

■ Function call

Why is function documentation
important?
p. 250

29. Login database for an online
store
p. 253

■ Function outputs
■ Modularization: Main
function and satellite
functions

■ Keyword return
■ Docstrings for function
returns

■ Tuples

What is None?
p. 260

30. Free ticket at the museum
p. 263

■ Use of if/else construct to
raise an error

■ Creation of conditions to
check variable types and
values

■ Return based on conditions
■ Return values

■ Built-in function
isinstance()

■ Types str, int, list, dict
■ Keyword raise
■ Exceptions

TypeError() and
ValueError()

■ Example in docstring
definition

■ Docstring for returned
values

How can I avoid interrupting the
flow?
p. 270

31. Factorials
p. 273

■ Iterative vs recursive
functions

■ Recursive thinking
■ Base case and recursive case

(No new syntax) When do we use recursive func-
tions?
p. 277

32. How can I reuse functions?
p. 279

■ Function reuse
■ Creating, modifying, and
structuring a module

■ Various ways to import a
module

■ Package as a group of
modules

■ IPython as a coding engine
■ Using complementary tools
when coding (IDE, Jupyter
Notebook, and terminal)

■ Keywords as and from
■ Module sys and its
command
sys.path.append()

■ Jupyter extension
autoreload

What is:
__name__ == “__main__”?
p. 288

Part 9. Last bits of basic Python
Chapter Computational thinking Syntax In more depth
33. Birthday presents
p. 293

■ Opening and reading a text
file

■ Creating and writing a text
file

■ Calculating basic statistics
■ Organizing functions in
pipelines

■ Keyword with
■ Built-in function

open() with the parameters
"r" and "w"

■ Variable file with its
methods .read() and
.write()

■ Built-in functions min(),
max(), and sum()

How do I organize folders and
files?
p. 300

34. What’s more in Python?
p. 303

■ Using sets as intermediators
for list operations

■ Creating anonymous
functions

■ Reproducing random
numbers

■ Calculating computational
time

■ Tuple methods
.count() and .index()

■ Sets and their methods
.union() and
.intercesection()

■ Keyword lambda
■ Built-in function map()
■ Function .seed() from the
module random

■ Module time and its
function .time()

What is pip install?
p. 311

x

Part 10. Object-oriented programming
Chapter Computational thinking Syntax In more depth
35. Let’s build an online store!
p. 315

■ Procedural programming vs.
object-oriented
programming

■ Classes and objects
■ Attributes and methods

■ Keyword class
■ Built-in methods

__init()__ and
__str()__

■ Dot notation to call
attributes and methods

Python data types are classes!
p. 324

36. Securing the online store
p. 326

■ Encapsulation
■ Public vs. private attributes
and methods

■ Accessibility to public vs.
private attributes and
methods

■ Get and set methods

■ Double underscore prefix
for private attributes and
methods

The self is a little crab!
p. 332

37. How can I add a book
sample?
p. 335

■ Inheritance
■ Parent and child classes
■ Addition of new attributes
and methods in the child
class

■ Child class header
■ Built-in function super()

Attributes and methods and
round brackets
p. 339

38. Customizing the coupon for
electronics
p. 341

■ Polymorphism
■ Overwriting methods

(No new syntax) How do I use ChatGPT when cod-
ing?
p. 345

xi

About this book

What will I learn in this book? In this book, you will learn to code in Python using Jupyter Notebook.
Even more importantly, you will develop computational thinking, which is the way we think when cod-
ing.

What makes this book different? The topic progression in this book is designed according to compu-
tational thinking developmentwhile focusing on syntax and strategies, rather than listing disconnected
language characteristics with isolated examples.

Is this book for me? If you have never coded before, if you are following online courses or videos but
feel you can’t quite grasp them, or if you need to better structure your Python and coding knowledge,
this book is for you. Also, if you are training to become a scientist but are not very strong in coding, if
you are transitioning to the Python/Jupyter environment from another programming language, or if
you are a teacher looking for material, this book can be for you.

How is this book structured? The book is divided in 11 parts. The first part introduces the computa-
tional environment—that is, the Jupyter/Python environment. The following ten parts cover compu-
tational thinking and Python syntax. Each part contains two to five chapters, for a total of thirty-eight
chapters.

How are chapters structured? Each chapter starts with one or more coding examples embedded in
narrative and enriched with detailed explanations. In addition, each contains several theoretical and
coding exercises. And they all finish with a recap to summarize the chapter’s main concepts, and a In
more depth section, with coding strategies or curiosities.

Why is code embedded in narratives? Stories provide context and allow long-term memorization.
They are extensively used in learning foreign languages. And, in many respects, a programming lan-
guage is a foreign language.

Why is there code pronunciation? When we code, we pronounce or mumble code within ourselves,
and occasionally aloud with a colleague. Although coding has a strong vocal component, there is no
defined standard for code pronunciation. The pronunciation proposed in this book is the optimized
result of hours of one-on-one interaction with students of various mother tongues.

What kinds of exercises are in the book? In this book, you will find both theory exercises and cod-
ing exercises. Theory exercises are meant to strengthen code comprehension and syntax precision.
Coding exercises are meant to make you practice and thus learn by doing.

What is on the website? On www.learnpythonwithjupyter.com, you can find Jupyter Notebooks asso-
ciated with each chapter, so you can test and experiment while learning. You can also find a commu-
nity, with solutions to both theory and coding exercises. You can ask questions and propose alternative
solutions, to deepen your knowledge.

How do I use this book? Start with the first part, Getting ready, to install and learn the computational
environment. Then, proceed with the chapters. For each chapter, download the corresponding note-
book at www.learnpythonwithjupyter.com. Make sure you understand the syntax, play with the code,
and do the theoretical exercises. Read the recap and the In more depth sections, which will give you
useful hints. Finally, do the coding exercises and compare your solutions with the ones you find in
the community portal. Obviously, looking at a solution before completing an exercise weakens your

xiii

www.learnpythonwithjupyter.com
www.learnpythonwithjupyter.com

chance of learning. If you do not understand questions or solutions, ask in the community portal. Take
your time to solve each exercise. Missing the understanding of one chapter might compromise your
understanding of the chapters that follow it.

How is the language used in this book? The language is colloquial and simple—but precise. There are
clear definitions and careful explanations. I directly talk to you, but I use we when explaining syntax.
We are in this together! Also, I use the first person when I want to share some hints I learned along the
way.

xiv

INTRODUCTION
In this part, we will briefly talk about coding environments, language syntax,
and computational thinking. If you are eager to start coding, just skip it and
come back later!

What do we need to learn when learning coding?

Coding is a lot about telling a computer what to do. We, human beings, need to write commands that
computers understand, and to do so, we need to learn to think differently. Wehave to start from scratch
andmaster a newway of communicating, made of concise and logical instructions. Practically speaking,
we have to learn at least three things: a coding environment, language syntax, and computational
thinking. Let’s see what these are!

A coding environment is a program where we can write and execute code. There are several envi-
ronments to code in Python. In this book, we will use the Jupyter/Python environment, which since
its release in 2015 has become used increasingly both in industry and academia (Figure 1.1). It allows
integrating code with narrative, and it is ideal for creating reports, draft code, and learning to code.
Other very common coding environments are the integrated development environments (IDEs). For
Python, popular IDEs are PyCharm, Visual Studio, and Spyder (Figure 1.2). IDEs typically embed various
components, such as a script editor, a variable environment panel, and a console wherein code is tested
and executed. In Chapter 32, you will get familiar with one of them, Spyder, which is commonly used
for scientific coding. And finally, the most basic environment is the Python IDLE, which is included in
the Python installation. It consists of a shell—which looks very similar to a terminal—where one can
type and execute commands (Figure 1.3).

1 2 3

Figure 1

Figure 1. Three IDEs to code in Python: (1) the Jupyter environment, (2) Spyder, and (3) the Python IDLE.

A language syntax is a set of rules defining how to write commands. You are already very familiar with
at least one syntax, which is your native language syntax. In your mother tongue, you know words,
punctuation, and how to arrange these elements in sentences to create paragraphs and entire texts. In
coding, the pattern is similar. We have to knowdata types and operators, aswell as how to arrange them
in if/else constructs and loops to create functions and classes. In Table 1, you can see a schematic
summary of elements and syntax you will learn in this book. Don’t worry if you do not understandmost
of it—everything will become more and more clear as we progress through the book.

xvii

Introduction

Data types
(Words)

Operators
(Punctuations)

Constructs and
loops
(Sentences)

Unit of code
(Paragraphs)

Software
(Texts)

String, list,
integer, float,
Boolean, tuple,
dictionary, set

Assignment,
membership,
arithmetic,
comparison,
logical

if/elif construct,
for loop,
while loop

Functions Classes
(object-oriented
programming)

Table 1. Components of a programming language, from the most basic (left) to the most complex (right). In the
column titles, the words in between parentheses show the parallelism with natural language syntax.

Finally, computational thinking is the way we think when coding. Every time we approach a new
subject, we need to learn how to think in that subject and develop specific skills. Some of the abilities
you will develop in this book are:
• Creating algorithms, which means conceiving and implementing a series of sequential instructions
to solve a problem.

• Divide and conquer, which consists of decomposing problems in sub-problems, and then combining
the sub-problem solutions to obtain the main problem solution.

• Pattern recognition, which means recognizing in a new problem features of a previously solved prob-
lem so that you can apply a similar solution.

• Solution generalization, which consists of generalizing solutions from specific cases to broader sit-
uations.

As is the case for any subject, developing a way of thinking comes with studying and exercising. Thus,
thinking computationally comes with learning syntax and practicing coding. We will start building
these abilities in Chapter 1. In the next part, Getting ready, you will download, install, and learn how to
use the Jupyter/Python environment.

xviii

GETTING READY
In this part, we will set up the Jupyter/Python environment and learn how to use
it. Let’s start this exciting journey!

The Jupyter/Python environment

An easy way to think about the Jupyter/Python environment is to consider it as a Russian doll—those
wooden dolls of decreasing size nested one inside another (Figure 2). The largest doll is JupyterLab,
which is a web-based environment in which we can open, organize, and work on files of various types.
In JupyterLab, there is Jupyter Notebook, which is a web-based application where we can write code
with narrative. Jupyter Notebook supports several programming languages, one of which is Python.
And finally, Python is enriched by an extraordinary amount of modules and packages that allow us to
add useful functionalities to code. Let’s install the Jupyter/Python environment and see how it works!

Web-based
environment

Web-based app for
code with narrative

Programming
language

Modules
and packages

rand
om

time

sys

Figure 2

Figure 2. The Jupyter/Python environment represented as a Russian doll,
where each component is included in the previous one.

Installing the Jupyter/Python environment
You can install JupyterLab, Jupyter Notebook, Python, and its scientific packages all at once through
Anaconda, a commonly used distribution for scientific computing. Go to the Anacondawebsite, https:
//www.anaconda.com/products/individual, and click download. It might take a few minutes. Once
downloaded, install Anaconda like any other software: click next when required, and leave the default
options (unless you have specific requirements). The installation might take a few minutes too. When
Anaconda is installed, open the Anaconda Navigator by double-clicking its icon, which looks like the
one in Figure 3, box 1. Once opened, you will see all the software contained in Anaconda, including
JupyterLab (Figure 3, box 2), Jupyter Notebook (Figure 3, box 3), and Spyder (Figure 3, box 4). In this
book, we will code in Python using JupyterLab as a working environment. So let’s learn how to use it!

3

https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual

Getting ready

1

2 3

4

5

Figure 3

Figure 3. Anaconda interface: (1) icon, (2) JupyterLab, (3) Jupyter Notebook,
(4) Spyder, and (5) JupyterLab launch button.

JupyterLab
JupyterLab is an environment where we can code in an organized and efficient way. Open it by clicking
the Launch button in the JupyterLab tile in Anaconda (Figure 3, box 5). You will see something similar
to Figure 4. Below are the most relevant features of JupyterLab and some suggestions on how best to
use it.
• JupyterLab is a web-based environment. When you launch JupyterLab, the first thing you’ll notice is
that it starts in the browser. However, its address contains localhost (Figure 4, box 1), which means
that you are actually working locally, that is, on your computer. In other words, you do not need to
be connected to the internet to use JupyterLab.

• Top bar (Figure 4, box 2). The items in the top bar, such as File, Edit, View, etc., are quite intuitive
and similar to many other software. We will describe the most relevant items throughout the book,
but go ahead and start exploring them! For now, just notice that when clicking some top bar buttons
(for example, File), some of the items that appear might be light gray because they are disabled (for
example, Save As..). This is because they refer to Jupyter Notebook, which we will open in the next
section. Finally, a fun feature of JupyterLab is that you can set a dark theme. If you want that, go to
Settings, then JupyterLab themes, and click on JupyterLab Dark.

• Browsing and opening files. On the left side of JupyterLab, you can find a panel with some vertical
tabs (Figure 4, box 3). The first tab contains an icon representing a folder, and, for now, we will focus
only on this one. The folder tab opens a panel on its right, which contains a few features. The first is
a top bar (Figure 4, box 4), containing a symbol, +, which allows us to start a launcher (Figure 4, box
7); an icon representing a folder containing a +, to create a new folder; a vertical arrow pointing up,
to upload a new file; and a circular arrow, to refresh the content of the current directory—in coding,
we often say directory instead of folder. Right below, there is a box to search for files. Then, there
is the path of the working directory (Figure 4, box 5)—that is, the folder where we are currently
opening and saving files. And below, there is a list of the directory content (Figure 4, box 6). In

4

Getting ready

3

7

4

5

6

8

2
1

Figure 4

Figure 4. JupyterLab interface, containing: (1) local URL, (2) top bar, (3) lateral tabs, (4) folder browser top bar, (5)
folder browser, (6) folder content, (7) launcher, and (8) Jupyter Notebook launch button.

JupyterLab, you can open an existing file only from this panel, and not by double-clicking the file in
your computer folder. Therefore, you need to know how to navigate folders from JupyterLab. To go
back to a previous folder, click on a folder name in Figure 4, box 5 (for example, to go back to the
previous folder in this screenshot, you would click on book). To go into a sub-folder—a folder in the
current folder—just double-click on the sub-folder listed in the folder panel (Figure 4, box 6). Last
thing: when clicking on the folder icon (Figure 4, box 3), the whole file browser panel toggles out,
meaning it disappears. When re-clicking, the whole panel toggles back in, so it reappears. Toggling
out can be convenient if you have a small screen.

• Launching tools. The launcher is the place where you can open new notebooks, consoles, terminals,
text files, etc. (Figure 4, box 7). As an alternative, you can open new files and tools from the top bar
(Figure 4, box 2) by clicking on File, then New, and then selecting the file type you want. It’s time to
open a Jupyter Notebook!

Jupyter Notebook
To open a Jupyter Notebook, go to the launcher and click the notebook icon (Figure 4, box 8). A new
notebook opens in the launcher area (Figure 5, box 2), and it is visible as Untitled.ipynb in the browser
panel (Figure 5, box 1). Notebooks have the extension .ipynb, which stands for interactive python
notebook. To give the notebook an appropriate name, right-click on Untitled.ipynb in the browser
panel (Figure 5, box 1). Then, click Rename, and change it to any name you want—for example, practic-
ing_cells.ipynb. As you might have noticed, by right-clicking on the file name, you can perform several

5

Getting ready

other actions, such as delete, cut, copy, duplicate, and more.

Let’s now focus on a notebook content. A Jupyter Notebook is essentially a file containing a sequence
of cells, that is, grey rectangles like the ones you see in Figure 5, box 4. Each cell can contain code
or narrative, as we will see in a bit. The blue bar on the left side of a cell (Figure 5, box 5) indicates
that the current cell is the active cell. In the presence of multiple cells, we can make a cell active by
clicking on the square brackets [] on the cell left side. When a cell is active, we can perform several
operations in various ways, either by keyboard commands or via the notebook top bar (Figure 5, box
3, enlarged in Figure 6), the JupyterLab top bar (Figure 4, box 2), or by right-clicking in the cell! This
might sound redundant, but it is conceived to help coders with different habits—some prefer using
keyboard commands, others prefer clicking on the screen—conveniently perform the cell operations
they need. If there are too many options for you, then just choose one way and stick to that! Below are
some useful cell operations and some of the possible ways to perform them.

2

3

1

5

4

Figure 5

Figure 5. A Jupyter Notebook opened in JupyterLab. (1) Notebook in the folder browser, (2) Jupyter Notebook, (3)
Jupyter Notebook top bar, (4) cells, (5) currently active cell.

• Creating a cell: To create a new cell below the active cell, press B, for below, or the plus button in
the notebook top bar (Figure 6, item 2). The newly created cell becomes the active cell. We can also
create a new cell above the active cell by pressing A, for above (there is no corresponding top bar
button).

• Deleting a cell: To delete the active cell, press D twice, or click on the scissor button (Figure 6, item
3).

• Copying a cell: To copy the active cell, first press C and then V (without command or control!), or item
4 to copy, and then item 5 to paste (Figure 6).

6

Getting ready

• Undoing or redoing cell operations: To undo a cell operation (for example, if you have deleted a cell by
mistake), press Z, or in JupyterLab top bar (Figure 4, box 2), go to Edit, and then Undo cell operation.
Similarly, to redo a cell operation, simultaneously press shift and Z, or in JupyterLab top bar, go to
Edit and then Redo cell operation.

• Moving cells: Left-click on the square brackets [] of the active cell, and while holding down the
mouse button, move the cell up or down. When you reach the position you want to move the cell
to, release. As an alternative, you can go to Edit in the JupyterLab top bar (Figure 4, box 2) and then
click onMove Cells Up orMove Cells Downs.

• Add line numbers. Line numbers are very useful when coding—you’ll come to realize this starting in
Chapter 1. To add line numbers, go to View in the JupyterLab top bar (Figure 4, box 2), and then click
Show Line Numbers.

• Other operations. You can split or merge cells, enable or disable scrolling for output, etc. by going
to the JupyterLab top bar (Figure 4, box 2), and then see the options in Edit, or by right-clicking in a
cell and browsing the options that appear. Just explore them!

1 2 3 4 5 6 7 8 9 10

Figure 6

Figure 6. Jupyter Notebook top bar: (1) save notebook, (2) add cell, (3) cut cell, (4) copy cell, (5) paste cell,
(6) run cell, (7) interrupt kernel, (8) restart kernel, (9) restart kernel and run whole notebook,

and (10) define cell as code or markdown.

What about the remaining buttons in Figure 6? The first button representing a floppy disk—yes, once
upon a time we saved data on floppy disks!—is to save the notebook. The buttons 6 to 9 are used to
execute code, and you will learn how to use them in Chapter 1 (button 6) and Chapter 7 (buttons 7 to
9).

And finally, time to talk about cell content! As wementioned before, a cell can contain two things: code
or narrative. By default, Jupyter Notebook cells are code cells. To transform a cell into a text cell, press
M on the keyboard, or click the drop-down menu in the Jupyter Notebook top bar (Figure 6, item 10),
and selectMarkdown. Markdown is a simplified version of HTML, the coding language used to create
websites. This is why the Jupyter environment is web-based: to use the rich features of web browsers!
Writing the narrative in a notebook is fundamental to embedding code into explanations that make
workflows easy to understand. You can learn how to write in Markdown in the In more depth session
in Chapter 22. And last but not least, cells can contain code. The remainder of the book will be about
that! So, it’s time to start coding, but before doing that, one last bit: you need to download the Jupyter
Notebooks associated with this book.

Downloading the book material
Throughout the rest of the book, you will find 38 chapters. For each chapter, there is a Jupyter Note-
book, whose file name includes the corresponding chapter number. Each notebook contains the ex-
amples discussed in the text so that you can practice and understand while reading. Download the
notebooks at www.learnpythonwithjupyter.com. I highly recommend that you save the notebooks in

7

www.learnpythonwithjupyter.com

Getting ready

a new folder—not in the Download folder—so that you don’t mix them up with other files you down-
load for other purposes. If you feel like going a step further, I really recommend that you create this
folder in a cloud service, so that you do not lose your files in case your computer breaks or has is-
sues (yes, computers are machines and they break!). As for cloud services, you can use Google Drive
(https://www.google.com/drive), Dropbox (https://www.dropbox.com), or any others that you pre-
fer. Using these tools is very easy. Download the program that installs the system on your computer.
After the installation, you will see a new folder. Just create the folder that is going to contain the note-
books in the newly created cloud folder, and all your files will always be automatically synchronized
and saved.

Finally, in each chapter of the book, you will find coding exercises. I recommend that you create a
separate folder called Exercises, or something similar, and inside this folder, create a Jupyter Notebook
for the exercises of each book chapter. Creating notebooks yourself will strengthen your organizational
skills and will allow you to become even more familiar with the Jupyter/Python environment.

At this point, we are really ready. Let’s start coding!

8

https://www.google.com/drive
https://www.dropbox.com

PART 1
CREATING THE BASICS
It’s time to start coding! In this part, you will learn the basic elements
that we will use throughout the whole book. You will learn about strings — that
is, a data type that contains text — and the concatenation operation, used to
combine strings. You will also learn how to ask questions and how to print out
information. And most importantly, you will learn what a variable is. Let’s get
started!

1. Text, questions, and art
Strings, input(), and print()

Programming languages are written languages, and the core of written communication is text. How
is text represented in Python? How can we ask a question to a person? And how can we provide
information to a person? To answer these questions, let’s open Jupyter Notebook 1 and start!

1. Writing text: Strings
In coding, we use the word string to refer to text. We can define strings as follows:

Strings are text in between quotes

Let’s look at the two examples below. On the left side, we see the code as it is in Jupyter Notebook 1.
On the right side, we see how to pronounce the code. Let’s read the code out loud:

[]: 1 "This is a string" This is a string

[]: 1 'Everything you write between quotes is a
string'

Everything you write between quotes
is a string

Now let’s consider the following statements. Are they true or false?

True or false?

1. A string contains text T F
2. A string is in green in Jupyter Notebook T F
3. Quotes can be either single or double T F

Computational thinking and syntax
Let’s analyze the code above in detail! In each cell, there is a string. As we can see, a string is just
some text in between quotes. By text, we mean any character we can type on the keyboard: letters,
numbers, symbols, and even the space! Quotes can be double quotes " ", like in the top example, or
single quotes ' ', like in the bottom example. Quotes that start a string are called opening quotes,
whereas quotes that end a string are called closing quotes. When writing a string in Python, we can
use either double or single quotes; we just have to make sure we do not mix them up. In other words, if
we start writing a string with an opening double quote, we must finish the string with a closing double
quote. Similarly, if we start writing a string with an opening single quote, wemust finish the string with
a closing single quote. Strings are a Python data type, which means that they are one of the core parts
of the Python language (see Table 1 in the Introduction). In Jupyter Notebook, Python strings are in red.

Let’s run the first cell. Running a cellmeans executing the code in that cell. In the notebook, position

11

Part 1. Creating the basics

the mouse anywhere inside the cell. If you haven’t done it already, click the mouse left button. The
cursor will become a blinking vertical bar. Then, move to the keyboard. If you are on a MacOS, press
shift and return at the same time. If you are on a Windows, press shift and enter at the same time (if
not explicitly written on any key, enter is the key on the right side of the keyboard depicting an angled
arrow). As an alternative, you can click the start button in the Jupyter Notebook top bar (Figure 6, icon
6, in the Getting ready part).

This is how the first cell looks when we run it:

[1]: 1 "This is a string" This is a string
'This is a string'

When we run a cell, two things occur. First, a number appears in between the square brackets on the
left side of the cell. In this case, the number is 1 because this is the first cell we ran. Second, we execute
the code. In this case, we get to see the content of the cell; that is, 'This is a string'. Jupyter
Notebook shows the string in between single quotes, evenwhen the string is written in between double
quotes. As mentioned above, single and double quotes are equivalent.

Let’s run the second cell. Like before, left-click anywhere inside the cell. Then, press shift and return if
on MacOS, or shift and enter if on Windows, or click the start button in the Jupyter Notebook top bar.
Here is what we get:

[2]: 1 'Everything you write between quotes is a
string'

Everything you write between quotes
is a string

'Everything you write between quotes is a string'

Two things occurred again. First, the number 2 appeared in between the square brackets on the left
side of the cell, showing that this is the second cell we ran. As is becoming clear, the number on the
left side between square brackets indicates the order of execution of the cells. Second, we can see the
string contained in the cell: 'Everything you write between quotes is a string'.

2. Asking questions: input()
In all programming languages there are ways to ask questions to a person, whom we usually call the
user. This is a very important feature because it allows the interaction between a computer and a
human being. What does this mean? Let’s look at the code! Read the two cells below out loud (pro-
nunciation on the right):

[]: 1 input("What's your name?") input what's your name?

[]: 1 input("Where are you from?") input where are you from?

What does the code inside the cells do? Get a first hint by solving the following exercise.

Match the sentence halves

1. What's your name? is a. it is colored green
2. input() is a built-in function and b. by round brackets
3. When running a cell containing input() c. a string
4. A built-in function is always followed d. we can answer a question

OLD COLORS

NEW COLOR

12

Chapter 1. Text, questions, and art

Computational thinking and syntax
Let’s understand how these lines of code work! Let’s run the first cell. We will get a text box:

[*]: 1 input("What's your name?") input what's your name?
What's your name?

Type your name in the rectangle (I will write mine!):

[*]: 1 input("What's your name?") input what's your name?
What's your name? Serena

And now press return or enter on the keyboard. You will see the following (you will see your name, of
course!):

[3]: 1 input("What's your name?") input what's your name?
What's your name? Serena
'Serena'

A few key things have happened here. First, the number on the left side of the cell turned to 3 as
expected. But while answering the question, instead of the number 3, there was a star symbol (*). This
indicates that a cell has started to run but has not finished yet. To complete the cell run and execute
the code, we have to press return or enter after typing the answer. If the cell run is not completed,
the code in the cell does not get executed, and in addition, we will not be able to run the following
cells. Now, let’s look at the code. We know that "What's your name?" is a string, because it is text in
between quotes and it is colored red. What about input()? It allows us to ask a question to a user.
In Jupyter Notebook, input() creates a text box (a white rectangle) where we can insert some text.
input() performs a specific task and is called a built-in function.

A built-in function is a command that performs a specific task

We can recognize if a code element is a built-in function by two characteristics. First, in Jupyter Note-
book built-in functions are always green. Second, built-in functions are always followed by parentheses
(). In this book, instead of parentheses, we will call them round brackets, to differentiate from other
types of brackets that we will encounter in the chapters that follow. In between the round brackets, we
often write an argument, which for input() is a string containing the question wewant to ask. Built-in
functions are very useful, as they contain code written by the creators of a programming language to
facilitate ease-of-use when coding.

Let’s run the next cell:

[*]: 1 input("Where are you from?") input where are you from?
Where are you from?

Similarly to before, now enter your country of origin in the text box (I will type mine!):

[*]: 1 input("Where are you from?") input where are you from?
Where are you from? Italy

Now press return or enter on the keyboard. You will see an output similar to the following (you will see
your country of origin!):

13

Part 1. Creating the basics

[4]: 1 input("Where are you from?") input where are you from?
Where are you from? Italy
'Italy'

What happened here is similar to the previous cell. Let’s summarize it: the number on the left of the
cell turned to 4 because this is the fourth cell we ran. The built-in function input() created a text
box in Jupyter Notebook in which we could answer the question contained in the string we gave as
an argument. Too concise? Let’s try again: when we run the cell, the built-in function input() shows
us the question, which we put in between the round brackets as a string, and it creates a text box in
which we can type the answer. After typing the answer, we press return or enter to complete the code
execution.

At this point we can ask ourselves: where do we see input() in action in everyday life? Every time we
are asked to type something on a device, there is a function similar to input() behind it! For example,
this is the case when we write our names to register to a newsletter, enter the amount we want to
withdraw from an ATM, or fill out an online form.

Finally, it is important to mention that when we write code, we wear two hats — that is, we have two
roles: we are at the same time programmer and user! Whenwriting code, wewear the programmer hat:
we create code to perform a task, design code structure, and define usermessages. When testing code,
we wear the user hat: we check whether the code does what expected, is easy to use, and whether the
user interaction is pleasant. When coding, we switch hats continuously!

3. ASCII art: print()
We now know how to ask a question to a user, but how do we provide them a piece of information? We
use the built-in function print()! There are several ways to learn about print(), and the following one
is indeed a lot of fun. It involves a type of digital art called ASCII art, by which images can be created
using the symbols on a keyboard. Let’s have a look at the following cell:

[]: 1 print("/_/\ ")
2 print(">^.^< ")
3 print(" / \ ")
4 print("(___)__")

What are we going to print to the screen? The answer is straightforward, but before running the cell,
quickly analyze the code by completing the following exercise.

True or false?

1. print() is a string T F
2. print() can have a string as an argument T F
3. In coding, we print row by row T F

14

Chapter 1. Text, questions, and art

Computational thinking and syntax
Let’s finally run the cell. Here is what we get:

[5]: 1 print("/_/\ ")
2 print(">^.^< ")
3 print(" / \ ")
4 print("(___)__")
/_/\
>^.^<
/ \

(___)__

The little cat we created using keyboard symbols gets displayed to the screen. To do so, we used a new
built-in function print(), which displays on screen the argument we provide — in this case a string.
You might ask: But when we ran the cells 1 and 2, we could see the content of the strings; why do we
need print()? The fact that we could see the strings from cells 1 and 2 is a feature of Jupyter Notebook.
After running a cell, Jupyter Notebook displays the content of the last line but not that of the previous
lines. If we delete the print() function from the code in cell 5, it will display only the very last string:

[5]: 1 "/_/\ "
2 ">^.^< "
3 " / \ "
4 "(___)__"
'(___)__'

There are a few more things to point out by observing the code in cell 5. In a Jupyter Notebook cell,
we can write several lines of code. The lines will get executed sequentially. In other words, when we
run a cell, Python first executes line number 1, then line number 2, and so on, until the last line of the
cell is reached. In addition, in a string, spaces matter. Spaces are characters, so a space is an element
of a string and takes its own place. On the other hand, spaces do not matter between code elements.
For example, both lines below are executed without error messages:

[5]: 1 print ("(___)__")
2 print("(___)__")
'(___)__'
'(___)__'

However, the Python style guidelines recommend avoiding a space between a function and the sub-
sequent round bracket.
When writing code with some repetition, it is good practice to keep some parallelism between the
lines of code. Compare the code written in cell 5 as we did above,

[]: 1 print("/_/\ ")
2 print(">^.^< ")
3 print(" / \ ")
4 print("(___)__")

to the same code written without aligning closing quotes and closing round brackets, as below:

15

Part 1. Creating the basics

[]: 1 print("/_/\")
2 print(">^.^<")
3 print(" / \")
4 print("(___)__")

We can see that in the second case the code looks somehow more confusing. Instead, when we align
quotes, brackets, and other symbols — as you will see in the following chapters — we create code that
is more readable and less prone to errors. We will also talk quite a bit about tricks to minimize the
amount of possible errors that we might introduce in code.

One more question before the recap: where do we see the function print() in action in everyday life?
Every time we see amessage on a device! For example: ‘Registration completed’, or ‘Thank you for your
purchase’, or ‘Logout successful’. In the underlying code, there is a function similar to print()!

Recap
• The type string is text in between quotes.
• input() is a built-in function to ask a user to enter a value.
• print() is a built-in function to display a value to screen.

Our fingers have memory

When learning to code, it is very important to type every single command, resisting the tempta-
tion of copying/pasting. Typing helps usmemorize commands in at least two ways. First, when
typing a command we mentally spell it, so we repeat it in our minds, and thus we memorize
it. Second, our fingers can memorize typing patterns. For example, when typing print(), our
fingers will automatically remember to type the round brackets right after print. Similarly to a
pianist who does not look at the keyboard but at the sheet music while playing, we want to look
not at the keyboard but at the screen while coding. This way of typing is called touch typing
(or blind typing). It helps us be faster and minimize the amount of errors we make because
we do not have to keepmoving our eyes between the keyboard and the screen. How canwe learn

1 2 3 4 5 6 7 8 9 0

,

;
:

.

$

/

&%@ +()

=

?

^~

`

!

{ }

][

#

< >

\

Ctrl Alt

Shift

Alt Gr

Caps Lock

Ctrl

Shift

A

YQ W E R T

Z

U I O P

S D F G H J K L

X C V B N M

Figure 1.1. Starting finger position on a keyboard

16

Chapter 1. Text, questions, and art

touch typing? It is very easy; it just requires some practice. The idea is that each finger presses
some specific keys of the keyboard, as in Figure 1.1. We position the left index finger on the letter
F and the right index finger on the letter J — the two little bumps on these keys define the starting
point. The remaining fingers will go on the keys in the same row. For the left hand, the middle
finger will go on the letter D, the ring finger on S, and the small finger on A. Similarly, for the right
hand, the middle finger will go on the letter K, the ring finger on L, and the small finger on the
semicolon. What about the letters G and H that are in between? When needed, the left index
finger will move from F to G, and the right index finger from J to H. The fingers will then move
upward and downward for the other letters, maintaining the same reciprocal positions.

There are plenty of websites to learn touch typing in a fun way, such as www.typing.com and www.
typingclub.com. They are free, and creating an account is not compulsory. They provide gradual
exercises starting from typing single letters, to syllables, to words, up to whole sentences. Give
it a try?

Ready for some coding exercises? Create a new notebook and solve the following exercises below. If
you do not remember how to create a new notebook or new cells, have a look at pages at the Getting
Ready part.

Let’s code!

1. Writing strings. Write a string using double quotes. Then, run the cell and observe what happens.
Then write a string using single quotes. Run the cell and observe what happens.

2. Asking questions. Write two questions using the built-in function input() and then answer them.

3. ASCII art. Reproduce at least one of the following pieces of ASCII art:

17

www.typing.com
www.typingclub.com
www.typingclub.com

2. Events and favorites
Variables, assignment, and string concatenation

Let’s continue building our basics by learning about variables and string concatenation. What are
they? Let’s find out together using Notebook 2! Read the example below aloud and try to understand
what the code does:

1. Organizing an event
• You are organizing an event, and youhave created the following registration form for the participants:

REGISTRATION FORM

first_name =

last_name =

NEW COLORS

Figure 2.1. Registration form for the event participants.

• The first participant comes in and you fill out the form:

[]: 1 first_name = "Fernando" first name is assigned Fernando
2 last_name = "Pérez" last name is assigned Pérez

• Then you print out what you entered in the registration form:

[]: 1 print(first_name) print first name
2 print(last_name) print last name

What does the code in these cells do? Let’s get some hints by completing the following exercise.

True or false?

1. The command first_name = "Fernando" assigns the string "Fernando" to the variable
first_name

T F

2. The command print(first_name) will print out Fernando T F
3. The command print(last_name) will print out last_name T F

18

Chapter 2. Events and favorites

Computational thinking and syntax
Any guesses about what happens? Let’s run the first cell:

[1]: 1 first_name = "Fernando" first name is assigned Fernando
2 last_name = "Pérez" last name is assigned Pérez

At line 1 we create a variable called first_name. To the variable first_name we assign the string
"Fernando", which is the value. Similarly, at line 2 we create a variable called last_name, to which
we assign the string "Pérez" as a value. In general, we can assign any value to a variable. For example,
we can register our second guest, Guido van Rossum, by writing:

[]: 1 first_name = "Guido" first name is assigned Guido
2 last_name = "van Rossum" last name is assigned van Rossum

As you can see, the variable names remain the same (first_name and last_name), whereas the assigned
values can be different ("Fernando" or "Guido", "Pérez" or "van Rossum"). We can define variables as
follows:

A variable is a label associated to a value

In Python, variables are lowercase. When composed of multiple words, these are connected by under-
score, like in first_name. In Jupyter Notebook, variables are black. The symbol = is called assignment
operator. This has nothing to do with the equals we learned in math! equals has a different symbol in
coding, as we will see in Chapter 9. In coding we use the symbol = to assign a value to a variable, and
we pronounce it as is assigned. This is a very important concept to remember, and it’s one of the most
counter-intuitive! Symbols are colored purple in Jupyter Notebook.

Let’s now run the second cell:

[2]: 1 print(first_name) print first name
2 print(last_name) print last name
Fernando
Pérez

As you might expect, at line 1 we print to the screen the value assigned to the variable first_name,
which is Fernando. At line 2 we print the value assigned to the variable last_name, which is Pérez.
Who is Fernando Pérez? The creator of Jupyter Notebook! And Guido van Rossum? The creator of
Python!

2. Favorites
Time to put together what we have learned so far! Let’s read the following code:

[]: 1 name = input("What's your name?") name is assigned input What's your name?

[]: 1 favorite_food = input("What's your
favorite food?")

favorite_food is assigned input What's
your favorite food?

19

Part 1. Creating the basics

[]: 1 print("Hi! My name is " + name) print Hi! My name is concatenated with
name

2 print("My favorite food is " +
favorite_food)

print My favorite food is concatenated
with favorite food

3 print(name + "'s favorite food is " +
favorite_food)

print name concatenated with 's favorite
food is concatenated with favorite food

What happens in this code? Let’s get some hints by completing the following exercise!

True or false?

1. The answer to the question What’s your name? is assigned to the variable name T F
2. The question What’s your favorite food? is asked before the question What’s your

name?
T F

3. If the answer to the first question is Terry and the answer to the second question
is mango, then the third print will show: Terry’s favorite food is pizza

T F

4. The symbol + can combine a string and a variable containing a string T F

Computational thinking and syntax
Let’s run the first cell:

[3]: 1 name = input("What's your name?") name is assigned input What's your name?
What's your name? Serena

The name we enter in the text box will be assigned to the variable name.

Let’s run the second cell:

[4]: 1 favorite_food = input("What's your
favorite food?")

favorite food is assigned input What's
your favorite food?

What's your favorite food? pasta
Similarly to the above example, what we enter in the text box will be assigned to the variable
favorite_food.

Let’s now run the last cell of this notebook. What do we expect the prints to be?

[5]: 1 print("Hi! My name is " + name) print Hi! My name is concatenated with
name

2 print("My favorite food is " +
favorite_food)

print My favorite food is concatenated
with favorite food

3 print(name + "'s favorite food is " +
favorite_food)

print name concatenated with 's favorite
food is concatenated with favorite food

Hi! My name is Serena
My favorite food is pasta
Serena's favorite food is pasta

At line 1, we print out the union of the string "Hi! My name is " and the value assigned to the variable
name. When dealing with strings, the symbol + is called a concatenation symbol, not plus! Concatenat-
ing simply means chaining together. The symbol + allows us tomerge strings, and we can pronounce
it as concatenated with.

We have now learned the very basics on which we will build our coding skills and knowledge. Now let’s

20

Chapter 2. Events and favorites

take just a few minutes to complete the following exercise, which will help us summarize clearly the
syntax we have learned so far!

Fill in the gaps

Fill in the gaps by inserting what each word is and its color in Jupyter Notebook. See the
example in the first sentence:

1. input() is a built-in function and is colored green .
2. Also print() is a and is colored .
3. name is a and is colored .
4. "My favorite food is" is a and is colored .
5. = is the and is colored .
6. + is the and is colored too.

Recap
• In coding, we assign values to variables.
• The symbol = is the assignment operator (and not the equals symbol!), and it can be pronounced is
assigned.

• The symbol + is the concatenation symbol when dealing with strings (and not the plus symbol!), and
it can be pronounced concatenated with.

Dealing with NameError and SyntaxError

When we write code, we inevitably make mistakes, and we get error messages. Getting error
messages is normal when coding! It’s important to learn how to read error messages so that we
can fix errors quickly and keep coding. There are different kinds of errors, and we’ll learn how
to recognize and fix them over the course of the book. This is our first example of an error:

[5]: 1 print("Hi! My name is " + ame) print Hi! My name is
concatenated with ame

2 print("My favorite food is " + favorite_food) print My favorite food is
concatenated with favorite
food

3 print(name + "'s favorite food is " +
favorite_food)

print name concatenated
with 's favorite food is
concatenated with favorite
food

NameError Traceback (most recent call last)
Cell In[5], line 1

> 1 print("Hi! My name is " + ame)
2 print("My favorite food is " + favorite_food)
3 print(name + "'s favorite food is " + favorite_food)

NameError: name 'ame' is not defined

21

Part 1. Creating the basics

When encountering an error, we have to perform two steps:
1. Read the last line of the message, which tells us what type of errors we have made.
2. Look for the green arrow, which shows us the line where the error is.

In this case we are dealing with a Name error. The last line of the message says: NameError:
name 'ame' is not defined . This is a very common error message. It means that there is not
a variable called 'ame' in your code. This error message usually pops up in two cases: when we
misspell a variable name, or when we forget to run a previous cell containing the variable. In this
example, we misspelled the variable 'name'. This variable is present at lines 1 and 3. Which line
should we correct? The arrow pointing at line number 1 shows us that the error is at line 1, where
we can see that we typed 'ame' instead of 'name'. So we correct the typo, rerun the cell, and
keep coding!

Another very common error message is the following:

[5]: 1 print("Hi! My name is " + ame) print Hi! My name is
concatenated with ame

2 print("My favorite food is " + favorite_food) print My favorite food is
concatenated with favorite
food

3 print(name + "'s favorite food is " +
favorite_food)

print name concatenated
with 's favorite food is
concatenated with favorite
food

Cell In[5], line 1
print("Hi! My name is " name)

^
SyntaxError: invalid syntax

In this case we have made a syntax error. Like before, the first thing we do is to read the last line
of the message, which says: SyntaxError: invalid syntax, meaning that we have forgotten
some symbol or punctuation. Where is the error? To answer this question, first we look at the
very first line of the message—Cell In[5], line 1—which indicates the cell and line where the
error occurred—that is, cell 5, line 1, in this case. Second, we look at the position of the hat
symbol ^ below the command, which specifies the location of the error within the command. In
our case, we forgot to add the the concatenation symbol. So we add it, rerun the cell, and keep
coding!

Ready to exercise? Let’s go!

Let’s code!

1. At the gym. You are the manager of a gym and you have to register a new person. What variables
would you create? Write three variables, assign a value to each of them (make sure they are strings!),
and print them out.

2. At a bookstore. You are the owner of a bookstore and you want to create a book catalog. You start
with the first book: Code Girls by Liza Mundy. You create two variables, book title and author, assign

22

Chapter 2. Events and favorites

them the actual title and author, and print them out. Then, pick a book of your choice, create the
two variables again, assign the corresponding values, and print them out.

3. Where are you from? Ask a person what country he comes from and where he lives. Then print out
three sentences like in cell 5 of the code in this chapter.

4. What’s your favorite song? Ask a person her favorite song and favorite singer. Then print out three
sentences like in cell 5 of the code in this chapter.

23

PART 2
INTRODUCTION TO
LISTS AND IF/ELSE
CONSTRUCTS
In this part, you will learn about lists, which are simply sequences of elements
of various types—for example, strings. You will also learn how to manipulate
them, that is, how to add, remove, or replace one or more elements. And
finally, you will learn if/else constructs, which allow for executing code based
on conditions. Ready? Let’s go!

3. In a bookstore
Lists and if... in... / else...

What does a list look like? And how do we use if/else conditions? To answer these questions, let’s
open Jupyter Notebook 3 and begin! Read the following example aloud and try to understand it:

• You are the owner of a bookstore. On the programming shelf there are:

[]: 1 books = ["Learn Python", "Python for all", "Intro
to Python"]

books is assigned Learn Python,
Python for all, Intro to Python

2 print(books) print books

• A new customer comes in, and you ask what book she wants:

[]: 1 wanted_book = input("Hi! What book would you like
to buy?")

wanted book is assigned input Hi!
What book would you like to buy?

2 print(wanted_book) print wanted book

• You check if you have the book, and you reply accordingly:

[]: 1 if wanted_book in books: if wanted book in books
2 print("Yes, we sell it!") print Yes, we sell it!
3 else: else
4 print("Sorry, we do not sell that book") print Sorry, we do not sell that

book

What does the code above do? Get some hints by completing the following exercise.

True or false?

1. On the programming shelf there are 2 books T F
2. If the customer wants a book that is in the programming shelf, you print: Yes, we

sell it!
T F

3. The if/else block allows us to execute commands based on conditions T F

Computational thinking and syntax
Let’s analyze the code line by line, starting with the first cell:

[1]: 1 books = ["Learn Python", "Python for all", "Intro
to Python"]

books is assigned Learn Python,
Python for all, Intro to Python

2 print(books) print books
['Learn Python', 'Python for all', 'Intro to Python']

On line 1 there is a variable called books, to which we assign a sequence of elements of type string:
"Learn Python", "Python for all", and "Intro to Python". The elements are separated by commas
and they are in between square brackets. A variable with this syntax is called list. In our code, books is
a variable of type listwhose elements are of type string. In other words, we can say that books is a list of

27

Part 2. Introduction to lists and if/else constructs

strings. A list is defined as follows:

A list is a sequence of elements separated by commas ,
and in between square brackets []

As its name says, a list is literally a list of elements, similar to a shopping list or a to-do list. It can
contain elements of various types, such as strings, numbers, etc. For now, we will consider only lists
of strings.

Let’s run the second cell:

[2]: 1 wanted_book = input("Hi! What book would you like
to buy?")

wanted book is assigned input Hi!
What book would you like to buy?

2 print(wanted_book) print wanted book
Hi! What book would you like to buy? Learn Python
Learn Python

You are now familiar with the code in this cell. Briefly summarized, on line 1 we created a vari-
able called wanted_book, which contains the user’s answer to the question: Hi! What book would you
like to buy? Then, on line 2, we printed the value contained in the variable wanted_book.

Let’s run the third cell:

[3]: 1 if wanted_book in books: if wanted book in books
2 print("Yes, we sell it!") print Yes, we sell it!
3 else: else
4 print("Sorry, we do not sell that book") print Sorry, we do not sell that

book
Yes, we sell it!

Here, we finally meet the if/else construct. Let’s learn how it works by starting from lines 1 and
2. These lines say if wanted_book, which is "Learn Python", is in books, which is ["Learn Python",
"Python for all", "Intro to Python"] (line 1), print "Yes, we sell it!" (line 2). In more details,
in line 1 we check whether the value assigned to the variable wanted_book is one of the elements of the
list books. If that is the case, then we move to line 2 and print out a positive answer to the user.

What if wanted_book is not in the list? Let’s rerun cell 2 and enter a book that is not in the list:

[4]: 1 wanted_book = input("Hi! What book would you like
to buy?")

wanted book is assigned input Hi!
What book would you like to buy?

2 print(wanted_book) print wanted book
Hi! What book would you like to buy? Basic Python
Basic Python

In this case, what do you expect when running the cell below? Let’s run it:

[5]: 1 if wanted_book in books: if wanted book in books
2 print("Yes, we sell it!") print Yes, we sell it!
3 else: else
4 print("Sorry, we do not sell that book") print Sorry, we do not sell that

book
Sorry, we do not sell that book

We start again from line 1, where we read if wanted_book, which now is "Basic Python", is in books,

28

Chapter 3. In a bookstore

which is ["Learn Python", "Python for all", "Intro to Python"]. But this time, "Basic Python"
is not in the list books. So we skip line 2, go directly to line 3—where there is else—and proceed to line
4, where we print the string "Sorry, we do not sell that book".
As you can deduce from the example above, in an if/else construct, code is executed depending on
the truthfulness of a condition. If the condition in the if line ismet, or true, we execute the underlying
code. Otherwise, if the condition in the if line is not met, or false, then we execute the code under
else. Therefore, we can define the if/else construct as follows:

An if/else construct checks whether a condition is true or false,
and executes code accordingly:

if the condition is met, the code under the if condition is executed;
if the condition is notmet, the code under else is executed.

Let’s now focus on the syntax. An if/else construct is composed of four parts, explained below:
• if condition (line 1) contains a condition that determines code execution. It is made up of three
components: (1) the keyword if, colored bold green in Jupyter Notebook (2) the condition itself and
(3) the punctuation mark colon :.

• Statement (line 2) contains the code that gets executed if the condition at line 1 is met.
• else (line 3) implicitly contains the alternative to the condition on line 1. This line is always composed
of the keyword else followed by the colon :.

• Statement (line 4) contains the code that gets executed if the condition at line 1 is not met.

Note: else and its following statements are not mandatory. There are cases when we do not want to
do anything if the conditions are not met. Some examples of this scenario are provided in the following
chapters.

Before concluding, let’s zoom even more into these lines and focus on two more aspects: membership
conditions and indentation. In coding, we can use various types of conditions, and you will see these
throughout the book. In this case, we have a membership condition: wanted_book in books (line 1),
where we check whether a variable contains one of the elements of a list. In a membership condition,
we write: (1) variable name, (2) in, and (3) the list in which wewant to find the element. in is amember-
ship operator. In Jupyter Notebook, this is colored bold green, like keywords. In general, make sure
not to confuse keywords, in bold green, with built-in functions, in fainter green.

Finally, notice that the statements under the if condition (line 2) and under the else (line 4) are always
indented, which means shifted toward the right. An indentation consists of 4 spaces, or 1 tab. In
Jupyter Notebook, when pressing enter or return after writing the if or else lines, the cursor is always
automatically placed at the right indented position. Under an if or an else condition, we can write
several commands—as we will see in the next chapters—but they must be indented correctly to be
executed.

Complete the table

Up to this point, you have already learned quite a lot of syntax. Complete the following table
by using the example in the first row to summarize the syntax you know so far.

29

Part 2. Introduction to lists and if/else constructs

Code element What it is What it does

books A variable of type list It contains a sequence of strings

wanted_book

"Learn Python"

if

in

else

=

+

input()

print()

Recap
• Lists are a Python type that contain a sequence of elements (for example, strings) separated by com-
mas , and in between square brackets [].

• The if/else construct allows us to execute code based on conditions.
• Themembership operator in verifies whether an element is in a list.
• In Python, we use indentation for statements below if or else.

Let’s give variables meaningful names!

One of the fundamental criteria when writing code is readability. It is important to write code
that is easy to read both for our future selves and for others. One of the ways to make code read-
able is to createmeaningful variable name. As an example, let’s consider the code we analyzed
in this chapter. On line 1 of cell 2 we created the variable wanted_book:

[2]: 1 wanted_book = input("Hi! What book would you like
to buy?")

answer is assigned input
Hi! What book would you
like to buy?

Instead of wanted_book, we could have named the variable answer:

[2]: 1 answer = input("Hi! What book would you like to
buy?")

answer is assigned input
Hi! What book would you
like to buy?

The name answer is logically consistent because this variable contains the answer to the question
"Hi! What book would you like to buy?". However, answer is not the best choice because it
is a very generic variable name. Variable names should be pertinent, representing the infor-
mation they contain. Consider having 10 input() commands in the code. What do we call the
corresponding variables? We don’t want to call them answer_1, answer_2, ..., answer_10; it would

30

Chapter 3. In a bookstore

be hard to rememberwhatwe assigned to answer_7, for example. Or, if we later decide to reshuf-
fle some questions, then we will have to rename the variables to make sure the numbers increase
consistently. This would generate a lot of confusion and increase the possibility of errors.

Back to the previous example, the name answer would also not be meaningful in the following
line of code from cell 3:

[3]: 1 if answer in books: if answer in books

It does not make much sense to look for an answer in a list of books! But it makes more sense to
look for a wanted book in a list of books:

[3]: 1 if wanted_book in books: if wanted book in books

Let’s code!
For each of the following scenarios, create code similar to that presented in this chapter.

1. In an art gallery. You are the owner of an art gallery. Write a list of some paintings you sell. A new
customer comes in, and you ask what painting she wants to buy. You check whether you have that
painting and reply accordingly.

2. In a travel agency. You are the owner of a travel agency. Write a list of some travel destinations you
sell tickets for. A new customer comes in, and you ask where he wants to go. You check whether
you offer that travel destination and reply accordingly.

3. In a chemical lab. You are the manager of a lab. On a shelf there some jars containing chemicals.
Write a list containing the names of the chemicals. One of the lab members comes to you and you
ask what chemical she wants. You check in your system whether you have that chemical and reply
accordingly.

4. In a tea room. You are the owner of a tea room. Write a list of teas you offer. A new customer comes
in, and you ask what tea he wants. You check on the menu whether you serve that tea and reply
accordingly.

31

4. Grocery shopping
List methods: .append() and .remove()

What aremethods? Andwhat do .append() and .remove() do? To answer this questions, open Jupyter
Notebook 4 and follow along. Let’s start with the following example:

• You are going to a grocery store where you have to buy some food:

[]: 1 shopping_list = ["carrots", "chocolate", "olives"] shopping list is assigned
carrots, chocolate, olives

2 print(shopping_list) print shopping list

• Right before leaving home, you ask yourself if you have to buy something else. If the item is not in
the list, you add it:

[]: 1 new_item = input("What else do I have to buy?") new item is assigned input What
else do I have to buy?

2 if new_item in shopping_list: if new item in shopping list
3 print (new_item + " is/are already in the

shopping list")
print new item concatenated with
is/are already in the shopping
list

4 print(shopping_list) print shopping list
5 else: else
6 shopping_list.append(new_item) shopping list dot append new item
7 print(shopping_list) print shopping list

• Finally, you ask yourself if you have to remove an item. If so, you remove the item from the list:

[]: 1 item_to_remove = input("What do I have to
remove?")

item to remove is assigned input
what do I have to remove?

2 if item_to_remove in shopping list: if item to remove in shopping
list

3 shopping_list.remove(item_to_remove) shopping list dot remove item to
remove

4 print(shopping_list) print shopping list
5 else: else
6 print (item_to_remove + " is/are not in the

shopping list")
print item to remove concatenated
with is/are not in the shopping
list

7 print(shopping_list) print shopping list

To get a better idea of what happens in this code, match the sentence halves in the following exercise.

32

Chapter 4. Grocery shopping

Match the sentence halves

1. The variable shopping_list contains a. we remove it from the shopping list
2. If the new item is not in the shopping

list
b. to remove an element from a list

3. If the item to remove is in the shopping
list

c. "carrots", "chocolate", and "olives"

4. The method .append() allows us d. we add it to the shopping list
5. The method .remove() allows us e. to add an element at the end of a list

Computational thinking and syntax
Let’s dig into the code by running the first cell:

[1]: 1 shopping_list = ["carrots", "chocolate", "olives"] shopping list is assigned
carrots, chocolate, olives

2 print(shopping_list) print shopping list
['carrots', 'chocolate', 'olives']

We start with a list called shopping_list, which contains three strings: "carrots", "chocolate", and
"olives" (line 1). Then, we print the shopping list to the screen (line 2).

What does .append() do? Let’s run the second cell:

[2]: 1 new_item = input("What else do I have to buy?") new item is assigned input What
else do I have to buy?

2 if new_item in shopping_list: if new item in shopping list
3 print (new_item + " is/are already in the

shopping list")
print new item concatenated with
is/are already in the shopping
list

4 print(shopping_list) print shopping list
5 else: else
6 shopping_list.append(new_item) shopping list dot append new item
7 print(shopping_list) print shopping list
What else do I have to buy? carrots
carrots is/are already in the shopping list
['carrots', 'chocolate', 'olives']

In this cell, we ask the user to input a new item to buy, and the answer is saved in the variable new_item
(line 1). Then, we act according to the value contained in new_item. If new_item is already in
shopping_list (line 2), we print out a message saying that the item is already in the shopping list (line
3). To make the message more precise, we concatenate the string in new_item with the string "is/are
already in the shopping list". Then, we print out the shopping list to check that the item is actu-
ally in the list (line 4).

What if the item is not in the shopping list? Let’s rerun the cell and enter an item that is not in the list:

33

Part 2. Introduction to lists and if/else constructs

[3]: 1 new_item = input("What else do I have to buy?") new item is assigned input What
else do I have to buy?

2 if new_item in shopping_list: if new item in shopping list
3 print (new_item + " is/are already in the

shopping list")
print new item concatenated with
is/are already in the shopping
list

4 print(shopping_list) print shopping list
5 else: else
6 shopping_list.append(new_item) shopping list dot append new item
7 print(shopping_list) print shopping list
What else do I have to buy? apples
['carrots', 'chocolate', 'olives', 'apples']

This time, we entered apples in the text box created by input() (line 1). Because apples is not in the
shopping list (line 2), we skip the commands at lines 3 and 4 and jump directly to the else (line 5) to
execute the commands below. We add the new item to the list (line 6), and we print out the list to
check whether we added the element correctly (line 7).
How did we add a new element to a list? Let’s have a closer look at line 6. Here, the method .append()
adds the element new_item to the shopping_list. Note that .append() always adds an element at the
end of a list. As we said, .append() is a method. But what is a method? A preliminary definition—we’ll
redefine it when we talk about object-oriented programming, in the last part of the book—is as follows:

Amethod is a built-in function for a specific variable type

You can recognize that methods are functions because they are followed by round brackets. However,
a method has its own syntax, which is composed of four elements: (1) variable name, (2) dot, (3) method
name, and (4) round brackets. In the round brackets, there can be an argument, such as new_item in
this case. Different data types have different methods. For example, .append() can be used for lists
but not for strings. Lists have a total of eleven methods, and we will learn all of them throughout this
book. Methods are colored blue in Jupyter Notebook.
What does .remove() do? Let’s run the last cell:

[4]: 1 item_to_remove = input("What do I have to
remove?")

item to remove is assigned input
what do I have to remove?

2 if item_to_remove in shopping list: if item to remove in shopping
list

3 shopping_list.remove(item_to_remove) shopping list dot remove item to
remove

4 print(shopping_list) print shopping list
5 else: else
6 print (item_to_remove + " is/are not in the

shopping list")
print item to remove concatenated
with is/are not in the shopping
list

7 print(shopping_list) print shopping list
What do I have to remove? olives
['carrots', 'chocolate', 'apples']

This time, we ask the user what item they want to remove (line 1). If the item to remove is in the
shopping list (line 2), then we remove the item (line 3) and print out the resulting list (line 4). How do
we remove an item? We use .remove(), which is the list method to remove an item from a list. The

34

Chapter 4. Grocery shopping

syntax is the same as for .append() and any other method: list name followed by dot, method name,
and round brackets, which can contain an argument. As an argument, .remove() takes the element to
be removed from the list.

Finally, what if we answer the question "What do I have to remove?" with an element that is not in
the list? Let’s have a look:

[5]: 1 item_to_remove = input("What do I have to
remove?")

item to remove is assigned input
what do I have to remove?

2 if item_to_remove in shopping list: if item to remove in shopping
list

3 shopping_list.remove(item_to_remove) shopping list dot remove item to
remove

4 print(shopping_list) print shopping list
5 else: else
6 print (item_to_remove + " is/are not in the

shopping list")
print item to remove concatenated
with is/are not in the shopping
list

7 print(shopping_list) print shopping list
What do I have to remove? grapes
grapes is/are not in the list
['carrots', 'chocolate', 'apples']

In the text box created by input(), we entered grapes (line 1), which is not in shopping_list (line 2).
Therefore, we skip lines 3 and 4 and jump to the else at line 5. There, we print out a message saying
that item_to_remove is not in the shopping list (line 6) and print out the shopping list for a final check
(line 7).

Complete the table

In Python, we use a lot of punctuation marks. Sum up what you have learned so far by completing
the following table, using the example in row 1.

Punctuation symbol What it’s called What it does

'' or "" Single quotes or double quotes They contain a strings

()

[]

:

,

.

Recap
• The method .append() adds an element at the end of a list.
• The method .remove() removes an element from a list.

35

Part 2. Introduction to lists and if/else constructs

Why do we print so much?

When coding, it is important to keep control of variable’s values. And particularly when learning
to code, every timewe create ormodify a variable, it’s important tomake sure the code doeswhat
it is intended to do. Printing is an easy way to check that variable modifications correspond to
our intentions. As an example, consider the code in cell 4, and let’s focus on the if condition and
its statements (lines 2–4). Let’s rewrite it without the printing command:

[4]: 1 item_to_remove = input("What do I have to
remove?")

item to remove is assigned input
what do I have to remove?

2 if item_to_remove in shopping list: if item to remove in shopping list
3 shopping_list.remove(item_to_remove) shopping list dot remove item to

remove
What do I have to remove? olives

How do we know that the code actually worked correctly? That is, how do we know whether
'olives' was actually removed from shopping_list? We can assume that it happened, but we
cannot be sure until we see it with our eyes. So, we need to print. Let’s rewrite the code by
adding print() back to line 4:

[4]: 1 item_to_remove = input("What do I have to
remove?")

item to remove is assigned input
what do I have to remove?

2 if item_to_remove in shopping list: if item to remove in shopping list
3 shopping_list.remove(item_to_remove) shopping list dot remove item to

remove
4 print(shopping_list) print shopping list
What do I have to remove? olives
['carrots', 'chocolate', 'apples']

Because we printed, we can make sure that 'olives' is not in the shopping_list and our code
accomplished what we intended. Always print extensively when coding! You can always remove
the print() function later on.

Let’s code!

1. For each of the following scenarios, create code similar to the one presented in this chapter.
a. Organizing an event. You are organizing an event. Write a list of what you need to buy. Then
ask your co-organizer what else you have to buy. If the item is not in the list, add it. Finally,
ask your co-organizer if there is anything you need to remove from the list. If so, remove the
item from the list.

b. Favorite cities. Write a list containing names of cities. Ask a friend their favorite city. If the city
is not in the list, add it. Then, ask your friend if they do not like one of the cities you listed. If
so, remove the city from your list.

2. Shoe store. You are the owner of a shoe store, and you have to place a neworder for the next summer
season. You go to the storage room, and you create a list of the remaining shoes: sneakers, boots,
ballerinas. You know that in summer your customers will want sandals, so you add them to the list.
However, they are not going to buy boots, so you remove them from the list. After you get the new
supplies, a new customer comes in. You ask what shoes he wants to try, and he replies that he’d like

36

Chapter 4. Grocery shopping

to try sandals. You check in your list and reply accordingly. Then you ask if he wants to have a look
at something else, and he replies that he’d like to try boots. You check in your list again and reply
accordingly.

3. Currency exchange office. You work at a currency exchange office. The available currencies are
Euros, Canadian Dollars, and Yen, whereas the Swiss Franc is unavailable, so you will have to order
it. Create a list of available currencies and a list of currencies to order. A new customer comes in;
you ask what currency she wants. After she replies, you check in the list of available currencies. If
the currency she wants is available, you tell her that you have it, remove the currency from the list
of available currencies, and add the currency to the list of currencies to order. If the currency she
wants is not available, you tell her that you do not have that currency, and add the currency to the
list of currencies to order.

37

5. Customizing the burger menu
List methods: .index(), .pop(), and .insert()

Let’s learn three more list methods: .index(), .pop(), and .insert(). Open Jupyter Notebook 5, and
read the following example aloud.

• You are at a food court, ready to order. Today’s menu includes a burger, a side dish, and a drink:

[]: 1 todays_menu = ["burger", "salad", "coke"] today's menu is assigned burger, salad,
coke

2 print(todays_menu) print today's menu

• You are happy with burger and coke, but you want to change the side dish from salad to fries. To do
so, you:

1. Look at the position of the side dish in the menu:

[]: 1 side_dish_index = todays_menu.index("salad") side dish index is assigned today's
menu dot index of salad

2 print(side_dish_index) print side dish index

2. Remove salad from the side dish position:

[]: 1 todays_menu.pop(side_dish_index) today's menu dot pop side_dish_index
2 print(todays_menu) print today's menu

3. Add fries to the side dish position:

[]: 1 todays_menu.insert(side_dish_index, "fries") today's menu dot insert at side dish
index fries

2 print(todays_menu) print today's menu

What happens in this code? Get some hints by completing the following exercise.

True or false?

1. The method .index() gives us the position of an element in a list T F
2. The position of salad is 2 T F
3. We remove the element in position side_dish_index and insert a new element in the

same position
T F

4. .index(), .pop(), and .insert() are three string methods T F

Computational thinking and syntax
Let’s analyze the details of the code! Let’s run the first cell:

[1]: 1 todays_menu = ["burger", "salad", "coke"] today's menu is assigned burger, salad,
coke

2 print(todays_menu) print today's menu
['burger', 'salad', 'coke']

38

Chapter 5. Customizing the burger menu

We create a list called todays_menu containing three elements of type string—"burger", "salad", and
"coke" (line 1)—and we print it out (line 2).

In the second cell, we meet the new list method .index(). What does it do? Let’s run the cell:

[2]: 1 side_dish_index = todays_menu.index("salad") side dish index is assigned today's
menu dot index of salad

2 print(side_dish_index) print side dish index
1

The method .index() looks for the element "salad" in the list todays_menu and tells us its position.
More technically, we say that .index() takes the argument "salad" and returns its index. The position
of "salad" is then assigned to the variable side_dish_index (line 1), which we print out (line 2). Note
that in coding, we use the two synonyms index and position interchangeably.

Why is "salad" in position 1 and not 2? This is because in Python we count elements starting from 0,
as you can see in Figure 5.1: "burger" is in position 0, "salad" in position 1, and "coke" in position 2.

0 1 2

"salad" "coke"todays_menu = "burger"

Note: The quotes are copied/pasted from a webpage – Could not find a font with straight quotes

Figure 5.1. Representation of the list todays_menu: each rectangle is a list element,
and the number above is the corresponding index.

Finally, note that an element position is a number. In Python, zero, positive, and negative whole num-
bers are called integers, abbreviated as int. In our example, the variable side_dish_index contains
the number 1, and it is of type integer.

Let’s discover what .pop() does by running the next cell:

[3]: 1 todays_menu.pop(side_dish_index) today's menu dot pop side dish index
2 print(todays_menu) print today's menu
['burger', 'coke']

The method .pop() removes the element in position side_dish_index from the list todays_menu. In
other words, .pop() takes side_dish_index as an argument and removes the element at that index,
which is "salad". In the previous chapter, we saw another method that deletes an element from a
list: .remove(). What is the difference between the two methods? The method .remove() deletes an
element of a certain value, whereas .pop() deletes an element in a specific position.

And finally, let’s learn the method .insert(). Let’s run the last cell:

[4]: 1 todays_menu.insert(side_dish_index, "fries") today's menu dot insert at side dish
index fries

2 print(todays_menu) print today's menu
['burger', 'fries', 'coke']

The method .insert() allows us to add an element at a specific index. It takes two arguments: (1) the
index where we want to insert the new element and (2) the value of the new element. In this case, we
want to insert at position side_dish_index, which is position 1, the string "fries". Similarly, in the

39

Part 2. Introduction to lists and if/else constructs

previous chapter we saw anothermethod to add an element to a list: .append(). What’s the difference?
The method .append() adds an element at the end of a list, whereas .insert() adds an element in a
specific position of a list.

Finally, when dealing with lists, we must always be aware that each element has a position. In some
cases, it is more convenient to work directly on the elements and use methods like .append() and
.remove(). In other cases, it is more appropriate to work on elements’ positions, so we use methods
such as .index(), .pop(), and .insert(). Note that .append(), .remove(), .pop(), and .insert()
modify the list. On the other side, .index() gives us some information about the list, and we can save
this information in a separate variable. Lastly, .append(), .remove(), .index(), and .pop() take only
one argument, whereas .insert() takes two arguments, which are position and new element.

Complete the table

So far you have learned five list methods. Summarize what they do by completing the following
table.

List method What it does

.append()

.remove()

.index()

.pop()

.insert()

Recap
• The method .index() returns the position of an element in a list.
• The method .pop() removes an element in a certain position from a list.
• The method .insert() adds an element in a certain position to a list.
• Indices (or positions) of elements are whole numbers that start from 0 and increase in increments
of one unit; they are of type integer.

We code in English!

During a coffee break, a colleague once told me, “Isn’t it crazy that when English speaking peo-
ple code, they actually do it in their own mother tongue? I mean, when they say if, they actually
mean if!” I had never thought about it. For me, an Italian mother tongue, if was just a key-
word composed of two symbols. Reading if book in books or ab book in books was exactly
the same. I had learned to look at keywords and variable names as abstract symbols with no
intrinsic meaning; they were just entities with a specific function. After that conversation, I
mentally translated keywords and variable names into my mother tongue, and everything ac-
quired muchmore meaning andmade so muchmore sense! I grasped the importance of variable

40

Chapter 5. Customizing the burger menu

names (they actually have a meaning in English!), and thus, I started writing commands like if
book in books, instead of if variable_1 in list_1. Now, when I code, I mainly think in En-
glish. But that translation process helped me acquire more awareness and make my code much
more readable. In Chapters 4 and 5, we learned five list methods. Their names actually have a
meaning in English. Remove, insert, and index are pretty straightforward. To remember that
append adds new elements at the end of a list, one can think of the appendix of a book, which
is always at the end, or of the appendix in the intestine, which is somewhere at the end of the
abdomen. To remember pop, one can think ofmaking popcorn, like little explosions, that here re-
move elements from a certain position. Whether English is your native tongue or not, remember
that we code in English!

Let’s code!

1. For each of the following scenarios, create code similar to that presented in this chapter:
a. Getting a new bike. You go to a bike store to buy your new bike. There you find a bike you like:
it is blue, electric, and has gears. Write a list with these characteristics. You are happy with
the bike being electric and having gears, but you would like to change its color. To do so, you
(1) look at the position of the blue color in the bike option list, (2) remove the blue color, and (3)
add the color you want.

b. Ordering a T-shirt online. You are ordering a new T-shirt online. You find a T-shirt you like,
which is red, with a round neck, and with a print add your text here. Write a list with these
characteristics. Now you want to add your own text to the T-shirt. To do so, you (1) look at the
position of add your text here, (2) remove add your text here, and (3) add the text you want to
be printed on your T-shirt. After completing the exercise, can you think of an alternative way
to change the T-shirt print?

2. Steve Jobs. Given the following list:

steve_jobs = ["somebody", "learn", "use", "a computer", "it teaches us"]

Find out a famous quote by Steve Jobs by doing the following:
a. Add the new string "think" at the end of the list.
b. Add "should" in position 1.
c. Add "how to" in position 3. Then also add it in position 7.
d. Replace "use" with "program".
e. Add "because" after "a computer".
f. Replace "somebody" with "everybody".
g. Add " - Steve Jobs" at the end.

3. Grace Hopper. Do you know why we say debugging in coding? Let’s find out! Given the following
list:

grace_hopper = ["In 1946", "a moth", "caused", "a malfunction", "in an early",
"electromechanical", "computer"]

Modify it by doing the following:
a. Replace "In 1946" with "From then on".

41

Part 2. Introduction to lists and if/else constructs

b. Add "we said" after "computer".
c. Remove the string in position 5 (6th element) and add "with a" in the same position.
d. Remove the string in position 3 (4th element).
e. Substitute (or replace) "a moth" with "when anything".
f. Remove "in an early".
g. Add "it had bugs in it" at the end of the list.
h. Substitute "caused" with "went wrong".
i. Add " - Grace Hopper" at the end of the list.

42

6. Traveling around the world
List slicing

In the previous two chapters, you learned five methods to manipulate lists: .append(), .remove(),
.index(), .pop(), and .insert(). These list methods are very convenient and easy to remember;
however, they can make code quite cumbersome. In Python, there is an alternative and more compact
way to change, add, and remove list elements, which you will see in the next chapter. This alternative
method is based on slicing; therefore, in this chapter, we will focus on this topic. Ready to get to know
everything about slicing? Open Jupyter Notebook 6 and follow along! First of all, what is slicing?

Slicing means accessing list elements through their indices

If you have a sweet tooth, the word “slicing” immediately reminds you of a slice of cake. And in fact,
there is quite a similarity between slicing a cake and slicing a list! In the first case, you “extract” one
or more cake slices for your guests—and yourself! In the second case, you extract one or more list
elements to be used in subsequent lines of code.

• Let’s meet the list we will slice:

[1]: 1 cities = ["San Diego", "Prague", "Cape Town", "Tokyo",
"Melbourne"]

cities is assigned San
Diego, Prague, Cape
Town, Tokyo, Melbourne

2 print(cities) print cities
['San Diego', 'Prague', 'Cape Town', 'Tokyo', 'Melbourne']

In this cell, there is a list called cities containing five strings: "San Diego", "Prague", "Cape Town",
"Tokyo", and "Melbourne" (line 1), and we print it out (line 2).

How are we going to slice cities? The syntax for slicing is very easy. It consists of the list name
followed by opening and closing square brackets, like this: cities[]. In between the square brackets,
we write the positions of the elements we want to slice. For this reason, it’s crucial to be aware of the
positions of each element within a list. In the list cities, the elements have the following positions:

0 1 2 3 4

cities = "San Diego" "Tokyo""Prague" "Cape Town" "Melbourne"

Figure 6.1. Representation of the list cities: each rectangle is a list element,
and the number above is the corresponding index.

Now, how do we write element positions in between the square brackets? There are various rules
depending on how many elements we want to slice, where they are, and in which direction we want to
extract them. We are going to learn all these rules in the coming pages.

A last note before starting: to better learn about slicing, I suggest this method. Every time you read a
slicing task (for example: Slice "Prague"), cover the following code with a piece of paper. Try to guess

43

Part 2. Introduction to lists and if/else constructs

the code, and compare your guess with the solution. Then carefully read the explanation. Make sure
you fully understand the current example before proceeding to the next one. Enough words, time to
slice!

1. Slice "Prague":

[2]: 1 print(cities[1]) print cities in position one
'Prague'

In this cell, we slice (or access) "Prague", which is in position 1, andwe print it. As you can see, whenwe
slice one single element from a list, we write the position of the element itself in between the square
brackets. Thus, we can summarize this syntax as list_name[element_position], and we can read it
as list name in position element position.

Note: For simplicity, in this example and those that follow, we just print the sliced elements. However,
one could assign a sliced element to a variable, like this:

[2]: 1 sliced_city = cities[1] sliced_city is assigned cities in position
one

2 print(sliced_city) print sliced_city
'Prague'

We will assign sliced list elements to variables in the following chapters. For now, let’s focus on under-
standing how slicing works!

2. Slice the cities from "Prague" to "Tokyo":

[3]: 1 print(cities[1:4]) print cities in positions from one to four
['Prague', 'Cape Town', 'Tokyo']

In this cell, we slice and print three consecutive elements—"Prague", "Cape Town", and "Tokyo"— that
are at positions 1, 2, and 3, respectively. In between the square brackets, we write two numbers, sep-
arated by a colon :. The first number is the position of the first element we want to slice, and we call
it start. In this case, the start is 1, which corresponds to "Prague". The second number is the position
of the last element we want to slice, to which we must add 1. We call it stop. The stop always follows
the plus one rule, which simply says thatwemust add 1 to the position of the last element we want to
slice (you can learn the reasoning behind this rule in the In more depth section at the end of this chap-
ter). In this example, the position of the last element ("Tokyo") is 3, to which we must add 1 because
of the plus one rule, so the stop is 4. We can summarize the syntax to slice consecutive elements as
list_name[start:stop], and we can read it as list name in positions from start to stop.

3. Slice "Prague" and "Tokyo":

[4]: 1 print(cities[1:4:2]) print cities in positions from one to four
with a step of two

['Prague', 'Tokyo']

In this case, we want to slice and print two non-consecutive elements—"Prague" and "Tokyo"—which
are at positions 1 and 3, respectively. In the code above, you might recognize that 1 is the start, 4 is
the stop (because of the plus-one rule), and 2? That is the step! As you can see, "Tokyo" is positioned
2 steps after "Prague": there is 1 step from "Prague" to "Cape Town", and 1 step from "Cape Town" to
"Tokyo", for a total of 2 steps. Therefore, the syntax to slice non-consecutive elements is an extension

44

Chapter 6. Traveling around the world

of the rulewe saw in the example above: list_name[start:stop:step], which you can read as list name
from start to stop with step. We can call it the three-s rule, where the three s’s are the initials of start,
stop, and step, respectively.

The most convenient aspect of the three-s rule is that we can simplify it in several situations. For
example, you might wonder: why didn’t we write the step in the example 2, where we sliced the cities
from "Prague" to "Tokyo"? Because when elements are consecutive, the step is 1—"Cape Town" is
1 step after "Prague", and "Tokyo" is 1 step after "Cape Town"—and when the step is 1 we can simply
omit it. Obviously, we could have written the code specifying the step as follows:

[3]: 1 print(cities[1:4:1]) print cities in positions from one to four
with a step of one

['Prague', 'Cape Town', 'Tokyo']

However, adding the step here is a redundancy, so we simply avoid it.

4. Slice the cities from "San Diego" to "Cape Town":

[5]: 1 print(cities[0:3]) print cities in positions from zero to three
['San Diego', 'Prague', 'Cape Town']

Here we have to slice consecutive elements. So, we specify the start, which is 0 for "San Diego", and
the stop, which is 3 for "Cape Town", but we can omit the step because it is 1. Interestingly, in this case
we can simplify the three-s rule even more! Because the start coincides with the first element of the
list, we can simply omit it:

[6]: 1 print(cities[:3]) print cities from the beginning of the list
to position three

['San Diego', 'Prague', 'Cape Town']

5. Slice the cities from "Cape Town" to "Melbourne":

[7]: 1 print(cities[2:5]) print cities in positions from two to five
['Cape Town', 'Tokyo', 'Melbourne']

Again, we have to slice consecutive elements. Therefore, we specify the start, which is 2 for "Cape
Town", and the stop, which is 5 (because of the plus-one rule) for "Melbourne", but we omit the step
because it is 1. And once more, we can simplify the three-s-rule! How? The stop coincides with the
last element of the list, so we can just omit it:

[8]: 1 print(cities[2:]) print cities from position two to the end of
the list

['Cape Town', 'Tokyo', 'Melbourne']

So far, we have seen the three-s rule applied in its entirety (example 3), and without start (example 4),
stop (example 5), and step (example 2). How else can we simplify it? Let’s look at the following example.
How do you think the code will look?

6. Slice "San Diego", "Cape Town", and "Melbourne":

[9]: 1 print(cities[0:5:2]) print cities in positions from zero to five
with a step of two

['San Diego', 'Cape Town', 'Melbourne']

45

Part 2. Introduction to lists and if/else constructs

This time, the elements to slice are not consecutive. We start at 0, which is the position of "San Diego",
we stop at 5 (because of the plus-one rule) for "Melbourne", andwe specify the step, which is 2, because
we are slicing every second element. However, as you might have guessed, because the start coincides
with the beginning of the list, and the stop coincides with the last element of the list, we can omit both,
and rewrite the code above as follows:

[10]: 1 print(cities[::2]) print cities from the beginning to the end
of the list with a step of two

['San Diego', 'Cape Town', 'Melbourne']

You have now mastered the three-s rule and learned how to simplify it. How else can we play with it?
Let’s look at this further representation of the list cities:

0 1 2 3 4

cities = "San Diego" "Tokyo""Prague" "Cape Town" "Melbourne"

positive indices

-5 -4 -3 -2 -1

negative indices

Figure 6.2

Figure 6.2. In a list, indices can be positive (from left to right) or negative (from right to left).

In Python, each element of a list can be identified by a positive or a negative index. We use positive
indiceswhenwe consider elements from left to right andnegative indiceswhenwe consider elements
from right to left. Positive indices start from 0 and increase of 1 unit (0, 1, 2, etc.). Negative indices start
from -1 and decrease of 1 unit (-1, -2, -3, etc.). Note that negative indices do not start from 0 to avoid
ambiguity: the element in position 0 is always the first element of the list starting from the left side.
When are negative indices convenient? For example, when we are dealing with a very long list. In that
case, it would be tedious to count through all elements starting from0. Sowe can just count backwards
starting from the last element!

How do we use negative indices in slicing? Let’s have a look!

7. Slice "Melbourne":
[11]: 1 print(cities[4]) print cities in positions 4

Melbourne

In this example, we extracted "Melbourne" as we learned in example 1: by writing its positive index,
which is 4, in between the square brackets. However, "Melbourne" is the last element of the list; there-
fore, it is much more convenient to use its negative index to slice it, like this:

[12]: 1 print(cities[-1]) print cities in position minus one
Melbourne

The advantage of using the negative index is that we do not need to count through all the list elements
to get to know the position of "Melbourne". Since "Melbourne" is the last element of the list, we can
just write -1. This saves us time and eliminates possible errors due to miscounting.

46

Chapter 6. Traveling around the world

8. Slice all the cities from "Prague" to "Tokyo" using negative indices:

[13]: 1 print(cities[-4:-1]) print cities in positions from minus four to
minus one

['Prague', 'Cape Town', 'Tokyo']

This is in an alternative to example 2. There, we extracted the cities from "Prague" to "Tokyo" using
positive indices, whereas here we want to use negative indices. It might look intimidating, but the
reasoning is always the same. The first element we want to extract is Prague, which is in position -4,
therefore the start is -4. The last element we want to extract is Tokyo, which is in position -2, thus the
stop is -1 because of the plus one rule. Like in the previous example, using negative indices can be very
convenient when extracting elements from the end of a long list.

In this example, we saw how to use negative indices for the start and the stop. What about the step?
A negative step allows us to slice elements in reverse order, which means from the right to the left.
Negative steps can be used with both positive or negative start and stop. This might sound confusing,
but we’ll clarify it the next three examples. Slicing in reverse order is a very powerful feature, and it’s
the last thing you need to know to master slicing. Let’s have a look!

9. Slice all the cities from "Tokyo" to "Prague" using positive indices (reverse order):

[14]: 1 print(cities[3:0:-1]) print cities in positions from three to zero
with a step of minus one

['Tokyo', 'Cape Town', 'Prague']

When slicing—and coding, in general—it is extremely important to be aware of the result we expect.
When slicing in reverse order, having the result in mind can really avoid confusion. So, let’s start from
there. We want to print out "Tokyo", "Cape Town", and "Prague". The first element is "Tokyo", which
is in position 3, so the start is 3. The last element is "Prague", which is in position 1. When we slice
in reverse order, instead of the plus-one rule, we have to use the minus one rule, which says that we
must subtract 1 from the position of the last element we want to slice. Why? This is very intuitive. As
we know, for the stop, we always want to take the next position. When slicing in direct order, the next
position is on the right side of the last element. Therefore, we add 1 to its index. On the other side,
when slicing in reverse order, the next position is on the left side of the last element. Therefore, we
subtract 1 from its index. Now, back to our example. The last element is "Prague", which is in position
1. And because of the minus one rule, the stop is 0. Finally, we need to define the step. Because the
elements are consecutive, the step should be 1, but because we are going in reverse order, we have to
put a minus in front of it, so the step becomes -1.

In summary, when slicing in reverse order, we have to: (1) make sure we have the first and the last
elements clearly in our minds, (2) apply the minus one rule to the stop, and (3) use a negative step.

Let’s raise the bar even more now! Look at the next example.

10. Slice all the cities from "Tokyo" to "Prague" using negative indices (reverse order):

[15]: 1 print(cities[-2:-5:-1]) print cities in positions from minus two to
minus five with a step of minus one

['Tokyo', 'Cape Town', 'Prague']

When using negative indices for the start and the stop, the rules are exactly the same as when using
positive indices. The first element we want to slice is "Tokyo", which is in position -2, so the start is
-2. The last element is "Prague", which is in position -4. Because of the minus one rule, we have to

47

Part 2. Introduction to lists and if/else constructs

subtract 1 from -4, therefore the stop is -5. And finally, because we are slicing consecutive elements in
reverse order, the step is -1. As you can now imagine, using negative indices can be very convenient
when slicing elements at the end of a very long list in reverse order.

11. Slice all the cities (in reverse order):

[16]: 1 print(cities[::-1]) print from the beginning of the list to the
end of the list with a step of minus one

['Melbourne','Tokyo', 'Cape Town',
'Prague', 'San Diego']

The first element to slice is "Melbourne", which is the last element of the list. Therefore, we can omit
the start. The last element to slices is "San Diego", which is the first element of the list. Therefore,
we can omit the stop too. We just must write the step, which is -1 because we are slicing consecutive
elements in reverse order. Easy to remember!

Last note. Learning slicing might feel overwhelming at first because of all the rules, the use of positive
andnegative indices, and thinking of lists in direct and reverse order. However, learning slicing properly
is fundamental not only because it is often used in coding, but also because it allows you to exercise
your brain and strengthen your logical thinking. Take your time to learn the rules and do the exercises
below. You will greatly benefit from it in the following chapters!

Complete the table

Complete the following table to create an overview of slicing in your own words:

Slicing syntax What it does

list_name[index]

list_name[start:stop:step]

list_name[:stop:step]

list_name[start::step]

list_name[start:stop]

list_name[negative_index]

list_name[::negative_step]

list_name[::-1]

Recap
• To slice one element, we use the rule: list_name[element_position].
• To slice multiple elements, we use the three-s rule: list_name[start:stop:step], where:

■ We can omit start when we slice from the first element of a list, stop when we slice to the last
element of a list, and step when we slice consecutive elements of a list.

■ The stop follows the plus one rule when slicing from left to right (direct order), and theminus one
rule when slicing from right to left (reverse order).

48

Chapter 6. Traveling around the world

• The values of element_position, start, stop, and step can be:
■ Positive: when considering elements from left to right (direct order).
■ Negative: when considering elements from right to left (reverse order).

• Negative steps are used to invert lists.

Why the plus one rule?

So far, we have learned that each list element is associated with an index or position. However,
in Python, each element is actually considered between two positions, as represented in Figure
6.3.

1 2 3 540

cities = "San Diego" "Tokyo""Prague" "Cape Town" "Melbourne"

Figure 6.3. List representation where each element is in between indices.

Let’s re-consider example 2, where we extracted the cities from "Prague" to "Tokyo":

[3]: 1 print(cities[1:4]) print cities in positions from one
to four

['Prague', 'Cape Town', 'Tokyo']

Using the representation above, we can see that the start is 1 because that is the index that
precedes "Prague", the first element to slice. And the stop is 4 because that is the index that
follows "Tokyo", the last element to slice.

For many people, considering elements in-between indices is pretty straightforward. For other
people, considering that elements have one single index—as we have done so far—is easier. My
recommendation is to pick one representation and stick to that. In this book, we will continue
to represent list elements with one single index.

Let’s code!

1. Fruits and veggies. Given the following list:

fruits_and_veggies = ["peppers", "apricots", "carrots", "apples", "zucchini",
"grapes", "cabbage", "oranges", "asparagus", "pears"]

Use slicing to extract:
a. The produce between apples and grapes (included);
b. All the vegetables;
c. All the fruits;
d. The vegetables between carrots and asparagus (included);
e. The fruits between apples and oranges (included).

49

Part 2. Introduction to lists and if/else constructs

2. Clothes, stationery, and electronics. Given the following list:

objects = ["mobile", "t_shirt", "pencil", "laptop", "hat", "ruler", "tv", "pants",
"pen"]
Use slicing to extract:
a. All the clothes;
b. All the stationery;
c. All the electronics;
d. The second and the last stationery items;
e. The first and the last electronics items;
f. The first and the second clothing items.

3. Interior design. Given the following list: interior_design = ["sofa", "curtain", "lamp",
"table", "carpet", "plant", "armchair", "blanket", "vase"]
Use slicing to extract the following elements in direct order (from left to right), once using positive
indices and once using negative indices:
a. All furniture;
b. All textiles;
c. All decorative elements;
d. The pieces composed of 5 letters (count them by hand, no coding required).

4. Botanic garden. Given the following list:

botanic_garden = ["tulip", "pine", "poppy", "palm", "rose", "oak", "daisy",
"eucalyptus"]
Use slicing to extract the following elements, once in direct order (from left to right) and once in
inverse order (from right to left):
a. All flowers;
b. All trees;
c. All flowers and trees starting with p (find them by hand, no coding required);
d. "pine", "rose", and "eucalyptus";
e. All flowers and trees.

5. Travel agency. You are the owner of a travel agency and these are the destinations you offer:

destinations = ["Boston", "Madrid", "Shanghai", "Cairo", "Mexico City", "Copenhagen",
"Seoul", "Casablanca", "Lima", "Vienna", "Bangkok", "Nairobi", "Buenos Aires",
"Athens", "Manila", "Cape Town"]
You also have a list containing additional destinations you want to offer in the future:

future_destinations = ["Tunis"]

a. A new customer comes in and you ask where he would like to go. He replies: Berlin. You check
whether Berlin is part of the destination list. If Berlin is part of the list, you say that you sell
tickets for Berlin. If Berlin is not part of the destination list, you: (1) tell the customer that you
do not sell tickets for Berlin; (2) tell him what European cities are in the destination list; and (3)
add Berlin to the list of future destinations.

b. Because tickets for Berlin are not available, your customer is now thinking about going to Asia.
So you tell him the destinations in Asia. He tells you that he forgot the last two Asian places you
mentioned; so you tell him again. Then, he says he would have enjoyed going to Hong Kong.
But Hong Kong is not an available destination, so you add it to the list of future destinations.

50

Chapter 6. Traveling around the world

c. Now you ask your customer if he is interested in going to the American continent, and he
replies: Toronto. You check whether Toronto is part of the list. Similarly to what you did for
Berlin, if Toronto is part of the list, you say that you sell tickets for Toronto. If Toronto is not
part of the destination list, you: (1) tell your customer that you do not sell tickets for Toronto,
(2) tell himwhat cities on the American continent are in the destination list, and (3) add Toronto
to the list of future destinations.

d. The customer is still undecided. You think he might be interested in a trip to Africa, so you tell
him all the destinations in Africa. He finally tells you that he wants to go to Cape Town! So you
replace Cape Town from the list of destinations with Tunis from the list of future destinations,
and remove Tunis from the future destination list.

e. The customer is finally gone, and you want to create a flyer with all the destinations you offer.
To do so, you add the three new future destinations to the list of current destinations (in what
order?), and you print out the destinations you offer for each continent. While doing so, you
notice that Africa only has four destinations. So you add one African destination to the des-
tination list before printing out the African destinations. And, finally, you close the shop, go
home, and enjoy your evening after a hard day of work!

51

7. Senses, planets, and a house
Changing, adding, and removing list elements using slicing

Now that you know everything about slicing, let’s see how to use it to manipulate lists—that is, how
to change, add, or remove list elements. Download and open Jupyter Notebook number 7 and follow
along. Similarly to the previous chapter, cover the code in these pages with a sheet of paper. First, try
to guess the commands to execute, and then compare with the code below. Don’t forget to read the
code aloud!

1. Senses
Let’s first learn how to change list elements using slicing and assignment.

• Given the following list:

[1]: 1 senses = ["eyes", "nose", "ears", "tongue",
"skin"]

senses is assigned eyes, nose, ears,
tongue, skin

2 print(senses) print senses
['eyes', 'nose', 'ears', 'tongue', 'skin']

The list senses contains five strings: "eyes", "nose", "ears", "tongue", and "skin" (line 1), and we
print it out (line 2).

• Replace "nose" with "smell":

[2]: 1 senses[1] = "smell" senses in position one is assigned
smell

2 print(senses) print senses
['eyes', 'smell', 'ears', 'tongue', 'skin']

To change one list element, we assign the new value to the list sliced in the element’s position. In this
case, the element we want to replace—"nose"—is in position 1. So, we slice the list in position 1, and
we assign the new string "smell" (line 1). Then, we print the list to check whether the change is correct
(line 2).

At this point, you might ask: Why do I have to learn list manipulation using slicing when I already know
how to do it with methods? For at least three reasons! First reason: to reduce the possibility of errors.
The code at line 1 is an alternative to the code we learned in Chapter 5, where we used three methods
to replace an element, that is:

[]: 1 nose_index = senses.index("nose") nose index is assigned senses dot index
of nose

2 senses.pop(nose_index) senses dot pop nose index
3 senses.insert(nose_index, "smell") senses dot insert at position nose

index smell

By using slicing, we reduce the number of commands from 3 to 1, and we do not need to create an
extra variable—nose_index. By writing less code, weminimize the possibility of making errors! Second
reason: slicing makes code writing faster. Imagine you have to replace 4 elements. With slicing, you
would have to write just 4 lines of code; instead, with list methods, the number of lines required would

52

Chapter 7. Senses, planets, and a house

be 12! And finally, the third reason: transitioning from list methods to list slicing allows us to shift
from a more concrete to a more abstract way of thinking. As you know, when using list methods, we
use a coding language that is more similar to a natural language. Method names, in fact, are words
in the English vocabulary, such as remove, insert, etc. Instead, when slicing, we use numbers—which
represent element positions—and thus we use (numerical) symbols in place of words. As you can see,
we are building more and more the abstract thinking that coding requires. So let’s keep going!

• Replace "tongue" and "skin" with "taste" and "touch":

[3]: 1 senses[3:5] = ["taste", "touch"] senses in positions from three to five
is assigned taste, touch

2 print(senses) print senses
['eyes', 'smell', 'ears', 'taste', 'touch']

To change several elements in a list, first we slice the elements we want to substitute, and then we
assign them a list containing the new values. In this case, we want to replace two elements, so we slice
using the three-s rule. The start is the position of "tongue", which is 3, and the stop is the position
of "skin", which is 4, but it becomes 5 because of the plus one rule. The step is 1, so we can omit
it. To the sliced list, we assign a list containing the new elements, which are the strings "taste" and
"touch" (line 1). Finally, we print the list to make sure that the change occurred correctly (line 2).

• Replace "eyes" and "ears" with "sight" and "hearing":

[4]: 1 senses[0:3:2] = ["sight", "hearing"] senses in positions from zero to three
with a step of two is assigned sight,
hearing

2 print(senses) print senses
['sight', 'smell', 'hearing', 'taste', 'touch']

Like in the previous example, we want to replace several elements. So, we begin by slicing the list.
The start is the position of "eyes", which is 0 (and can be omitted). The stop is the position of "ears",
which is 2, but it becomes 3 because of the plus one rule. The two elements are not consecutive, thus
we have to write the step, which is 2. Finally, we assign the list containing the two strings we want to
add: "sight" and "hearing". Note that the two elements we want to replace are not consecutive, but
Python takes care of placing "sight" and "hearing" in the right positions (line 1). At the end, we print
the final list to check the changes we made (line 2).

2. Planets
To add new elements to a list, we can use slicing combined with list concatenation and assignment.
How? Let’s have a look at the following examples!
• Given the following list:

[5]: 1 planets = ["Mercury", "Mars", "Earth", "Neptune"] planets is assigned Mercury,
Mars, Earth, Neptune

2 print(planets) print planets
['Mercury', 'Mars', 'Earth', 'Neptune']

We begin with the list planets, which contains four strings: "Mercury", "Mars", "Earth", and
"Neptune" (line 1), and we print it out (line 2).

53

Part 2. Introduction to lists and if/else constructs

• Add "Jupiter" at the end of the list:

[6]: 1 planets = planets + ["Jupiter"] planets is assigned planets
concatenated with Jupiter

2 print(planets) print planets
['Mercury', 'Mars', 'Earth', 'Neptune', 'Jupiter']

To add an element at the end of a list, we (1) embed it in a list, (2) concatenate it to the original list,
and (3) assign the result to the original list. It’s less complicated than it sounds! Let’s start from the
far right of line 1. We take the new element "Jupiter"—which is a string—and we enclose it in square
brackets to transform it into a list: ["Jupiter"]. Why do we need to change "Jupiter" data type?
Because we want to add it to the list planets using concatenation. And, as in string concatenation, we
can concatenate only strings with strings; in list concatenation, we can concatenate only lists with
lists. Note that list concatenation works the same way as string concatenation. Finally, we assign the
result of the operation to the original list planets to actually change it. It is common to say that we
reassign the result to the original list. This whole operation constitutes an alternative to the method
.append(). Finally, we print out the modified list to check the correctness of our code (line 2).

You may have realized that in this example there is no slicing! This is because it’s a special case, where
we add an element at the end of a list—it would be similar if we added an element at the beginning of a
list. We could write planets[0:4] + ["Jupiter"], where planets[0:4] slices all the elements in the
list, but that would be redundant. Let’s see slicing in action in the next two examples!

• Add "Venus" between "Mars" and "Earth":

[7]: 1 planets = planets[0:2] + ["Venus"] + planets[2:5] planets is assigned planets from
zero to two concatenated with
venus concatenated with planets
from two to five

2 print(planets) print planets
['Mercury', 'Mars', 'Venus', 'Earth', 'Neptune',
'Jupiter']

In this case, we want to add an element in the middle of a list. To do so, we (1) split the list in two
segments at the position where we want to insert the new element, (2) insert the new element as a list
by concatenating it with the two list segments, and (3) assign the result to the original list. Like before,
it’s easier than it sounds! Wewant to split the list between "Mars" and "Earth". So, the first list segment
will contain "Mercury" and "Mars". Thus, we slice planets starting from position 0, corresponding
to "Mercury", and stopping in position 2 for the plus one rule; "Mars" is in position 1. The second
list segment will contain "Earth", "Neptune", and "Jupiter". So, we slice starting from position 2,
corresponding to "Earth", and stopping in position 5 for the plus one rule; "Jupiter" is in position
4. In between the two list segments, we concatenate a new list containing the string "Venus"—like
before, we have to change "Venus" from a string to a list. We conclude the operation by assigning
the concatenation result to the original list. As you may have realized, this line is an alternative to
the method .insert() (line 1). Finally, we print out the obtained list to check the correctness of the
operation (line 2).

A nice way to think about the whole procedure is to consider a list like a toy train, where each list
element is a car. When we want to insert a new car, for example a restaurant car, we split the train into
two parts in the position where we want the new car to be. Then, we add the first part of the train to

54

Chapter 7. Senses, planets, and a house

the left side of the restaurant car, and the second part of the train to the right side of the restaurant
car. Thus, we obtain our modified train!
• Add "Uranus" and "Saturn" between "Neptune" and "Jupiter":

[8]: 1 planets = planets[:5] + ["Uranus", "Saturn"] +
planets[5:]

planets is assigned planets from
the beginning of the list to
position five concatenated with
Uranus, Saturn concatenated with
planets from position five to
the end of the list

2 print(planets) print planets
['Mercury', 'Mars', 'Venus', 'Earth', 'Neptune',
'Uranus', 'Saturn', 'Jupiter']

To insert several consecutive elements in the middle of a list, we use the same approach as the one
above. We slice the first part of the list planets from the beginning (start omitted) to 5, which corre-
sponds to the position of "Neptune" plus 1. Then, we concatenate the two new elements "Uranus" and
"Saturn" embedded in a list. Finally, we concatenate the remaining part of the list planets, starting
from the position of "Jupiter", which is 5, and stopping at the end of the list (stop omitted). As you’ll
probably notice, when we want to insert several consecutive elements in the middle of a list, we just
embed all the elements in a list (line 1). Finally, we print out the modified list to check whether we
added the new elements correctly (line 2).

Now a trick! We saw that the start of the first list segment and the stop of the second list segment are
omitted. In addition, you may have noticed that the stop of the first list segment coincides with the
start of the second list segment—they are both 5. This is because of the plus one rule applied to the
stop of the first list segment. Therefore, when adding new elements using slicing, we can just count
the stop of the first list segment. That will coincide with the start of the second list segment. The
remaining start and stop can be omitted!

An important note before continuing: in the past three examples, we started analyzing code from the
right side of the assignment symbol. Focusing on that side is quite common because it is where we
define variable changes and operations. Sometimes, we can even start writing code on the right side of
the assignment symbol, and then type the appropriate variable name on the left side. It’s very common
to start analyzing or writing code backwards!

3. A house
To delete list elements, we can use the keyword del combined with list slicing. This is very easy. Let’s
have a look!

• Given the following list:

[9]: 1 house = ["kitchen", "dining room", "living room",
"bedroom", "bathroom", "garden", "balcony",
"terrace"]

house is assigned kitchen,
dining room, living room,
bedroom, bathroom, garden,
balcony, terrace,

2 print(house) print house
['kitchen', 'dining room', 'living room', 'bedroom',
' bathroom', 'garden','balcony','terrace']

55

Part 2. Introduction to lists and if/else constructs

We start with a list called house containing 8 strings (line 1), and we print it out (line 2).

• Delete "dining room":

[10]: 1 del house[1] del house in position one
2 print(house) print house
['kitchen', 'living room', 'bedroom', ' bathroom',
'garden', 'balcony','terrace']

To delete one element in a list, we can use del followed by the list sliced at the position of the element
we want to delete. In this case, we want to remove the string "dining room", which is in position 1, so
we write the keyword del followed by house[1]. del is a keyword that allows us to delete a variable
or some elements in a variable—in this case, some elements in a list. Like the other keywords we have
seen so far—for example, if and else—del is written in bold green in Jupyter Notebook. As you may
have realized, using del and slicing is an alternative to using the list methods .pop() or .remove() (line
1). After removing the element, we print out the list for checking (line 2).

• Delete "garden" and "balcony":

[11]: 1 del house[4:6] del house in positions form four
to six

2 print(house) print house
['kitchen', 'living room', 'bedroom', ' bathroom',
'terrace']

To delete consecutive elements from a list, we use the same syntax as above: we write the keyword
del followed by the list sliced at the positions of the elements we want to delete. In this example, the
start is the position of "garden", which is 4, and the stop is the position of "balcony", which is 5, and
it becomes 6 because of the plus one rule (line 1). Then we print out the reduced list (line 2).

• Delete "kitchen", "bedroom" and "terrace":

[12]: 1 del house[::2] del house in positions from the
beginning to the end of the list
with a step of two

2 print(house) print house
['living room', ' bathroom']

To delete non-consecutive elements in a list, we use the same procedure as the one above: we write
the keyword del, followed by the list sliced at the positions of the elements we want to remove. In this
example, the start corresponds to "kitchen", which is the first element of the list, so we can omit it.
The stop corresponds to "terrace", which is the last element in the list, so we can omit it as well. And
the step is 2 because want to delete every second element (line 1). Finally, we print the remaining list
(line 2).

56

Chapter 7. Senses, planets, and a house

• Delete "house":

[13]: 1 del house del house
2 print(house) print house

NameError Traceback (most recent call last)
Cell In[13], line 2

1 del house
> 2 print (house)

NameError: name 'house' is not defined

Finally, we want to delete the whole house! So we write the keyword del followed by the variable name
house (line 1). This time, we get an error when we print out the list house. It’s a Name Error, telling us
that the variable does not exist anymore (line 2). This is a good error, telling us that we succeeded in
our aim: we deleted the whole variable house!

Complete the table

In the previous four chapters, you learned how to manipulate lists using methods or slicing.
Complete the table below to compare the two different techniques:

List operation List methods List slicing

Adding an element at the
beginning of a list

Adding an element in the
middle of a list

Adding an element at the
end of a list

Changing an element in a
list

Deleting an element in a
list

• What is different if you want to add, change, or delete several elements? Write your answer
here:

Recap
• To change list elements, we can use slicing and assignment.
• To add list elements, we can combine slicing, concatenation, and assignment.
• To delete list elements, we can use the keyword del and slicing.
• List concatenation is performed using the + symbol and works the same way as string concatenation.

57

Part 2. Introduction to lists and if/else constructs

What is a Jupyter Notebook kernel?

The kernel is the component of Jupyter Notebook that executes code. When we run a cell, the
kernel tells Python to execute computations and save variables. Every notebook has its own
kernel. And when we open a notebook, a new kernel is automatically created and is ready to
execute code. Now you may ask: Why do we care about the kernel? Because sometimes we
need to interrupt it or restart it to continue running code. Let’s see what this means.

Interrupting the kernel. Consider two cells containing code. In the first cell, we ask a question
using the function input(). In the second cell, we print the variable containing the answer. We
want to execute the code, sowe run the first cell. On the left side, we get the star symbol between
the square brackets, indicating that the code is being executed. But before entering the answer,
we mistakenly run the second cell! Now the second cell also gets the star symbol between the
square brackets on the left side, like this:

[*]: 1 name = input("What's your name?") name is assigned input what's your
name?

What's your name?

[*]: 1 print(name) print name

In this case, the situation is frozen and no code gets executed! Sowe need to interrupt the kernel.
To do that, we can either go to the JupyterLab top bar, then to Kernel, and then Interrupt Kernel,
or we can go to the Jupyter Notebook top bar and press the interrupt kernel button—that is, item
7 in Figure 7.1.

7 8 91 2 3 4 5 6 10

Figure 7.1

1 2 3 4 5 6 7 8 9 10

Figure 7.1. Jupyter Notebook top bar: (1) save notebook, (2) add cell, (3) cut cell, (4) copy cell, (5) paste cell,
(6) run cell, (7) interrupt kernel, (8) restart kernel, (9) restart kernel and run whole notebook,

and (10) define cell as code or markdown.

After interrupting the kernel, the star symbols in between square brackets disappear, and we can
run each cell again.

Restarting the kernel. Consider the list house from this chapter. Let’s say that we want to delete
the element "dining room", as we did in one of the examples above. But, by mistake, we type
the wrong slicing index—that is, 0 instead of 1—deleting "kitchen" in place of "dining room",
like this:

[9]: 1 house = ["kitchen", "dining room",
"living room", "bedroom", "bathroom",
"garden", "balcony", "terrace"]

house is assigned kitchen, dining
room, living room, bedroom,
bathroom, garden, balcony, terrace,

[10]: 1 del house[0] del house in position zero
2 print(house) print house
['dining room', 'living room', 'bedroom',
'bathroom', 'garden', 'balcony','terrace']

58

Chapter 7. Senses, planets, and a house

We want to restore the original variable house and rerun the corrected version of our code—
del house[1]— to obtain the correct result. How do we go back? By restarting the kernel! To
do that, we can either go to the JupyterLab top bar, then Kernel, and then Restart Kernel; or
we can go to the Jupyter Notebook top bar and press the curved arrow (item 8 in Figure 7.1).
Then, we can rerun the cells of the notebook. As an alternative, we can restart the kernel and
rerun all notebook cells at once by going to the JupyterLab top bar, then Kernel, and then Restart
Kernel and Run all Cells, or to the Jupyter Notebook top bar and pressing the symbol with two
arrow tips (item 9 in Figure 7.1). You may ask: do I really have to restart the kernel every time I
make a mistake? Not really. In this case, one could just rerun the first cell to bring the variable
house back to its original value, and rerun the second cell with the corrected code. However,
when dealing with multiple variables, or if we make several mistakes for a single variable, it is
good practice to reset the kernel and start from scratch.

Let’s code!

1. Stephanie Shirley. Do you know the story of Stephanie Shirley? Let’s see what she did! Given the
following list:

stefanie_shirley = ["In 1962", "Stephanie Shirley", "founded", "a software company",
"employing", "only women", "working from home"]

Do the following using list slicing:
a. Replace "founded" with "thrived".
b. Remove the element in position 0 (first element).
c. Replace "employing" with "transferred ownership".
d. Add "and over the years" between "thrived" and "a software company".
e. Replace "only women" with "to her staff".
f. Insert "gradually" in position 4 (fifth element).
g. Replace "a software company" with "she".
h. Add "70 millionaires" at the end of the list.
i. Remove "Stephanie Shirley".
j. Replace "working from home" with creating".
k. Insert "The business" at the beginning of the list.

Then, redo the same using list methods.

2. Tim Berners-Lee. What did Tim Berners-Lee invent? Let’s find it out! Given the following list:

tim_bernerslee = ["Tim Berners-Lee", "invented", "the World Wide Web", "in 1989",
"at CERN in Geneva", "info.cern.ch", "was", "the address of",
"the world's first website and Web server"]

Do the following using list slicing:
a. Remove "info.cern.ch".
b. Replace "was" with "consists of".
c. Remove the element in position 1 (second element).
d. Add "all over the world" at the end of the list.
e. Replace "the world's first website and Web server"with "about 75 million servers".

59

Part 2. Introduction to lists and if/else constructs

f. Remove the element in position 0 (first element).
g. Replace "in 1989" with "Nowadays".
h. Remove the element in position 0 (first element).
i. Replace "at CERN in Geneva" with "it is estimated that".
j. Add "the internet" in position 2 (third element).
k. Remove the element in position 4 (fifth element).

Then, redo the same using list methods.

3. Alan Turing. What happened thanks to Alan Turing’s contributions? Let’s discover it! Given the
following list:

alan_turing = ["Turing", "created", "an electromechanical machine", "to crack",
"the Nazi Navy's", "Enigma Code"]

Do the following using list slicing:
a. Replace "the Nazi Navy's" with "shortened the war".
b. Insert "by two years" in position 5 (sixth element).
c. Replace "an electromechanical machine" with "his contribution".
d. Add "saving millions of lives" to the end.
e. Replace "created" with "that".
f. Remove "to crack".
g. Replace "Turing" with "It is estimated".
h. Remove the element in position 5 (sixth element).

Then, redo the same using list methods.

60

PART 3
INTRODUCTION TO
THE FOR LOOP
In this part, you will learn about the for loop, which is one of the two loops
in coding—the other is the while loop. You will learn its syntax and how to use
it to search elements in a list, modify a list, and automatically create new
lists. Let’s go!

8. My friends’ favorite dishes
for... in range()

The for loop is one of the most important constructs in coding because it allows us to repeatedly
execute commands. What does this mean and how does it work? Time to open Jupyter Notebook 8
and answer these questions! Read the following example out loud and try to understand it:

• Here are a list of my friends and a list of their favorite dishes:

[]: 1 friends = ["Geetha", "Luca", "Daisy", "Juhan"] friends is assigned Geetha, Luca,
Daisy, Juhan

2 dishes = ["sushi", "burgers", "tacos", "pizza"] dishes is assigned sushi, burgers,
tacos, pizza

• These are all my friends:

[]: 1 print("My friends' names are:") print My friends' names are:
2 print(friends) print friends

• These are my friends one by one:

[]: 1 for index in range(0,4): for index in range from zero to four
2 print("index:" + str(index)) print index: concatenated with

string of index
3 print("friend:" + friends[index]) print friend: concatenated with

friends in position index

• These are all their favorite dishes:

[]: 1 print("Their favorite dishes are:") print Their favorite dishes are:
2 print(dishes) print dishes

• These are their favorite dishes one by one:

[]: 1 for index in range(0,4): for index in range from zero to four
2 print("index:" + str(index)) print index: concatenated with

string of index
3 print("dish:" + dishes[index]) print dish: concatenated with dishes

in position index

• These are my friends, with their favorite dishes one by one:

[]: 1 for index in range(0,4): for index in range from zero to four
2 print ("My friend " + friends[index] +

"'s favorite dish is " + dishes[index])
print My friend concatenated
with friends in position index
concatenated with 's favorite dish
is concatenated with dishes in
position index

Get some hints about what the code does by completing the next exercise.

63

Part 3. Introduction to the for loop

Match the sentence halves

1. The for loop allows us a. a start and a stop as an argument
2. The variable index b. how many times commands are repeated
3. In the first loop, the variable index c. to repeat the indented commands
4. The built-in function range() determines d. changes value at each loop
5. The built-in function range() can take e. is assigned the value 0

Computational thinking and syntax
Let’s start by running the first cell:

[1]: 1 friends = ["Geetha", "Luca", "Daisy", "Juhan"] friends is assigned Geetha, Luca,
Daisy, Juhan

2 dishes = ["sushi", "burgers", "tacos", "pizza"] dishes is assigned sushi, burgers,
tacos, pizza

There are two lists—friends and dishes—and each contains four strings.

Let’s run the second cell:

[2]: 1 print("My friends' names are:") print My friends' names are:
2 print(friends) print friends
My friends' names are:
['Geetha', 'Luca','Daisy','Juhan']

We print out the string My friends' names are: (line 1) and the content of the list friends (line 2).

Let’s now run the third cell, which contains the first for loop:

[3]: 1 for index in range(0,4): for index in range from zero to four
2 print("index:" + str(index)) print index: concatenated with

string of index
3 print("friend:" + friends[index]) print friend: concatenated with

friends in position index
index: 0
friend: Geetha
index: 1
friend: Luca
index: 2
friend: Daisy
index: 3
friend: Juhan

The code prints the position and the value of each list element by repeating lines 2 and 3 four times.
How does this happen? Let’s start from line 1, which is the header of the for loop. It consists of five
components:
• for: The keyword starting a for loop. Like all keywords, it is bold green in Jupyter Notebook.
• index: A variable that is assigned a different value at each loop iteration (we’ll talk more about this
in a bit).

• in: A membership operator, the same that you learned in the construct if...in/else in Chapter 3.
• range(): A built-in Python function. You can recognize this as a function because it is followed by

64

Chapter 8. My friends’ favorite dishes

round brackets and is colored green in Jupyter Notebook—like input() and print(). We’ll talk more
about range() in a bit too.

• : that is, the colon punctuation.

To better understand what this line does, let’s begin from the built-in function range(). It takes two
arguments: 0 and 4. They are two integers that we can call—guess what?—start and stop! So, what
does range() do? Create a separate cell in the notebook, and then write and run the following code:

[4]: 1 list(range(0,4)) list of range from zero to four
[0,1,2,3]

The built-in function range() returns a sequence of integers spanning from the start (included) to
the stop (excluded because of the plus one rule). In this example, the integers go from 0 to 3, and—
guess what again?—they correspond to the indices of the elements of the list friends! Why is there
list()? This is another built-in function that we write here for a proper print out. Don’t worry too
much about it for now. Let’s focus on understanding the for loop!

What do we do with the list of integers created by range()? We assign them to the variable index!
At each code repetition—or loop, or iteration—index is subsequently assigned a number created by
range(). That is, in the first loop, index is assigned 0; in the second loop, index is assigned 1; and so
on. We could call the variable index any name—for example, loop_id, iteration_number. However, it is
convention to call it index, so we will adopt it. Now, what can we do with the variable index? At least
two things!

First, we can print index to keep track of which loop is getting executed, like we do at line 2. In the first
loop, index is assigned 0, so we print "index: 0". In the second loop, index is assigned 1, so we print
"index: 1"—and so on. Why is str() here? Because we can concatenate only strings with strings, and
index is an integer! So, we need to change the variable type of index from integer to string. And to do
that, we can use the built-in function str(), which transforms a variable into a string.

Second, we can use index to automatically slice list elements one by one. As you now know, index
changes at every iteration, and it can be assigned values that go from the beginning of a list—that is,
0—to the end of a list—in this case 3. Let’s look at line 3 of the cell above. In the first loop, when index is
assigned 0, friends[index] is the same as friends[0]—that is, "Geetha". In the second loop, when
index is assigned 1, friends[index] is the same as friends[1], i.e., "Luca". And so on.

The lines below the header—in this example, lines 2 and 3—are called the body of the for loop. They
are always indented, and there can be as many as we want. They get executed for a number of times
determined by the sequence of numbers created by the function range().

Before moving to the next cell, let’s summarize what the code at cell 3 does. We have to go through
the three lines of code for a total of four times, like this:
• In the first iteration, index is assigned 0 (line 1), so we print index: 0 (line 2), and then friends in
position index—which is 0—and thus friend: Geetha (line 3).

• In the second iteration, index is assigned 1 (line 1), so we print index: 1 (line 2), and then friends in
position index—which is 1—and therefore friend: Luca (line 3).

• In the third iteration, index is assigned 2 (line 1), so we print index: 2 (line 2), and then friends in
position index—which is 2—and therefore friend: Daisy (line 3).

• In the fourth iteration, index is assigned 3 (line 1), so we print index: 3 (line 2), and then friends in
position index—which is 3—and therefore friend: Juhan (line 3).

65

Part 3. Introduction to the for loop

Being aware of what happens at each loop is fundamental to make sure that our code does what we
expect. Any time you are uncertain about what is happening in a for loop, think about your code line
by line and iteration by iteration, like we did right above. If the code is particularly complicated, you
can also create a table, where you can keep track of each line at each iteration, like this:

Loop for index in range(0,4): print("index:" +str(index)) print("friend:"+friends[index])
First index = 0 index: 0 friend: friends[0] → Geetha
Second index = 1 index: 1 friend: friends[1] → Luca
Third index = 2 index: 2 friend: friends[2] → Daisy
Fourth index = 3 index: 3 friend: friends[3] → Juhan

Before going to the next cell, let’s define the for loop:

A for loop is the repetition of a group of commands
for a determined number of times.

This definition summarizes the two main features of a for loop.
1. We execute the lines of code that are in the body of the for loop several times
2. The number of times is known and is determined by a sequence of numbers created by the built-
in function range()

Let’s continue with cell 4:

[4]: 1 print("Their favorite dishes are:") print Their favorite dishes are:
2 print(dishes) print dishes
Their favorite dishes are:
['sushi', 'burgers', 'tacos', 'pizza']

We print out the string Their favorite dishes are: (line 1) and the content of the list dishes (line 2).

Let’s run cell 5, which contains another for loop:

[5]: 1 for index in range(0,4): for index in range from 0 to 4
2 print("index:" + str(index)) print index: concatenated with

string of index
3 print("dish:" + dishes[index]) print dish: concatenated with dishes

in position index
index: 0
friend: sushi
index: 1
friend: burgers
index: 2
friend: tacos
index: 3
friend: pizza

The header is the same as that of the for loop we met at cell 3, including the start and the stop of the
built-in function range(). Also, line 2—where we print the index value at each iteration—is the same.
However, at line 3 we print out the dish names one by one. Once again, let’s go through the code one
iteration at a time:

66

Chapter 8. My friends’ favorite dishes

• In the first iteration, index is assigned 0 (line 1), so we print index: 0 (line 2), and then we print
dishes in position index—which is 0—and thus dish: sushi (line 3).

• In the second iteration, index is assigned 1 (line 1), so we print index: 1 (line 2), and then we print
dishes in position index—which is 1—and thus burgers (line 3).

• In the third iteration, index is assigned 2 (line 1), so we print index: 2 (line 2), and then we print
dishes in position index—which is 2—and thus tacos (line 3).

• In the fourth iteration, index is assigned 3 (line 1), so we print index: 3 (line 2), and then we print
dishes in position index—which is 3—and thus pizza (line 3).

Finally, let’s run the last cell:

[6]: 1 for index in range(0,4): for index in range from zero to four
2 print ("My friend " + friends[index] +

"'s favorite dish is " + dishes[index])
print My friend concatenated
with friends in position index
concatenated with 's favorite dish
is concatenated with dishes in
position index

My friend Geetha's favorite dish is sushi
My friend Luca's favorite dish is burgers
My friend Daisy's favorite dish is tacos
My friend Juhan's favorite dish is pizza

Once again, there is a for loop. The header is the same as that in the two previous examples: we create
a sequence of integers that go from 0 to 3, and we assign them to the variable index, one by one at
each iteration (line 1). Just one note: beyond the start and the stop, the built-in function range() can
also take a step as an argument, like so:

[6]: 1 for index in range(0,4,1): for index in range from zero to four
with a step of one

As for the start and the stop, the step also works exactly the same way as it does in slicing (Chapter 6).
In these examples, we omitted the step because it is 1—that is, we take all the elements of the list. You
will play with different step values in the coding exercises at the end of this chapter.

Finally, the body of the for loop is constituted of one line of code, where we print out a sentence
composed of four parts, concatenated to each other. The first and the third parts are two strings—
"My friend " and "'s favorite dish is ". The second and the fourth parts are the elements of
the lists friends and dishes sliced at position index (line 2). As you’ll notice, we can use index to
simultaneously slice several lists of the same length at the same position within one for loop.

Fill in the gaps

Complete the following sentences to summarize the for loop syntax and functionality in your own
words:

1. A for loop is .

2. A for loop header is .

3. A for loop body is .

4. for is a and is colored in Jupyter
Notebook.

67

Part 3. Introduction to the for loop

5. index is a and is colored in Jupyter
Notebook. It is assigned .

6. range() is a and is colored in Jupyter
Notebook. It can take three arguments: ,
, and . It returns .

7. An iteration or loop is .

Recap
• A for loop is the repetition of commands for a defined number of times.
• When the for loop is used to slice a list, the number of times coincides with the list length.
• The generic syntax of a for loop header is: for index in range(start, stop, step):.
• The body of a for loop is indented and can contain as many lines of code as needed.
• range() is a built-in Python function that creates a sequence of integers spanning from the start
(included) to the stop (excluded).

• str() is a built-in Python function that converts a variable into a string.

Dealing with IndexError and IndentationError
When executing a for loop, wemight encounter two errors: index errors and indentation errors.
Let’s see why they happen and how to fix them!
Index error. Let’s modify the example in cell 3 by changing the stop to 5 (instead of 4). When we
run the cell, we get the following error.

[3]: 1 for index in range(0,5): for index in range from zero
to five

2 print("index:" + str(index)) print index: concatenated
with string of index

3 print("friend:" + friends[index]) print friend: concatenated
with friends in position
index

index: 0
friend: Geetha
index: 1
friend: Luca
index: 2
friend: Daisy
index: 3
friend: Juhan
index: 4

IndexError Traceback (most recent call last)
Cell In[3], line 3

1 for index in range (0,5):
2 print ("index: " + str(index))

> 3 print ("friend: " + friends[index])
IndexError: list index out of range

68

Chapter 8. My friends’ favorite dishes

Let’s decipher the error message. As you know from Chapter 2, we start reading from the last
line, which informs us about the type of error: IndexError: list index out of range. This
means that we are trying to slice a list in a position that does not exist. Where do we do this?
Let’s look for the arrow. It points to line 3, where we slice friends in position index. What’s
the value of index? From the last line of the printouts, we can see that index is 4. Thus, we are
trying to slice the list friends in position 4, which does not exist. Fixing this error is easy: we
just correct the stop in range() to 4.
IndentationError. The indentation error is very easy to recognize and fix. Let’s look into this
example:

[3]: 1 for index in range(0,4): for index in range from zero
to four

2 print("index:" + str(index)) print index: concatenated
with string of index

Cell In[3], line 2
print("index: " + str(index))
̂
IndentationError: expected an indented block

Again, we start reading from the last line of the error message, which says: IndentationError:
expected an indented block. This means that we did not indent a line of code. Where? The
message says line 2 at the end of its first line. The fix is straightforward: we just indent line 2. A
last note: Jupyter Notebook (and other editors) help us avoid the indentation error by positioning
the cursor correctly when we press enter after a line terminated by a colon (:)—that is, after a
for loop header, an if/else condition, a while loop header (Chapter 17), a function definition
(Chapter 28), or a class definition (Chapter 35).

Let’s code!

1. For each of the following scenarios, create code similar to that presented in this chapter.
a. Capitals of the world. Write two lists, one containing countries of the world and the other
containing their capital cities. First, print out all the countries as a list and all the countries
one by one. Then, print out all the cities as a list and all the cities one by one. Finally, print out
each country with its capital.

b. Animals of the world. Write two lists, one containing animals of the world and one containing
the continents (or countries) where they live. First, print out all the animals as a list and all the
animals one by one. Then, print out all the continents as a list and all the continents one by
one. Finally, print out each animal with the continent where it lives.

2. Mountains and rivers. Given the following list:

mountains_rivers = ["everest", "mississipi", "yosemite", "nile", "mont blanc",
"amazon"]

Print:
a. All elements as a list;
b. All elements one by one using a for loop;
c. Mountains using slicing;

69

Part 3. Introduction to the for loop

d. Mountains one by one using a for loop (tip: remember that range() can have three arguments:
start, stop, step);

e. Rivers using slicing;
f. Rivers one by one using a for loop (what start do you use?);
g. All elements in reverse order using slicing;
h. All elements in reverse order, one by one, using a for loop (what start, stop, and step do you
use?).

3. Wild animals. Given the following list:

wild_animals = ["eagle", "bear", "parrot", "tiger", "pelican", "coyote"]

Print:
a. All animals as a list;
b. All animals one by one using a for loop;
c. Mammals using slicing;
d. Mammals one by one using a for loop;
e. Birds using slicing;
f. Birds one by one using a for loop (what start do you use?);
g. All animals in reverse order using slicing;
h. All animals, one by one, in reverse order using a for loop.

70

9. At the zoo
For loop with if... ==... / else...

Can we combine for loops and if/else constructs? Yes! How? Open Jupyter Notebook 9 and follow
along. Read the following example aloud, and try to understand how it works:

• You are at the zoo and you write down a list of some animals you see:

[]: 1 animals = ["giraffe", "penguin",
"dolphin"]

animals is assigned giraffe, penguin,
dolphin

2 print(animals) print animals

• Then you print out the animals one by one:

[]: 1 # for each position in the list for each position in the list
2 for i in range(0, len(animals)): for i in range from zero to len of animals
3 print("--- Beginning of loop ---") print beginning of loop
4 # print each element and its position print each element and its position
5 print ("The element in position " +

str(i) + " is " + animals[i])
print the element in position concatenated
with string of i concatenated with is
concatenated with animals in position i

• You really wanted to see a penguin:

[]: 1 wanted_to_see = "penguin" wanted to see is assigned penguin

• Once home, you tell your friend the animals you saw, specifying which one you really wanted to see:

[]: 1 # for each position in the list for each position in the list
2 for i in range(0, len(animals)): for i in range from zero to len of animals
3 # if the current animal is

what you really wanted to see
if the current animal is what you really
wanted to see

4 if animals[i] == wanted_to_see: if animals in position i equals wanted to
see

5 # print out that that's the animal
you really wanted to see

print out that that's the animal you
really wanted to see

6 print("I saw a " + animals[i] +
" and I really wanted to see it!")

print I saw a concatenated with animals in
position i concatenated with and I really
wanted to see it!

7 else: else
8 # just print out what you saw just print out what you saw
9 print("I saw a " + animals[i]) print I saw a concatenated with animals in

position i

What’s happening in this code? Get some hints by completing the following exercise.

71

Part 3. Introduction to the for loop

True or false?

1. We can include a condition in a for loop using an if/elif construct T F
2. The built-in function len() returns the number of elements in a list T F
3. The hash symbol # starts a new line of code T F
4. The == symbol checks whether two variables are different T F

Computational thinking and syntax
Let’s start by running the first cell:

[1]: 1 animals = ["giraffe", "penguin",
"dolphin"]

animals is assigned giraffe, penguin,
dolphin

2 print(animals) print animals
['giraffe', 'penguin', 'dolphin']

We consider a list called animals containing three strings: "giraffe", "penguin", and "dolphin" (line
1), and we print it out (line 2).

Let’s run the second cell:

[2]: 1 # for each position in the list for each position in the list
2 for i in range(0, len(animals)): for i in range from zero to len of animals
3 print("--- Beginning of loop ---") print beginning of loop
4 # print each element and its position print each element and its position
5 print ("The element in position " +

str(i) + " is " + animals[i])
print the element in position concatenated
with string of i concatenated with is
concatenated with animals in position i

--- Beginning of loop ---
The element in position 0 is giraffe
--- Beginning of loop ---
The element in position 1 is penguin
--- Beginning of loop ---
The element in position 2 is dolphin

We run the for loop three times, and each time we print out the lines 3 and 5. Let’s dig into the code to
understand it better! The header of the for loop at line 2 contains two changes from the syntax we saw
in the previous chapter. First, we use the abbreviation i for the variable index. Shortening names of
frequently used variables is common in coding because it reduces the amount of typing required. Some
abbreviations become conventions—like in this case—so, from this point on we will use i. Second,
instead of an integer, we use len(animals) as the stop in the built-in function range(). If we used
an integer, then the stop would be 3, because the last element—"dolphin"—is in position 2, to which
we add 1 for the plus one rule. But what if we added another element to the list? We would have to
remember to modify the stop from 3 to 4. As you can imagine, this practice is very prone to error,
as it’s easy to forget to update the stop or miscount the last element position. Therefore, we do not
want to hard-code the stop—that is, to explicitly write its value. We want to make it dependent on the
variablewe are dealing with so that we do not have to take care of possible variations. To do so, we use
len(), which is a built-in function that returns the length of a variable—that is, 3 for the list animals.
We can use this trick because the length of a list is always one unit more than the index of the last
element; therefore, it coincides with the stop. From this point on, we will not need to count to find

72

Chapter 9. At the zoo

the stop—len() will do it for us!

Let’s analyze the body of the for loop. At line 3, we print a string stating that we are at the beginning
of a loop. It is meant to be visually different to make the printouts of each iteration easy to identify.
Beyond Beginning of loop, we could use sentences like New iteration, New loop, etc. To increase the
visibility, we can also use symbols before and/or after the text—such as dashes (---) in this example.
Alternatives can be arrows (-->), tildes (~~~), or any other character on the keyboard. At line 5, we print
out each element and its position in a sentence composed of four parts concatenated to each other. The
first and the third parts—"The element in position " and " is "—are two hard-coded strings. The
second element is the index of the current loop. It’s an integer, so we use the built-in function str() to
convert it into a string. Finally, the last element (animals[i]) is a string, containing a list element sliced
in a different position i at each iteration—that is, "giraffe", "penguin", or "dolphin".

Finally, lines 1 and 4 start with the hash symbol (#) and are followed by text. These lines are called
comments. What are they? Let’s give a definition:

Comments are code descriptions or explanations.

Comments are a fundamental component of coding. They can contain descriptions of the code, or
explanations about why we made a certain coding choice, or any other information that is relevant
to understand the code they refer to. Comments are in light green in Jupyter Notebook, and they are
above and aligned with the line/s they explain. For example, the comment at line 4 refers to the code
at line 5, so it is indented and aligned with line 5. You might wonder why we write comments. For at
least two reasons. First reason: to make code readable for us and others. When reading old code, we
rarely remember why we wrote what we wrote—yes, even if we wrote it ourselves! Similarly, when we
read somebody else’s code, it is often hard to understand what they did and why, if the code is not well
commented. Second reason: to keep track of what we are doing. When writing code, we sometimes
concentrate on small details and lose the big picture. In these cases, we can end up asking ourselves:
why am I writing this again? Using comments to outline code can help us keep track of the steps we
have to implement—that is, to write. Finally, how do we write useful comments? That’s simple: use
precise language. Writing # here is a for loop does not add any information to code because a
loop is clearly visible. It is more meaningful to describe what the for loop does and why; for example,
using a for loop to browse a list and print out its elements one by one. Also, don’t take
any line of code for granted. It’s really so easy to forget why we wrote that line of code that way! In
general, remember that comments are written for human beings, not for Python. As a matter of fact,
Python skips comments when it reads our code. Try to add an hash front of a line of code yourself:
Python is not going to execute it!

Let’s run the next cell:

[3]: 1 wanted_to_see = "penguin" wanted to see is assigned penguin

We create a variable called wanted_to_see to which we assign the string "penguin".

73

Part 3. Introduction to the for loop

Let’s run the last cell:

[4]: 1 # for each position in the list for each position in the list
2 for i in range(0, len(animals)): for i in range from zero to len of

animals
3 # if the current animal is

what you really wanted to see
if the current animal is what you really
wanted to see

4 if animals[i] == wanted_to_see: if animals in position i equals wanted to
see

5 # print out that that's the animal
you really wanted to see

print out that that's the animal you
really wanted to see

6 print("I saw a " + animals[i] +
" and I really wanted to see it!")

print I saw a concatenated with animals
in position i concatenated with and I
really wanted to see it!

7 else: else
8 # just print out that you saw it just print out that you saw it
9 print("I saw a " + animals[i]) print I saw a concatenated with animals

in position i
I saw a giraffe
I saw a penguin and I really wanted to see it!
I saw a dolphin

Oncemore, we use the for loop to browse the list elements. But this time,we apply a condition to each
element. Let’s analyze line by line. The header of the for loop is the same as the one in cell 2. Then, at
line 4, we start an if/else construct. It is similar to the one we learned in Chapter 3: it’s composed of
an if condition (line 4), a statement (line 6), an else (line 7), and another statement (line 9). However,
the condition after the keyword if is different. In Chapter 3, we checked if an element was in a list
by using the membership operator in. In this case, we check if the values assigned to two variables
animals[i] and wanted_to_see are equal. To do so, we write (1) the keyword if; (2) the first variable,
that is, animals[i]; (3) the comparison operator ==, and (4) the second variable, that is, wanted_to_see.
The comparison operator == is pronounced equals or is equal to. Note that == is very different from
=. The symbol == is a comparison operator and is used in conditions to check if the values assigned to
two variables are the same. The symbol = is the assignment operator, and it is used to assign a value to
a variable.

To make sure that what this code does is clear, let’s go through the for loop step-by-step:
• In the first loop: at line 2, i is assigned 0. At line 4, we check if animals in position i—where i is 0,
so animals[0] is "giraffe"—is equal to the value assigned to the variable wanted_to_see, which is
"penguin". Because "giraffe" is not equal to "penguin", we skip the statement under the if at line
6, and we jump directly to the statement under the else, which is at line 9. There, we print "I saw
a giraffe".

• In the second loop: at line 2, i is assigned 1. At line 4, we check again if animals in position i—where
i is 1, so animals[1] is "penguin"—is equal to the value assigned to the variable
wanted_to_see. In this case, the values of the two variables animals[i] and wanted_to_see are equal,
so we execute the statement under the if condition (line 6), where we print "I saw a penguin and
I really wanted to see it!".

• Finally, in the third loop: at line 2, i is assigned 2. At line 4, we check once more if animals in po-
sition i—where i is 2, thus animals[2] is "dolphin"—is equal to the value assigned to the variable
wanted_to_see, which is "penguin". Because "dolphin" is not equal to "penguin", we skip the state-
ment at line 6, and we jump directly to the statement under the else, which is at line 9. There, we

74

Chapter 9. At the zoo

print "I saw a dolphin".

Complete the table

In coding there is a lot of jargon—that is, technical words or expressions that are typically
used, but whose meaning is not always clear. Have you familiarized yourself with the jargon
introduced so far? Complete the table by writing the meaning of the following expressions:

Expression Meaning

To run a cell
(Chapter 1)

To write readable code
(Chapter 3)

The function takes one argument
(Chapter 5)

The function returns an integer
(Chapter 5)

To reassign to a variable
(Chapter 7)

The element is hard-coded
(Chapter 8)

To comment code
(Chapter 9)

To hard-code
(Chapter 9)

To implement code
(Chapter 9)

Recap
• In a for loop, the variable index is commonly abbreviated with i.
• The built-in function len() returns the length of a variable.
• We can use the if/else construct in a for loop.
• We can use the comparison operator == (equals or is equal to) in an if condition.
• Comments start with the hash symbol #, and they are descriptions or explanations.

75

Part 3. Introduction to the for loop

Dealing with TypeError

Type error is common when we try to concatenate variables of different types. Let’s look at this
example, modified from cell 2 in this chapter:

[2]: 1 # for each position in the list for each position in
the list

2 for i in range(0, len(animals)): for i in range from
zero to len of animals

3 print("--- Beginning of loop ---") print beginning of loop
4 # print each element and its position print each element and

its position
5 print ("The element in position " +

i + " is " + animals[i])
print the element in
position concatenated
with i concatenated
with is concatenated
with animals in
position i

--- Beginning of loop ---

TypeError Traceback (most recent call last)
Cell In[2], line 5

3 print ("-- Beginning of loop --")
4 # print each element and its position

> 5 print ("The element in position " + i +
" is " + animals [i])

TypeError: can only concatenate str (not "int") to str

The last line of the error message says TypeError: can only concatenate str (not "int")
to str. It means that somewhere in our code we are trying to concatenate an integer with one
or more strings. Where? The green arrow points to line 5, where there are three concatenations.
As mentioned in the text above, the components are "The element in position" and " is ",
which are two hard-coded strings; the list element animals[i]—that is, "giraffe", "penguin",
or "dolphin"—which is a string, too; and the variable i, which is an integer between 0 and 2. So
i is the issue! Solving the error is very easy: we just transform i into a string with the built-in
function str(), like this: str(i).
Let’s look at another example, modified from Chapter 7:

[6]: 1 planets = planets + "Jupyter" planets is assigned
planets concatenated
with jupyter

2 print(planets) print planets

TypeError Traceback (most recent call last)
Cell In[6], line 1

> 1 planets = planets + "Jupyter"
2 print (planets)

TypeError: can only concatenate list (not "str") to list

This time, the last line of the error message says: TypeError: can only concatenate list
(not "str") with list. We are trying to concatenate a string to a list. Where? The green
arrow points to line 1. Around the concatenation symbol, there are planets—which is a list—

76

Chapter 9. At the zoo

and "Jupyter"—which is a string! Correcting this error is easy: we simply transform
"Jupyter" into a list by embedding it in between square brackets, like this: ["Jupyter"]. When
getting a type error, remember to analyze the type of each variable located in the line of code
where the error occurs. Also, remember that we can only concatenate lists with lists, and strings
with strings!

Let’s code!
Note: Starting from this chapter, write code comments wherever pertinent.

1. For each of the following scenarios, create code similar to that presented in this chapter:
a. Sports. Write a list of sports you like, and print them out one by one. What is your favorite
sport? Create a variable for it. Finally, print out all sports one by one, specifying if they are
your favorite sports.

b. An astronaut’s next destination. You are an astronaut and you write down the list of the planets
of the solar system: Mercury, Mars, Venus, Earth, Neptune, Uranus, Saturn, Jupiter. Print out
the planets one by one. Then, create a variable for your next destination. Finally, print out all
the planets, specifying if they are your next destination.

2. Months. Given the following list:

months = ["February", "July", "January", "August", "December", "June"]

Print out the names ofwintermonths using a for loop. Then, print out the names of summermonths
using a for loop. Choose a month you like and assign it to a variable. Print out all the months one
by one, specifying if the current month is your favorite. Finally, what alternative way could you use
to check if your favorite month is in the list?

3. Mary K. Keller. Given the following list:

mary_k_keller = ['a nun', 'She was also', 'in Computer Science.',
'to receive a Ph.D.', 'American woman', 'the first', 'was', 'Mary K. Keller']

Print out all the elements in reverse order, first using slicing, and then using a for loop. Then,
consider the following variable: name = 'Mary K. Keller'. Check if this variable is in the list in
two ways: first, using the if/else construct; and then, using the if/else construct in a for loop.
What are the differences between the two methods?

77

10. Where are my gloves?
For loop for searching

When combinedwith lists, a for loop is typically used for at least three operations: searching elements,
changing elements, and creating new lists, as you will learn in the next three chapters. In this chapter,
we will start with learning how to use the for loop to search elements in a list. Ready? Open Jupyter
Notebook 10 and follow along. Cover the code after each task with a piece of paper, and try to guess
the answer. Then compare and read the explanation. Let’s get started!

• Who doesn’t have a messy drawer? Here is ours! It contains some accessories:

[1]: 1 accessories = ["belt", "hat", "gloves",
"sunglasses", "ring"]

accessories is assigned belt, hat,
gloves, sunglasses, ring

2 print(accessories) print accessories
['belt', 'hat', 'gloves', 'sunglasses', 'ring']

We start with the list accessories composed of 5 strings (line 1), and we print it out (line 2).

• Print all accessories one by one, as well as their positions in the list. Use a sentence like The element
x is in position y:

[2]: 1 # for each position in the list for each position in the list
2 for i in range(len(accessories)): for i in range len of accessories
3 # print each element and its position print each element and its position
4 print ("The element " + accessories[i] +

" is in position" + str(i))
print The element concatenated
with accessories in position i
concatenated with is in position
concatenated with string of i

The element belt is in position 0
The element hat is in position 1
The element gloves is in position 2
The element sunglasses is in position 3
The element ring is in position 4

We warm up by using a for loop to print each list element and its position, as we learned in Chapters
8 and 9. The syntax of the for loop is the same as we saw previously, with one last simplification in
the header: we omit the start. When the start is 0—that is, the beginning of the list—we don’t need to
write it. Can we also omit the stop when it coincides with the end of the list? Not really: the built-in
function range() would not know where to stop creating consecutive integers (if you need to refresh
your memory that range() creates a list of integers, see cell 4 in Chapter 8). Finally, note that we keep
commenting each command to increase code readability.

Now it’s time to look for items in the drawer. How do we do it? To search list elements, we have to
(1) create a for loop to browse all elements of a list and (2) use an if/else construct to check if the
current element has the characteristics we want, like we did at cell 4 of Chapter 9. In general, we can
search for elements based on various conditions. In the previous chapters, we searched if elements
are present in a list (Chapter 3) and for elements equal to a given variable (Chapter 9). In this chapter,
we will search for elements with a certain length and in a certain list position. To do that, we will use
the comparison operators. Ready? Let’s go!

78

Chapter 10. Where are my gloves?

1. Print the accessory whose name is composed of 6 characters and its position in the list. Use a
sentence like The element x is in position y and it has n characters:

[3]: 1 # for each position in the list for each position in the list
2 for i in range(len(accessories)): for i in range len of accessories
3 # if the length of the element equals 6 if the length of the element equals

six
4 if len(accessories[i]) == 6: if len of accessories in position i

equals six
5 # print the element, its position,

and its number of characters
print the element, its position,
and its number of characters

6 print ("The element " + accessories[i] +
" is in position" + str(i)) +
" and it has 6 characters")

print The element concatenated
with accessories in position i
concatenated with is in position
concatenated with string of i
concatenated with and it has six
characters

The element gloves is in position 2 and it has 6 characters

We want to find the list element composed of 6 characters. As mentioned above, we create a for loop
to browse all elements in the list (line 2), and we write an if/else construct to evaluate if the current
element—that is, accessories[i]—is composed of 6 characters (lines 4 and 6). How do we know how
many characters a string has? The number of characters coincides with the length of the string;
therefore, we can use the built-in function len(). Thus, in the if condition, we compare the length
of the current element of the list—len(animals[i])—to the number of characters we want—that is,
6. The comparison operator that we use is == (equals or is equal to), which checks if two values are
identical, like you learned in Chapter 9 at cell 4. If the current element satisfies the condition, we print
out the sentence at line 6, like we do for the element "gloves". What about the other elements? We do
not want to do anything, so we simply omit the else part of the if/else construct. Note the comments
on lines 1,3, and 5.

2. Print the accessories whose names are composed of less than 6 characters:
[4]: 1 # for each position in the list for each position in the list

2 for i in range(len(accessories)): for i in range len of accessories
3 # if the length of the element is less

than 6
if the length of the element is
less than six

4 if len(accessories[i]) < 6: if len of accessories in position i
less than 6

5 # print the element, its position,
and its number of characters

print the element, its position,
and its number of characters

6 print ("The element " + accessories[i] +
" is in position" + str(i)) +
" and it has less than 6 characters")

print The element concatenated
with accessories in position i
concatenated with is in position
concatenated with string of i
concatenated with and it has less
than 6 characters

The element belt is in position 0 and it has less than 6 characters
The element hat is in position 1 and it has less than 6 characters
The element ring is in position 4 and it has less than 6 characters

The structure of the code is the same as that in example 1. What changes is the comparison operator,
which is < and is pronounced less than (line 4). By using this operator, we check if the length of the

79

Part 3. Introduction to the for loop

current element is less than 6. For the elements composed of less than 6 characters, we print out the
sentence at line 6—that is, for the strings "belt", "hat", and "ring".

3. Print the accessories whose name is composed of more than 6 characters. Also, assign 6 to a vari-
able:

[5]: 1 # defining the threshold defining the threshold
2 n_of_characters = 6 n of characters is assigned six
3 # for each position in the list for each position in the list
4 for i in range(len(accessories)): for i in range len of accessories
5 # if the length of the element is greater

than the threshold
if the length of the element is
greater than the threshold

6 if len(accessories[i]) > n_of_characters: if len of accessories in position i
greater than n of characters

7 # print the element, its position,
and its number of characters

print the element, its position,
and its number of characters

8 print ("The element " + accessories[i] +
" is in position" + str(i) +
" and it has more than " +
str(n_of_characters) + " characters")

print The element concatenated
with accessories in position i
concatenated with is in position
concatenated with string of i
concatenated with and it has more
than concatenated with string of
n of characters concatenated with
characters

The element sunglasses is in position 3 and it has more than 6 characters

In this example, we add two novelties. The first is straightforward: we use the comparison operator >,
which is pronounced greater than (line 6). In this case, only one string hasmore than 6 characters—that
is, "sunglasses"—so we print out line 8 for that element.

The second novelty is the variable n_of_characters (line 2). It is assigned 6—that is, the threshold
length above which we want to print list elements. Why do we create n_of_characters instead of
simply using 6? Because we use it in two lines of code—in the condition (line 6) and in the print (line
8)—and this implies the possibility of errors. What if instead of considering 6 characters, we wanted to
consider 4? We would have to modify the number both at lines 6 and 8, and we could forget to change
in both places. Instead, by using the variable n_of_characters, we change the value in just one place
(line 2). It is good practice to create variables containing values instead of hard-coding within a block
of code. Variables are usually written at the beginning of a block of code so that they are easy to find,
especially when the code is composed of several lines.

4. Print the accessories whose name is composed of a number of characters different from 6:

[6]: 1 # defining the threshold defining the threshold
2 n_of_characters = 6 n of characters is assigned six
3 # for each position in the list for each position in the list
4 for i in range(len(accessories)): for i in range len of accessories
5 # if the length of the element is not equal

to the threshold
if the length of the element is not
equal to the threshold

80

Chapter 10. Where are my gloves?

6 if len(accessories[i]) != n_of_characters: if len of accessories in position i
not equal to n of characters

7 # print the element, its position,
and its number of characters

print the element, its position,
and its number of characters

8 print ("The element " + accessories[i] +
" is in position" + str(i) +
" and it has a number of characters
different from " +
str(n_of_characters))

print The element concatenated
with accessories in position i
concatenated with is in position
concatenated with string of i
concatenated with and it has a
number of characters different from
concatenated with string of n of
characters

The element belt is in position 0 and it has a number of characters different from 6
The element hat is in position 1 and it has a number of characters different from 6
The element sunglasses is in position 3 and it has a number of characters different
from 6
The element ring is in position 4 and it has a number of characters different from 6

The comparison operator for different from is != and is pronounced not equal to (line 6). The structure
of the code is the same as that above: we use the variable n_of_characters to avoid hard coding (line
2); we create a for loop to browse all list elements (line 4); we create an if condition to check what
strings have lengths not equal to the threshold (line 6); and, finally, we print out a sentence for those
elements that satisfy the condition (line 8)—that is, "belt", "hat","sunglasses", and "ring". Before
each command, we write a comment to explain what the command does (lines 1,3,5, and 7).

5. Print the accessories whose position is less than or equal to 2:
[7]: 1 # defining the threshold defining the threshold

2 position = 2 position is assigned two
3 # for each position in the list for each position in the list
4 for i in range(len(accessories)): for i in range len of accessories
5 # if the position of the element is less

than of equal to the threshold
if the position of the element is
less than or equal to the threshold

6 if i <= position: if i less than or equal to position
7 # print the element, its position,

and its position characteristic
print the element, its position,
and its position characteristic

8 print ("The element " + accessories[i] +
" is in position" + str(i) +
", which is less than or equal to " +
str(position))

print The element concatenated
with accessories in position i
concatenated with is in position
concatenated with string of i
concatenated with which is less
than or equal to concatenated with
string of position

The element belt is in position 0, which is less than or equal to 2
The element hat is in position 1, which is less than or equal to 2
The element gloves is in position 2, which is less than or equal to 2

In this example, we introduce two novelties again. The first novelty is the comparison operator <=,
which is pronounced less than or equal to (line 6). What is the difference between the two comparison
operators <= (less than or equal to) and < (less than)? When using <=, we include the threshold—that
is, we consider all the elements whose position is equal to 2 or less. When using <, we exclude the
threshold—that is, we consider only the elements whose position is strictly less than 2.

The second novelty is that we want to search for elements based on their position. How do we do it?

81

Part 3. Introduction to the for loop

First, we create a variable called position to which we assign the threshold—that is, 2 (line 2). Then,
we need to write the comparison. How do we know the position of each element? In a for loop, the
position of the current list element is i! Remember the following from the previous chapters?
• In the first loop, i is assigned 0, thus accessories[i] is accessories[0], which is "belt".
• In the second loop, i is assigned 1, thus accessories[i] is accessories[1], which is "hat".
• In the third loop, i is assigned 2, thus...
Therefore, in the if condition, we compare the current element position i to the threshold position in
the variable position (line 6). For all those elements whose position i is less than or equal to position,
we print line 8—that is, for "belt", "hat", and "gloves".

6. Print the accessories whose position is at least 2:

[8]: 1 # defining the threshold defining the threshold
2 position = 2 position is assigned two
3 # for each position in the list for each position in the list
4 for i in range(len(accessories)): for i in range len of accessories
5 # if the position of the element is greater

than of equal to the threshold
if the position of the element
is greater than or equal to the
threshold

6 if i >= position: if i greater than or equal to
position

7 # print the element, its position,
and its position characteristic

print the element, its position,
and its position characteristic

8 print ("The element " + accessories[i] +
" is in position" + str(i) +
", which is at least " + str(position))

print The element concatenated
with accessories in position i
concatenated with is in position
concatenated with string of i
concatenated with which is at
least concatenated with string of
position

The element gloves is in position 2, which is at least 2
The element sunglasses is in position 3, which is at least 2
The element ring is in position 4, which is at least 2

In this last example, the code structure remains the same, but we use the comparison operator >=,
pronounced greater than or equal to (line 6). Similarly to before, the difference between >= (greater
than or equal to) and > (greater than) is that when using >=, we include the threshold, whereas when
using >, we exclude the threshold. In this case, we print the sentence at line 8 for all the elementswhose
position is at least—that is, greater than or equal to—position, which are "gloves", "sunglasses", and
"ring" (line 8).

Finally, a trick to remember the spelling of comparison operators composed of two symbols: the symbol
= is always in the second position, as you’ll notice for != (example 4), <= (example 5), and >= (example
6).

82

Chapter 10. Where are my gloves?

Complete the table

In this chapter, you learned the six comparison operators. Sum up their characteristics in your
own words in the table below:

Comparison

operator

What it does Pronunciation

==

!=

>

>=

<

<=

Insert into the right column

Up to now, you have learned several coding elements: data types, built-in functions, keywords,
and list methods. Do you remember which is which? Insert the following elements into the right
column:

string, else, input(), if, .remove(), print(), .index(), len(),
str(), del, list, .append(), range(), for, .insert(), integer, .pop()

Data types Built-in functions Keywords List methods

Recap
• We can use a for loop combined with an if/else construct to search for elements in a list.
• It is good practice to create variables instead of hard-coded values in a block of code to reduce the
possibility of errors. Variables are usually located at the beginning of a block of code.

• In Python, there are six comparison operators: ==, !=, >, >=, <, <=.

83

Part 3. Introduction to the for loop

Let’s use keyboard shortcuts!

While coding, it can be very practical to use keyboard shortcuts tominimize typing interruptions.
Although it might sound like a bit of an exaggeration, using the mouse can really be distracting
at times because it slows down the typing rhythm and interrupts the writing flow. Shortcuts, on
the other hand, allow us to never leave the keyboard! They are combinations of keys pressed
simultaneously that can perform various operations. Let’s have a look at themost common ones.
In the following examples, we will use the keys that are colored in Figure 10.1.

Q W E R T Y I O PU

A S D F G H K LJ

Z X C V B N M

~
`

!
1

@
2

#
3

$
4

%
5

^
6

&
7

*
8

(
9

+
=

)
0

_
-

{
[

}
]

|
\

:
;

"
'

<
,

>
.

?
/

tab

caps lock

shift shift

return
enter

delete
backspace

control
command

control
command

Figure 10.1. Example of keyboard. The colored keys are commonly used for shortcuts.

In the following shortcut combinations, control/commandmeans that you will have to press they
key control if you are using a Windows operating system, or the key command if you are using
a MacOS operating system (that is, one of the red keys in Figure 10.1). In addition, the symbol +
means that you have to press the listed keys simultaneously. What shortcuts do you know among
the following ones?
• control/command + A (red key + pink key): selects all the lines of code in a cell—the letter A
stands for all;

• control/command + X (red key + grey key): cuts selected lines of code;
• control/command + C (red key + yellow key): copies selected lines of code;
• control/command + V (red key + purple key): pastes selected lines of code;
• control/command + / (red key + orange key): adds a # in front of the selected lines of code—
that is, it comments them out. If the key combination is re-pressed, the # is removed, and the
code is un-commented;

• tab (green key): indents the selected lines of code—that is, it moves the lines four spaces to-
wards right;

• shift + tab (blue key + green key): outdents the selected lines of code—that is, it moves the lines
four spaces towards the left.

Note that these shortcuts can be used for several lines of code at once, thus speeding up the
writing. Together with learning to type with ten fingers (see the In more depth session in Chapter
1), using shortcuts is an efficient way to write code faster and without interruptions!

84

Chapter 10. Where are my gloves?

Let’s code!

1. Seasons. Given the following list:

seasons = ["spring", "summer", "fall", "winter"]

Print:
a. All seasons whose names are composed of at least 5 characters;
b. All seasons whose names are composed of a number of characters that is equal to or less than
4;

c. All seasons whose position is less than 2;
d. All seasons whose position is at least 2.

2. Word search. You are working for a magazine and you have just created a new word search game
for your readers. Here are the words hidden in the game:

words = ["cards", "park", "pets", "football", "golf", "crosswords", "toys",
"exercise", "hobbies", "riding", "biking", "games", "reading", "movies",
"walking", "concerts"]

After the grid is completed:
a. Create a variable called title containing the number of words to find, and then print it out (e.g.,
Word search with 16 words).

b. Find words composed of 5 letters. More specifically, print out a title, which has to contain the
number of letters of this word group, and the words.

c. Are there words with less than 5 characters? If so, for each word, print out a sentence con-
taining the word itself, its position in the list, and its number of characters.

d. Similarly, are there words with more than 8 characters? If so, for each word, print out a sen-
tence containing the word itself, its position in the list, and its number of characters.

e. What are the words in the second part of the list that have a number of characters different
than 7? What’s their position? And their number of characters?

f. Finally, what are the words in the first fourth of the list that are composed of 4 characters?
What’s their position?

You can download the word search game for this exercise solution on the community website!

3. Spelling competition. Here are some words of the category musculoskeletal (msk) system that you
have to memorize for the next spelling competition:

msk_words = ["ankle", "patella", "rib", "femur", "sternocleidomastoid", "tendon",
"sternum", "abdominal external oblique", "muscle", "scapula", "radius", "bone",
"vertebra", "ligament", "ulna", "skull", "clavicle"]

a. How many words do you have to learn? Compute it and print it out.
b. What is the length of each word? (including spaces if any).
c. Let’s now group words based on their length. Here is a list of short words:

short = ["leg"]
Add all words with 6 characters or less to the list and print out the result. How many words
are in the list?

d. Here is a list of words of intermediate length:
intermediate = ["cartilage"]

85

Part 3. Introduction to the for loop

Add all words with 7, 8, and 9 characters. Then print out the result. How many words are in
the list?

e. And finally, here is a list of long words:
long = ["pectoralis major"]
Add all the remaining words and print out the result. How many words are in the list?

86

11. Cleaning the mailing list
For loop to change list elements

Time to learn how to use the for loop to change list elements! Open Jupyter Notebook 11 and follow
along. Don’t forget to pay attention to code pronunciation. Let’s go!

• You are responsible for a newsletter, and you have to send an email to the following addresses:

[]: 1 emails = ["SARAH.BROWN@GMAIL.com",
"Pablo.Hernandez@live.com",
"LI.Min@hotmail.com"]

emails is assigned
SARAH.BROWN@GMAIL.com,
Pablo.Hernandez@live.com,
LI.Min@hotmail.com

• For the sake of consistency, you want all email addresses to be lowercase. So you change them:

[]: 1 # for each position in the list for each position in the list
2 for i in range(len(emails)): for i in range len of emails
3
4 print("-> Loop: " + str(i)) print -> loop: concatenated with

string of i
5
6 # print element before the change print element before the change
7 print ("Before the change, the element in

position " + str(i) + " is " + emails[i])
print Before the change, the element
in position concatenated with string
of i concatenated with is concatenated
with emails in position i

8
9 # change element and reassign change element and reassign
10 emails[i] = emails[i].lower() emails in position i is assigned

emails in position i dot lower
11
12 # print element after the change print element after the change
13 print ("After the change, the element in

position " + str(i) + " is " + emails[i])
print After the change, the element in
position concatenated with string of i
concatenated with is concatenated with
emails in position i

14
15 # print the modified list print the modified list
16 print("Now the list is: " + str(emails[i])) print Now the list is: concatenated

with string of emails in position i

What’s new in the code above? Get some hints by completing the following exercise.

True or false?

1. To change a list element, we need to reassign after the change T F
2. The method .lower() is a list method T F
3. The method .lower() changes a string to uppercase T F
4. Comments and empty lines make code more readable T F

87

Part 3. Introduction to the for loop

Computational thinking and syntax
Let’s run the first cell:

[1]: 1 emails = ["SARAH.BROWN@GMAIL.com",
"Pablo.Hernandez@live.com",
"LI.Min@hotmail.com"]

emails is assigned
SARAH.BROWN@GMAIL.com,
Pablo.Hernandez@live.com,
LI.Min@hotmail.com

We consider a list composed of three strings, each corresponding to an email address (line 1).

Let’s run the second cell:

[2]: 1 # for each position in the list for each position in the list
2 for i in range(len(emails)): for i in range to len of emails
3
4 print("-> Loop: " + str(i)) print -> loop: concatenated with

string of i
5
6 # print element before the change print element before the change
7 print ("Before the change, the element in

position " + str(i) + " is " + emails[i]
print Before the change, the element
in position concatenated with string
of i concatenated with is concatenated
with emails in position i

8
9 # change element and reassign change element and reassign
10 emails[i] = emails[i].lower() emails in position i is assigned

emails in position i dot lower
11
12 # print element after the change print element after the change
13 print ("After the change, the element in

position " + str(i) + " is " + emails[i]
print After the change, the element in
position concatenated with string of i
concatenated with is concatenated with
emails in position i

14
15 # print the modified list print the modified list
16 print("Now the list is: " + str(emails)) print Now the list is: concatenated

with string of emails
-> Loop: 0
Before the change, the element in position 0 is: SARAH.BROWN@GMAIL.com
After the change, the element in position 0 is: sarah.brown@gmail.com
-> Loop: 1
Before the change, the element in position 0 is: Pablo.Hernandez@live.com
After the change, the element in position 0 is: pablo.hernandez@live.com
-> Loop: 2
Before the change, the element in position 0 is: LI.Min@hotmail.com
After the change, the element in position 0 is: li.min@hotmail.com
Now the list is: ['sarah.brown@gmail.com', 'pablo.hernandez@live.com',
'li.min@hotmail.com']

We use a for loop to browse all the elements in the list (line 2). Within the for loop, there are four
commands. Let’s have a look at them one by one.

At line 3, we print a title for each iteration of the for loop, as we learned at cell 2 of Chapter 9. The title
is composed of a symbol (i.e., ->) and the number of the current loop—represented by the variable i.

88

Chapter 11. Cleaning the mailing list

The symbol makes the title easy to visually identify, and the loop number favors checking what happens
at each specific iteration.

At line 5, we print the current element (emails[i]) before the change, as it is in the list. This will be
convenient for comparing the current element before and after the change.

At line 7, we change the current element. How do we do it? We take the current element emails[i],
and we change it to lowercase using the string method .lower(). You might remember that methods
are functions for specific data types, they are colored blue in Jupyter Notebook, and their syntax is: (1)
variable name, (2) dot, (3) method name, and (4) round brackets, in which there can be an argument
(see Chapter 4). How do we know that .lower() is a string method? Because emails[i] is a string!
Python has at least four methods to change character cases:
• .lower() to change all characters of a string to lowercase;
• .upper() to change all characters of a string to uppercase;
• .title() to change the first character of a string to uppercase and all the remaining characters to
lowercase;

• .capitalize() to change the first character of each word in a string to uppercase, and all the re-
maining characters to lowercase.

Finally, to actually change a list element, we need to re-assign the changed element to itself. In other
words, we need to overwrite the current element with its new version. If we do not do that, then the
list element will remain unchanged.

At line 9, we print out a sentence containing the modified element to check that the change actually
occurred. For a double check, we can also compare this sentence with the sentence containing the
element before the change, which we printed at line 5.

At line 10, we print out the new list. We need to transform the list emails to a string because of the
concatenation. Thus, we use the built-in function str(), like we do for integers.

Finally, we use two techniques to increase code readability. First, we add comments before each major
command to explain what the code does (lines 1, 6, 9, 12, and 15). Second, we add empty lines to visually
separate units of thought corresponding to one or more commands, like we would do for paragraphs
in a text (lines 3, 5, 8, 11, and 14).

Match the code

Given the following string:
greeting = "hElLo, How arE YoU?"

Connect each command with the correct output:

1. print(greeting.lower()) a. 'HELLO, HOW ARE YOU?'
2. print(greeting.upper()) b. 'Hello, how are you?'
3. print(greeting.title()) c. 'hello, how are you?'
4. print(greeting.capitalize()) d. 'Hello, How Are You?'

89

Part 3. Introduction to the for loop

Recap
• To change list elements, we always need to reassign the changed element to itself
• String methods to change cases are: .lower(), .upper(), .title(), and .capitalize()

In what list am I changing the element?

Sometimes, we have to change a list element before adding it to an existing list. This can create
confusion about where to change the list element. Let’s consider this example:
• Given the following list:

[1]: 1 sports = ["diving", "hiking"] sports is assigned diving, hiking

• Add the mountain sport to the following list, making sure the string is uppercase:

[2]: 1 mountain_sports = ["CLIMBING"] mountain_sports is assigned
CLIMBING

We want to take the string "hiking" from the list sports, transform it into "HIKING", and add it
to the list mountain_sports. Where do we change the string to uppercase? Let’s have a look at
these two cases.

Case 1: Changing the element both in the original list and in the new list.
Consider the following code:

[3]: 1 sports[1] = sports[1].upper() sports in position 1 is assigned
sports in position 1 dot upper

2 mountain_sports.append(sports[1]) mountain_sports dot append sports
in position 1

3 print(sports) print sports
4 print(mountain_sports) print mountain_sports
['diving', 'HIKING']
['CLIMBING', 'HIKING']

In this example, we first change the element in position 1 to uppercase (line 1), and then we
append the changed element to the list mountain_sports (line 2). When we print out the two
lists (lines 3 and 4), we see that the element "HIKING" is uppercase in both lists. As you can
imagine, changing the element in the original list is not the best option because we might need
the original list sports for further computations. How do we make "hiking" uppercase only in
mountain_sports? Let’s have a look at the next example.

90

Chapter 11. Cleaning the mailing list

Case 2: Changing the element only in the new list.
Consider the following code:

[3]: 1 current_sport = sports[1].upper() current_sport is assigned sports in
position 1 dot upper

2 mountain_sports.append(current_sport) mountain_sports dot append
current_sport

3 print(sports) print sports
4 print(mountain_sports) print mountain_sports
['diving', 'hiking']
['CLIMBING', 'HIKING']

In this example, we assign the transformed element—that is, 'HIKING', created with the com-
mand sports[1].upper()—to a new variable. This new variable is current_sport(line 1). Then,
we append the variable current_sport to the list mountain_sports (line 2). When we print out
both lists (lines 3 and 4), we see that "HIKING" is only in the list mountain_sports. We can call
current_sport an intermediary, auxiliary, or temporary variable. Its role is to temporarily store
a value that we will use in subsequent code. Although they are very convenient, temporary vari-
ables are generally not recommended because they occupy computer memory. Can we avoid
using current_sport? Yes, let’s have a look at this last example:

[3]: 1 mountain_sports.append(sports[1].upper()) mountain_sports dot append sports
in position 1 dot upper()

2 print(sports) print sports
3 print(mountain_sports) print mountain_sports
['diving', 'hiking']
['CLIMBING', 'HIKING']

In this final example, there is a nested command, which is a command containing one or
more commands, like in a Russian doll (line 1). To break down nested commands, we usually
start from the inner command and move outwards. In this example, the inner command is
sports[1].upper(), where we modify the string 'hiking' to be uppercase. The outer com-
mand is mountain_sports.append(), where we add the modified element—that is, 'HIKING'—to
the list. As you can see, the inner command is what we assigned to the variable current_sport in
the previous example. Therefore, we can avoid a temporary variable by directly substituting its
content in a nested command. Finally, when we print out both lists (lines 2 and 3), we see that
we changed "hiking" to uppercase only in the list mountain_sports.

Nested commands are a convenient way to write compact code. How many commands can we
nest into each other? Theoretically, as many as we want! In practice, we want to keep nested
commands to a minimum for a good balance between code efficiency and code readability.

Let’s code!

1. For each of the following scenarios, create code similar to that presented in this chapter:
a. Editing an article. You work at a newspaper, and you have to edit a paper that has plenty of
acronyms:
acronyms = ["asap", "faq", "fyi", "diy"]

91

Part 3. Introduction to the for loop

All the acronyms are lowercase, so you change them to uppercase.
b. Name tags. You are organizing an event, and you have the following list of names:

names = ["JOHN", "geetha", "xiao", "LAURA"]
You want to print out nice name tags, so you capitalize all names.

2. Colors. Given the following list:

colors = ["yellow", "beige", "green", "red", "ultramarine", "coral", "lavender",
"silver", "cyan", "blue", "black", "magenta", "gold", "pink", "scarlet", "brown"]

a. How many colors are there? Compute it!
b. Starting from the second element (position 1), change every third word to uppercase.
c. Starting from the third element (position 2), capitalize every third word.
d. Add all the colors of the first half of the list colors to the following list using a for loop, making
sure they are lowercase:
some_colors = ["white"]
How many colors are there in some_colors now?

e. Add all the colors of the second half of the list colors to the following list using slicing:
more_colors = ["purple"]
How many colors are there in more_colors now? Change them to uppercase.

3. Camping. Given the following list:

camping = ["tent", "adventure", "boots", "hiking", "hat", "nature", "path", "lake",
"mountain_sports", "fire", "water bottle", "fishing", "national park", "beach",
"compass", "forest", "trail", "sleeping bag"]

a. How many elements are in there?
b. Get all the words composed of less than (including) 6 letters and add them to the following list,
capitalizing each word:
short_camping = ["Trip"]

c. Slice every second word of the list camping starting from the first word (position 0) and assign
them to a new variable called some_camping_words.

d. Capitalize each word of the strings in some_camping_words composed of a number of charac-
ters other than 4.

e. In some_camping_words, remove the first word (position 0) using a list method.
f. In some_camping_words remove "path" using a list method.
g. Are there more words in short_camping or some_camping_words? Use an if/else construct
to print out which list has more words, as well as how many words they contain.

92

12. What a mess at the bookstore!
For loop to create new lists

Let’s finally learn how to use a for loop to create new lists. Open Jupyter Notebook 12 and follow along.
Once more, don’t forget to read the code out loud!

• There were many customers in the shop today, and they mixed up the books whose authors’ last
names start with A and S:

[]: 1 authors = ["Alcott", "Saint-Exupéry",
"Arendt", "Sepulveda", "Shakespeare"]

authors is assigned Alcott,
Saint-Exupéry Arendt, Sepulveda,
Shakespeare

• So you have to put the books whose authors’ last name starts with A on one shelf, and the books
whose authors’ last name starts with S on another shelf:

[]: 1 # initialize the variables as empty lists initialize the variables as empty lists
2 shelf_a = [] shelf a is assigned an empty list
3 shelf_s = [] shelf s is assigned an empty list
4
5 # for each position in the list for each position in the list
6 for i in range(len(authors)): for i in range len of authors
7
8 # print out the current element print out the current element
9 print("The current author is: " +

authors[i])
print The current author is:
concatenated with authors in position
i

10
11 # get the initial of the current author get the initial of the current author
12 author_initial = authors[i][0] author initial is assigned authors in

position i in position zero
13 print("The author's initial is: " +

author_initial)
print The author's initial is:
concatenated with author_initial

14
15 # if the author's initial is A if the author's initial is A
16 if author_initial == "A": if author_initial equals A
17 # add the author to the shelf a add the author to the shelf a
18 shelf_a.append(authors[i]) shelf a dot append authors in position i
19 print ("The shelf A now contains: " +

str(shelf_a) + "\n")
print The shelf A now contains:
concatenated with str of shelf a
concatenated with backslash n

20
21 # otherwise (author's initial is not A) otherwise (author's initial is not A)
22 else: else
23 # add the author to the shelf s add the author to the shelf s
24 shelf_s = shelf_s + [authors[i]] shelf s is assigned shelf_s concatenated

with authors in position i
25 print ("The shelf S now contains: " +

str(shelf_s) + "\n")
print The shelf S now contains:
concatenated with str of shelf s
concatenated with backslash n

26

93

Part 3. Introduction to the for loop

27 # print out the final shelves print out the final shelves
28 print ("The authors on the shelf A are: " +

str(shelf_a)
print The authors on the shelf A are:
concatenated with str of shelf a

29 print ("The authors on the shelf S are: " +
str(shelf_s)

print The authors on the shelf S are:
concatenated with str of shelf s

What are the new concepts in this code? Complete the following exercise to get some hints.

True or false?

1. We initialize an empty list by assigning a pair of square brackets T F
2. We can compose several slicings in one command T F
3. The method .append() and list concatenation perform two different actions T F
4. The special character "\n" creates an empty line after a print T F

Computational thinking and syntax
Let’s run the first cell:

[1]: 1 authors = ["Alcott", "Saint-Exupéry",
"Arendt", "Sepulveda", "Shakespeare"]

authors is assigned Alcott,
Saint-Exupéry Arendt, Sepulveda,
Shakespeare

The list authors is composed of five strings, each of them corresponding to the last name of a book
author. The last names start with either A or S.

Let’s run the second cell. The code is long, so we break it in pieces. Here are lines 1–3:

[2]: 1 # initialize the variables as empty lists initialize the variables as empty lists
2 shelf_a = [] shelf a is assigned an empty list
3 shelf_s = [] shelf s is assigned an empty list

We create two new lists, shelf_a and shelf_s, to which we assign a pair of empty square brackets.
Technically, we say that we initialize two empty lists—meaning that we create the two lists shelf_a
and shelf_s, but they don’t have any content yet. Why do we do that? We will answer this question
when we analyze lines 18 and 24. So, let’s keep going!

Let’s analyze lines 5–9:

5 # for each position in the list for each position in the list
6 for i in range(len(authors)): for i in range len of authors
7
8 # print out the current element print out the current element
9 print("The current author is: " +

authors[i])
print The current author is:
concatenated with authors in position
i

We create a for loop to browse all the elements in the list authors (line 6), and we print out a sentence
to keep track of the list element sliced at each iteration (line 9).

Let’s continue with lines 11–13:

94

Chapter 12. What a mess at the bookstore!

11 # get the initial of the current author get the initial of the current author
12 author_initial = authors[i][0] author initial is assigned authors in

position i in position zero
13 print("The author's initial is: " +

author_initial)
print The author's initial is:
concatenated with author_initial

At each iteration, we obtain the initial of the current author (line 12), and we print it out (line 13). How
do we get an author’s initial? Let’s focus on the right side of the assignment symbol—authors[i][0]—
at line 12. There are two pairs of square brackets, indicating two consecutive slicings. To understand
how this works, let’s substitute the variables with their corresponding values. In the first loop, i is 0;
thus, we get authors[0][0]. authors[0] is "Alcott", and "Alcott"[0] is "A". Similarly, in the second
loop, i is 1, thus we get authors[1][0]. authors[1] is "Saint-Exupéry", and "Saint-Exupéry"[0] is
"S". And so on. With the first pair of square brackets [i], we slice a list obtaining a string, whereas
with the second pair of square brackets [0], we slice a string obtaining a character. In summary, when
dealing with several consecutive slicings, we execute one at the time, starting from the left. Note
that string slicing works the same way as list slicing.

Let’s have a look at lines 15–25:

15 # if the author's initial is A if the author's initial is A
16 if author_initial == "A": if author_initial equals A
17 # add the author to the shelf a add the author to the shelf a
18 shelf_a.append(authors[i]) shelf a dot append authors in position i
19 print ("The shelf A now contains: " +

str(shelf_a) + "\n")
print The shelf A now contains:
concatenated with str of shelf a
concatenated with backslash n

20
21 # otherwise (author's initial is not A) otherwise (author's initial is not A)
22 else: else
23 # add the author to the shelf s add the author to the shelf s
24 shelf_s = shelf_s + [authors[i]] shelf s is assigned shelf_s concatenated

with authors in position i
25 print ("The shelf S now contains: " +

str(shelf_s) + "\n")
print The shelf S now contains:
concatenated with str of shelf s
concatenated with backslash n

We are still in the for loop whose header is at line 6, and we find an if/else construct. If the author’s
initial is equal to A (line 16), we append the current author authors[i] to the list shelf_a (line 18). Then,
we print out the current status of shelf_a (line 19). If the author’s initial is not A, then we go to the
else (line 22), and we concatenate the current author authors[i] to the list shelf_s (line 24). Note
that authors[i] is in between square brackets for type compatibility: authors[i] is a string, so it must
be transformed into a list to be concatenated to the list shelf_s (we learned this at cell 6 of Chapter
7). Finally, we print the current status of shelf_s (line 25). Let’s now look at a few more details.

At lines 18 and 24, we add an element to a list. In the first case, we use the list method .append(),
whereas in the second case, we use concatenation. The two approaches perform exactly the same
operation and can be used interchangeably.

At the end of the print commands at lines 19 and 24, you’ll notice "\n". What’s that? It’s a special
character that creates an empty line after a print. The backslash \ tells Python to consider n not as a
letter of the alphabet, but as a special character meaning new line. Printing an empty line is another
way to increase code readability in a for loop, in addition to printing loop titles (see Chapter 9, cell 2).

95

Part 3. Introduction to the for loop

You will see more special characters in the In more depth section of Chapter 27.

Finally, we can answer the question we asked at lines 1–3: why do we need to initialize shelf_a and
shelf_s as empty lists? Because it would be impossible to add new elements to a list that does not
exist!

As a general rule, when using a for loop to create and fill an empty list, we have to:
1. Initialize an empty list before the for loop
2. Concatenate or append new elements within the for loop

Let’s conclude with lines 27–29:

27 # print out the final shelves print out the final shelves
28 print ("The authors on the shelf A are: " +

str(shelf_a)
print The authors on the shelf A are:
concatenated with str of shelf a

29 print ("The authors on the shelf S are: " +
str(shelf_s)

print The authors on the shelf S are:
concatenated with str of shelf s

Above, we print out the final versions of the created lists—shelf_a (line 28) and shelf_s (line 29). In
both cases, we transform the list to a string using the built-in function str() to concatenate.

Finally, let’s look at the printouts:

The current author is: Alcott
The author's initial is: A
The shelf A now contains: ['Alcott']

The current author is: Saint-Exupéry
The author's initial is: S
The shelf S now contains: ['Saint-Exupéry']

The current author is: Arendt
The author's initial is: A
The shelf A now contains: ['Alcott', 'Arendt']

The current author is: Sepulveda
The author's initial is: S
The shelf S now contains: ['Saint-Exupéry', 'Sepulveda']

The current author is: Shakespeare
The author's initial is: S
The shelf S now contains: ['Saint-Exupéry', 'Sepulveda', 'Shakespeare']

The authors on the shelf A are: ['Alcott', 'Arendt']
The authors on the shelf S are: ['Saint-Exupéry', 'Sepulveda', 'Shakespeare']

Each triplet of lines of code is printed during a for loop iteration. The first line is printed at line
9 (e.g., The current author is: Alcott), the second line is printed at line 13 (e.g., The author's
initial is: A), and the third line is printed at line 19 if the author’s initial is A (e.g., The shelf A
now contains: ['Alcott']), or at line 25 is the author’s initial is S (e.g., The shelf S now contains:
['Saint-Exupéry'). After each group of 3 lines, there is an empty line because of "\n" at the end of
the print commands at lines 19 and 25. The last two lines containing the final content of shelf_a and

96

Chapter 12. What a mess at the bookstore!

shelf_s come from the prints at lines 28 and 29. Finally, the code contains several comments and
empty lines between blocks of code to improve readability.

Match the code

Before starting coding, let’s summarize what we learned about for loops! Given the following
list:

hot_drinks = ["tea", "coffee", "hot chocolate"]

Connect each command with the correct output and the corresponding action:

1. for i in range(len(hot_drinks)):
print(hot_drinks[i])

a. ['TEA', 'coffee',
'hot chocolate']

⋆.create list elements

2. for i in range(len(hot_drinks)):
if hot_drinks[i][0] == "c":

print(hot_drinks[i])

b. tea
coffee
hot chocolate

♣.change list elements

3. for i in range(len(hot_drinks)):
if len(hot_drinks[i]) == 3:

hot_drinks[i] = hot_drinks[i].upper()
print(hot_drinks)

c. ['coffee', 'hot chocolate'] ■.print list elements
one by one

4. long_words = []
for i in range(len(hot_drinks)):

if len(hot_drinks[i]) >= 6:
long_words.append(hot_drinks[i])

print(long_words)

d. coffee ▲.find list elements

Recap
• To create and fill a list in a for loop, we have to: (1) initialize an empty list before the for loop and (2)
fill the list using .append() or list concatenation in the for loop.

• String slicing works the same way as list slicing.
• In multiple consecutive slicings, we execute one slicing at a time, starting from the left.
• The special character "\n" creates an empty line after a print.

97

Part 3. Introduction to the for loop

Append or concatenate. Don’t assign!

When creating a new list within a for loop, a common mistake is to assign a new element to
the list instead of appending it or concatenating it. Let’s see what this means with the following
example. Here is the same list as the one used earlier in this chapter:

[1]: 1 authors = ["Alcott", "Saint-Exupéry",
"Arendt", "Sepulveda", "Shakespeare"]

authors is assigned Alcott,
Saint-Exupéry Arendt, Sepulveda,
Shakespeare

Let’s simplify the code by creating only the list containing author last names starting with A. To
show how an error can occur, at line 10 we assign authors[i] to the new list shelf_a, instead of
appending it (or concatenating it). What happens to shelf_a throughout the code?

[2]: 1 # initialize the variable initialize the variable
2 shelf_a = [] shelf a is assigned an empty list
3 # for each position in the list for each position in the list
4 for i in range(len(authors)): for i in range len of authors
5 # get the author's initial get the author's initial
6 author_initial = authors[i][0] author initial is assigned authors

in position i in position zero
7 # if the author's initial is A if the author's initial is A
8 if author_initial == "A": if author_initial equals A
9 # add the author to the shelf a add the author to the shelf a
10 shelf_a = authors[i] shelf a is assigned authors in

position i
11 print ("The shelf A now

"contains: " + str(shelf_a))
print The shelf A now contains:
concatenated with str of shelf a

12 # print out the final shelves print out the final shelves
13 print ("The authors on the shelf A are: "

+ str(shelf_a)
print The authors on the shelf A
are: concatenated with str of shelf
a

The shelf A now contains: Alcott
The shelf A now contains: Arendt
The authors on the shelf A are: Arendt

Let’s go through the for loop and focus on the names starting with A:
• When i is 0 (line 4), author_initial is "A" (line 6); the if condition is true (line 8), so we
assign authors[i]—that is, "Alcott"—to shelf_a (line 10), and we print out The shelf A now
contains: Alcott (line 11). With the assignment at line 10, we implicitly transform shelf_a from
a list—which we initialized at line 2—into a string—because we assign it the string "Alcott".

• When i is 2 (line 4), author_initial is "A" (line 6); the if condition is true (line 8), we assign
authors[i]—that is, "Arendt"—to shelf_a (line 10), and we print out: The shelf A now contains:
Arendt (line 11). In this case, in the assignment at line 10, we overwrite the value "Alcott"—
which we assigned in the previous loop—with the value "Arendt"; thus, shelf_a remains a
string.

At line 13, we print the final version of shelf_a, which is a string with value "Arendt".
In conclusion, assigning a variable to a list (e.g., shelf_a = authors[i]) changes the type of the
list itself to the variable type (e.g., shelf_a becomes a string). In addition, the value is overwritten
at each loop, and the final value is the one assigned in the last loop. Thus, the correct way to add

98

Chapter 12. What a mess at the bookstore!

elements to a list is either to append—e.g., shelf_a.append(authors[i])—or concatenate—e.g.,
shelf_a = shelf_a + [authors[i]].

Let’s code!

1. For each of the following scenarios, create code similar to that presented in this chapter.
a. Selling electric cars. You work at a famous car company, and you have to ship new electric cars
that have just arrived. Your colleagues plated the cars destined to Spain and to Portugal, but
they mixed them up:
e_cars = ["PT-754J", "ES-096L", "PT-536G", "ES-543H", "PT-653H"]
Separate the two groups of cars according to their destinations.

b. Teaching English verbs. You are an English teacher for foreign students. Some of themhave dif-
ficulties understanding when a present verb is conjugated in the third person singular
(he/she/it), or in other persons (I/you/we/they). So you provide a list of verbs:
english_verbs = ["eat", "drink", "eats", "sleep", "drinks", "sleeps"]
and you help your students separate the verbs between third person and other persons.

2. Desserts. Given the following list:

desserts = ["meringue", "apple pie", "eclair", "rice pudding", "chocolate",
"english pudding", "cake", "icing"]

Get all the initials, change them to uppercase, and concatenate them in a new list. Then invert the
list. What dessert do you get?

3. Guess the jobs. Given the following list:

jobs = ["photog", "bal", "mu", "inve", "ambas", "si", "ler", "stig", "rapher", "ci",
"ator", "ina", "an", "sador"]

Group strings composed of 2, 3, 4, 5, and 6 letters in new lists. What jobs do you get? Make sure
that the first letter of each job is uppercase.

4. Art. Given the following list:

art = ["apor", "refsscu", "atwat", "fetes", "erta", "jtylpt", "aprco", "srap",
"ruolo", "texture", "gitp", "puors"]

Create new lists for each of the following:

• If the string length is 4, then get two letters starting from the second (positions 1 and 2).
• If the string length is 5, then get the third and fourth letters (positions 2 and 3).
• If the string length is at least 6, then get the last three letters.

What art words do you get? Make sure all strings are uppercase!

99

PART 4
NUMBERS AND
ALGORITHMS
In this part, you will learn how to perform arithmetic operations, play with
random numbers, and implement your first algorithms. Ready? Let’s start!

13. Implementing a calculator
Integers, floats, and arithmetic operations

In the previous chapters, you have developed quite a bit of computational thinking, so now you are
ready for numbers, some easy math, and algorithms! There is a general misconception that in order
to be good at coding one has to be very good at math. However, that’s not necessarily true, as you will
see in the coming chapters!

In this chapter, you will start becoming familiar with numbers in coding by implementing a calculator.
To do that, you first need to learn arithmetic operators in Python and how to ask a user for a number.
As in previous chapters, try first to solve the task by yourself and then compare your answer with the
code below. You will find the code also in Jupyter Notebook 13. Let’s start!

1. What are the arithmetic operations in Python?
In Python, there are 7 arithmetic operations. Let’s quickly explore them one by one. Which ones do
you already know, and which ones are new?

1. Addition:

[1]: 1 4 + 3 four plus three
7

To sum two numbers, we use the arithmetic operator +, pronounced plus. As you know, the same
symbol + is used as a concatenation symbol whenmerging strings or lists; in that case, it is pronounced
concatenated with.

2. Subtraction:

[2]: 1 6 - 2 six minus two
4

To subtract one number from another, we use the arithmetic operator -, pronouncedminus.

3. Multiplication:

[3]: 1 6 * 5 six times five
30

To multiply two numbers, we use the multiplication operator *, which is pronounced times. Note that
in Python (and in other programming languages), themultiplication symbol is different from the symbol
used in paper-and-pencil computations, which can be the cross symbol x or themid-line dot operator ·.

4. Exponentiation:

[4]: 1 2 ** 3 two to the power of three
8

To calculate the power of a number, we use the exponentiation operator **, which is pronounced to
the power of. The operation 2**3 corresponds to 23 in paper-and-pencil.

103

Part 4. Numbers and algorithms

5. Division:

[5]: 4 10 / 5 ten divided by five
2.0

To divide a number by another number, we use a forward slash /, and we pronounce it divided by. Note
that the result of a division is always a decimal number.

6. Floor division:

[6]: 5 7 // 4 seven floor division four
1

To execute a floor division, we use the operator //, composed of two forward slashes and pronounced
floor division. A floor division is a division where the result is rounded to the closest lower integer.
In this example, the result of the corresponding division / would be 1.75, thus the result of the floor
division is 1, which is the closest lower integer to 1.75. The word floor indicates that we round the
result down, that is—using a metaphor–to the floor of a house.

7. Modulo:

[7]: 7 7 % 4 seven modulo four
3

To calculate a modulus, we use the operator %, which is pronouncedmodulo. This operation calculates
a reminder (or modulus), which is the number needed to go back to the dividend after a floor division.
For example, from cell 6 we know that the result of the floor division 7//4 is 1. If we multiply 1 (the
result) times 4 (the divisor), we get 4 (4x1=4). To get to 7 (the dividend), we need 3, which is themodulus
(4+3=7). Note that modulo is the name of the operator, while modulus is the name of the operation and
a synonym for remainder. The modulus operation is used quite often in coding, as you will see in the
next chapter.

To summarize, Python provides seven arithmetic operators:
• 1 for addition (+);
• 1 for subtraction (-);
• 2 for the “multiplication family”, which are multiplication (*) and exponentiation (**);
• 3 for the “division family”, which are division (/), floor division (//), and modulo (%).
Note that the division operators can provide whole numbers or decimal numbers as results, indepen-
dently of the characteristics of dividend and divisor. Discover more nuance by solving the following
exercise. Test your answers in Python!

True or false?

1. The result of a division is always a whole number (e.g., without decimals). For
example, the result of 11/5 is the whole number 2

T F

2. The result of 7//2 is 3, but the result of -7//2 is -4. This is because the floor
division rounds to the closest lower integer

T F

3. The result of 7.5 % 3 is 1.5. Therefore, the result of a modulus operation can be
a decimal number

T F

104

Chapter 13. Implementing a calculator

2. How do we ask a user to input a number?
When asking a user to input a number, it’s important to be careful about variable types. Let’s see what
this means!
• Ask a user to input a number, assign it to a variable, and print out the variable:

[8]: 1 number = input("Insert a number:") number is assigned input Insert a number:
2 print(number) print number
Insert a number: 9
9

We use the built-in function input() to ask the user to type a number, and we save the answer in the
variable number (line 1). Then, we print out the variable value (line 2). What type do you expect the
variable number to be? Let’s find out!
• Check the type of the variable number:

[9]: 1 type(number) type number
str

To know the type of a variable, we use the built-in function type(), which takes a variable as an input
and returns its type. In the printout, we see that the type of number is str, which is an abbreviation
for string. But shouldn’t 9 be an integer? Yes! However, number is a string because the built-in func-
tion input() returns strings, regardless of what a user types on a keyboard (characters, numbers, or
symbols). To transform the value of number into an actual number that we can use in calculations, we
have to transform its type from string to integer.
• Transform number into an integer, print it out, and check its type:

[10]: 1 number = int(number) number is assigned int of number
2 print(number) print number
3 type(number) type number
9
int

The built-in function int() takes a non-integer variable as an input and returns it as an integer.
Note that to actually transform a variable type, we need to reassign the output of the built-in function
int() to the variable itself (line 1). At line 2, we print number, which is still 9. However, this time number is
of type int, as we can see from type(number) at line 3. What if we want a decimal number? In that
case, we have to transform the variable type into float!
• Transform number into a float, print it out, and check its type:

[11]: 1 number = float(number) number is assigned float of number
2 print(number) print number
3 type(number) type number
9.0
float

The built-in function float() takes a non‐decimal variable as an input and returns it as a decimal.
Also in this case, we need to reassign the output of float() to the variable itself to actually change the
data type (line 1). From the print at line 2, we see that the variable number is now 9.0, that is, a decimal
number. And from the command at line 3, we can see that number is now of type float. Let’s close the
circle, and go back to the variable number being a string! How would you do that?

105

Part 4. Numbers and algorithms

• Transform number back into a string, print it out, and check its type:

[12]: 1 number = str(number) number is assigned str of number
2 print(number) print number
3 type(number) type number
9.0
str

To transform a variable into a string, we use the built-in function str(), which we learned in Chapter
8. Note that because we transform number into a string from a float (and not an integer), the value is
now 9.0—that is, it contains the decimal component.

Numerical variables can be of three types:
• Integers (whole numbers), used in computations;
• Floats (decimal numbers), used in computations;
• Strings, when we need numbers as text—for example, when concatenating them to strings.

We finally know arithmetic operations in Python and how to ask a number to a user. So we are ready to
create a calculator! Where do we start? From the user inputs! Let’s find out the inputs in the following
exercise.

Complete the sentences

Complete the following sentences with the inputs you need from a user to implement a calculator.
If you are not sure, think about what you enter when using a calculator:

1. The first input is .

2. The second input is .

3. The third input is .

3. Let’s create the calculator!
• Ask the user for the first input, which is the first number. What type should it be?

[13]: 1 first_number = input("Insert the first
number:")

first_number is assigned input Insert the
first number:

2 first_number = float(first_number) first_number is assigned float of
first_number

3 type(first_number) type first number
Insert the first number: 4
float

We ask the user to input the first number using the built-in function input(), and we assign the user’s
choice to the variable first_number (line 1). Then, we need to transform the type of first_number
from a string into a numerical type to perform calculations. Which type do we choose: integer or
float? If the user enters a whole number, we need to transform first_number into an integer. But what
if the user enters a decimal number? Then, we need to transform first_number into a float! So we

106

Chapter 13. Implementing a calculator

go for an inclusive solution, that is, transforming first_number into a float to comprehend both whole
numbers and decimal numbers. Thus, we use the built-in function float(), and we reassign to the
variable first_number (line 2). Finally, we print out first_number’s type to check that it’s correct (line
3).

• Ask the user for the second input, which is the arithmetic operator:

[14]: 1 operator = input("Insert an arithmetic
operator:")

operator is assigned input Insert an
arithmetic operator:

2 type(operator) type operator
Insert the arithmetic operator: +
str

We ask the user for an arithmetic operator and we save the value in the variable operator (line 1).
Because an arithmetic operator is a symbol, we keep it as a string, and we print out its type to check
for correctness (line 2).

• Finally, ask the user for the third and final input, which is the second number. What type should
it be?

[15]: 1 second_number = float(input("Insert the
second number:"))

second_number is assigned float of input
Insert the second number:

2 type(second_number) type second number
Insert the second number: 3
float

Aswe did for first_number, we ask the user for the second number using the built-in function input().
Then, we need to transform the user’s choice from string to float using the built-in function float().
Instead of using two separate commands like we did at cell 13 (lines 1 and 2), we nest the two built-in
functions one into the other: we transform the user’s choice into a float before assigning it to the
variable second_number (line 1). Then, we print out the second_number’s type to make sure that it’s a
float (line 2).

• Let’s write the core of the calculator! How would you do it? Try out some ideas before looking at the
implementation below:

[16]: 1 if operator == "+": if operator is equal to plus
2 result = first_number + second_number result is assigned first number plus

second number
3 elif operator == "-": elif operator is equal to minus
4 result = first_number - second_number result is assigned first number minus

second number
5 elif operator == "*": elif operator is equal to times
6 result = first_number * second_number result is assigned first number times

second number
7 elif operator == "**": elif operator is equal to to the power of
8 result = first_number ** second_number result is assigned first number to the

power of second number
9 elif operator == "/": elif operator is equal to divided by
10 result = first_number / second_number result is assigned first number divided

by second number

107

Part 4. Numbers and algorithms

11 elif operator == "//": elif operator is equal to floor division
12 result = first_number // second_number result is assigned first number floor

division second number
13 elif operator == "%": elif operator is equal to modulo
14 result = first_number % second_number result is assigned first number modulo

second number
15 else: else
16 print("You didn't enter an

arithmetic operator")
print You didn't enter an arithmetic
operator

17 print(result) print result
7.0

The operation that our code will execute depends on the arithmetic operator entered by the user;
thus, we need to take into account all possibilities. To do that, we create a long list of conditions for
the arithmetic operator, with the corresponding calculations. We start by considering addition (lines
1 and 2). In the if condition, we check if the variable operator from cell 14 is equal to the symbol +.
Because operator is a string, we need to consider the addition operator as a string as well, so we em-
bed it in between quotes (i.e., "+") (line 1). In the subsequent statement, we calculate the sum between
the two numerical variables (first_number and second_number) entered by the user, and we assign the
result to the variable result (line 2). Then, we consider subtraction (lines 3 and 4). We structure the
code as we did above: first, we write a condition where we check that the variable operator is equal to
the string "-" (line 3); then, we execute the difference between the two numbers entered by the user,
and we assign the result to the variable result (line 4).

As you might have noticed, the condition at line 3 started with the keyword elif, which is an abbre-
viation for else if. We use elif when we check several conditions on one single variable, which is
operator in this case. We continue the code with a similar structure for the remaining arithmetic
operations (lines 5–14). When using an if/elif/else construct, make sure to always test code un-
der all conditions. To do that in our example, re-enter the variables first_number, operator, and
second_number for each condition and make sure that what gets printed is the one you expected. We
conclude the list of conditions with an else (line 15), which prints out a warning in case the user did not
enter a valid arithmetic operator (line 16). Finally, we print out the variable result to check that our
code is correct (line 17). Note that we print result at the end of the if/elif/else construct instead
of after each statement (lines 2,4,6,8,10,12,14) to avoid redundancy.

• Finally, let’s print out the result:

[17]: 1 print (str(first_number) + " " + operator
+ " " + str(second_number) + " = " +
str(result))

print str of first_number concatenated
with space concatenated with operator
concatenated with space concatenated with
str of second_number concatenated with
equals concatenated with str of result

4.0 + 3.0 = 7.0

We print the result, concatenating first_number, operator, second_number, and result. Note that we
convert the numerical variables into strings for the concatenation.

Finally, let’s put together our code to create a real calculator by merging all lines from the code above
into one single cell. This will allow us to run only one cell (instead of multiple cells) when executing
the code:

108

Chapter 13. Implementing a calculator

[18]: 1 # first input first input
2 first_number = float(input("Insert the

first number:"))
first_number is assigned float of input
Insert the first number:

3
4 # operator operator
5 operator = input("Insert an arithmetic

operator:")
operator is assigned input Insert an
arithmetic operator:

6
7 # second input second input
8 second_number = float(input("Insert the

second number:"))
second_number is assigned float of input
Insert the second number:

9
10 # computations computations
11 if operator == "+": if operator is equal to plus
12 result = first_number + second_number result is assigned first number plus

second number
13 elif operator == "-": elif operator is equal to minus
14 result = first_number - second_number result is assigned first number minus

second number
15 elif operator == "*": elif operator is equal to times
16 result = first_number * second_number result is assigned first number times

second number
17 elif operator == "**": elif operator is equal to to the power of
18 result = first_number ** second_number result is assigned first number to the

power of second number
19 elif operator == "/": elif operator is equal to divided by
20 result = first_number / second_number result is assigned first number divided

by second number
21 elif operator == "//": elif operator is equal to floor division
22 result = first_number // second_number result is assigned first number floor

division second number
23 elif operator == "%": elif operator is equal to modulo
24 result = first_number % second_number result is assigned first number modulo

second number
25 else: else
26 print("You didn't enter an

arithmetic operator")
print You didn't enter an arithmetic
operator

27
28 # print the result print the result
29 print(str(first_number) + " " + operator

+ " " + str(second_number) + " = " +
str(result))

print str of first_number concatenated
with space concatenated with operator
concatenated with space concatenated with
str of second_number concatenated with
equals concatenated with str of result

When we merge code in one cell at the end of an implementation, we usually edit and clean it up for
better readability. In this example, we directly transform first_number in a float by nesting the built-
in function input() into the built-in function float() (line 2); we delete all the intermediate prints (i.e.,
we remove line 3 from cell 13, line 2 from cells 14 and 15, and line 17 from cell 16); and we add comments
(lines 1, 4, 7, 10, and 28) and lines spaces (lines 3, 6, 9, 27).

109

Part 4. Numbers and algorithms

Complete the table

In this chapter, you learned the seven arithmetic operators. Sum up their characteristics in
your own words in the table below:

Arithmetic operator Operation Pronunciation

+

-

*

**

/

//

%

Recap
• There are seven arithmetic operators in Python: +, -, *, **, /, //, %.
• Numbers can be represented by three data types: integers for whole numbers, floats for decimal
numbers, and strings as text.

• To transform a variable into an integer, we use the built-in function int(); to transform a variable
into a float, we use the built-in function float().

• To check the type of a variable, we use the built-in function type().
• We use the keyword elif to check multiple conditions on the same variable.

Solving arithmetic expressions

Arithmetic expressions are combinations of arithmetic operations. As we do in paper-and-pencil
expressions, we execute operations in a specific order, which is summarized by the acronym
BEDMAS. First, we perform operations between brackets, then we compute exponentiation,
division, multiplication, addition, and subtraction. Here is an example:

[1]: 1 6 + 2 * 3 six plus two times three
12

First we execute the multiplication, followed by the addition. Thus, we first calculate 2 * 3,
which is 6, and then 6 + 6, which is 12.
Here is another example:

[2]: 1 (6 + 2) * 3 open round bracket six plus two close round
bracket times three

24

110

Chapter 13. Implementing a calculator

First, we execute the operation between round brackets (6 + 2), which is 8, and then the mul-
tiplication 8 * 3, which is 24. Note that brackets can only be round in coding.

Let’s code!

1. Math competition. You are holding a math competition where participants have to choose among
three envelopes and solve the arithmetic expressions contained in the chosen envelope:

• If the participant chooses envelope 1, she will have to solve: (3× 52 ÷ 15)−(5−22).
• If the participant chooses envelope 2, she will have to solve: −1× [(3−4× 7)÷ 5]−23 × 24÷ 6.
• If the participant chooses envelop 3, she will have to solve: (36−3)×4

(15−9)÷3 .

Compute the solutions.

2. Geometry tutoring. You are helping your neighbor’s kid with some geometry exercises. He has to
calculate the area and volume of a cylinder, and you want to test result correctness using Python.
Ask the kid for cylinder radius and height. Then calculate area and volume of a cylinder using these
formulas: area = 2πr2+2πrh and volume = πr2h. Hint: What is the value of π? Assign it to a variable!
He also has to calculate surface and area of a cube of edge length a = 4. He does not have the right
formulas, so you look for them on the internet. Write code to test whether his calculations are
correct.

3. What’s the temperature out there? You are traveling between Europe and North America, and you
need to pack the right clothes. Write a temperature converter, knowing that the relation between
Celsius and Fahrenheit degrees is C = 5÷ 9× (F − 32). Answer these two questions:
a. The temperature in Miami is 75◦F. What is the temperature in Celsius?
b. The temperature in Lisbon is 17◦C. What is the temperature in Fahrenheit?

111

14. Playing with numbers
Common operations with lists of numbers

Lists of numbers are one of the most used data structures in coding. They follow the same rules as
lists of strings—that is, we can use slicing and methods (e.g., .append(), .remove(), etc.) to manipulate
them. In this chapter, wewill explore some typical tasks performedwith lists of numbers. Open Jupyter
Notebook 14 and follow along. As we’ve done previously, try first to solve the task by yourself: start by
defining the expected solution, outline the steps to reach it, and then write the code to solve it. When
you are done, compare your implementation with the one proposed here.

1. Changing numbers based on conditions
One of the most common tasks in coding is changing numbers in a list based on some conditions. Let’s
have a look at this example!
• Given the following list of numbers:

[1]: 1 numbers = [12, 3, 15, 7, 18] numbers is assigned twelve, three, fifteen, seven,
eighteen

We start with a list containing five integers.

• Subtract 1 from the numbers greater than or equal to 10, and add 2 to the numbers that are less than
10:

[2]: 1 # for each position in the list for each position in the list
2 for i in range(len(numbers)): for i in range len of numbers
3
4 # if current number >= 10 if current number is greater than or equal to ten
5 if numbers[i] >= 10: if numbers in position i is greater than or equal

to ten
6 # subtract 1 subtract one
7 numbers[i] = numbers[i] - 1 numbers in position i is assigned numbers in

position i minus one
8
9 # otherwise otherwise
10 else: else
11 # add 2 add two
12 numbers[i] = numbers[i] + 2 numbers in position i is assigned numbers in

position i plus two
13
14 # print the final result print the final result
15 print(numbers) print numbers
[11, 5, 14, 9, 17]

We implement a for loop to browse all the elements of the list numbers (line 2). Then, we use an
if/else construct to define a condition and compute accordingly. If the current number—that is,
numbers[i]— is greater than 10 (line 5), we subtract 1, and we reassign the result to numbers[i] (line
7), similarly to what we saw in Chapter 11 (cell 2, line 10). If the current number is not greater than or

112

Chapter 14. Playing with numbers

equal to 10, we jump to the else (line 10). Then, we add 2 to the current number, and we reassign (line
12). Let’s see how this works step by step:
• In the first loop, i is 0 (line 2), numbers in position 0 is 12, which is greater than 10 (line 5), so we
subtract 1, obtaining 11, and we replace 12 with 11 by reassigning (line 7).

• In the second loop, i is 1 (line 2), numbers in position 1 is 3, which is not greater than or equal to
10 (line 5), so we jump to the else (line 10). There, we add 2 to 3, obtaining 5, and we replace 3 with
5 by reassigning (line 12).

• Etc.
Finally, we print the obtained list to check its correctness (line 15).

2. Separating numbers based on conditions
Another very common task with lists of numbers is to separate numbers into new lists based on given
conditions. Let’s see an example here!
• Given the following list of numbers:

[3]: 3 numbers = [2, 10, 7, 5, 0, 9] numbers is assigned two, ten, seven, five, zero,
nine

We start with a list containing six integers.

• Separate the numbers into two different lists—one for odd numbers, and one for even numbers:

[4]: 1 # initialize the empty lists initialize empty lists
2 even = [] even is assigned an empty list
3 odd = [] odd is assigned an empty list
4
5 # for each position in the list for each position in the list
6 for i in range(len(numbers)): for i in range len of numbers
7
8 # if the current number is even if the current number is even
9 if numbers[i] % 2 == 0: if numbers in position i modulo two equals zero
10 # add it to the list even add it to the list even
11 even.append(numbers[i]) even dot append numbers in position i
12 # otherwise otherwise
13 else: else
14 # add it to the list odd add it to the list odd
15 odd.append(numbers[i]) odd dot append numbers in position i
10
17 # check the final results check the final results
18 print(even) print even
19 print(odd) print odd
[2,10,0]
[7,5,9]

We create two empty lists, one that will contain the even numbers (line 2) and one that will contain the
odd numbers (line 3). To fill them up, we need a for loop together with the list method .append() (or
with concatenation), as we learned in Chapter 13. Thus, we create a for loop that browses all the list
numbers one by one (line 6). Then, we use an if/else construct to determine whether each element
of the list numbers will go to even or odd (lines 8–15). How do we decide if a number is even or odd?

113

Part 4. Numbers and algorithms

We know that even numbers are divisible by 2, whereas odd numbers are not. Thus, we can use the
modulo, one of the seven arithmetic operators we learned in the previous chapter. When divided by
2, even numbers have a modulus (or remainder) equal to 0, whereas odd numbers don’t (the remainder
is 1!). Therefore, if the remainder of the current list number (e.g., numbers[i]) divided by 2 is 0 (line 9),
then we append numbers[i] to the list even (line 11). Otherwise (line 13), we append numbers[i] to the
list odd (line 15). Finally, we print the two lists to check the results (lines 18 and 19).

3. Finding the maximum of a list of numbers
A third very common task when dealing with lists of numbers is to find the maximum (or minimum)
number in a list. Try to find the maximum of the list below by yourself, drafting and experimenting
with code, before looking into the solution.
• Given the following list of numbers:

[5]: 3 numbers = [2, -5, 34, 70, 22] numbers is assigned two, minus five,
thirty-four, seventy, twenty-two

• Find the maximum number in the list:

[6]: 1 # initialize the maximum with the
first element of the list

initialize the maximum with the first element
of the list

2 maximum = numbers[0] maximum is assigned numbers in position 0
3
4 # for each position in the list

starting from the second
for each position in the list starting from the
second

5 for i in range(1, len(numbers)): for i in range one len of numbers
6
7 # if the current number is greater

than the current maximum
if the current number is greater than the
current maximum

8 if numbers[i] > maximum: if numbers in position i is greater than
maximum

9 # assign the number to maximum assign the number to maximum
10 maximum = numbers[i] maximum is assigned numbers in position i
11
12 # print the maximum of the list print the maximum of the list
13 print(maximum) print maximum
70

We create a variable called maximum that will contain the maximum number in the list, and we initialize
it with the first number in the list, which is numbers[0] (line 2). Then, we employ a for loop starting
from the second position to the last position of the elements in the list (line 5)—we do not start from
0 because it is not very meaningful to compare the value of numbers[0] (from the for loop) to itself
(assigned to maximum). Then, we check if the current number is greater than the maximum (line 8).
If so, we assign the number to the maximum (line 10). If not, we do not need to perform any action;
therefore, we can skip the else and a following statement. Finally, we print out the maximum (line 13).
In other words, we assign the first number of the list—that is, 2—to a variable that we call maximum (line
1). Then, we compare all the subsequent numbers of the list to the value of maximum, and if the list
number is greater than maximum, we assign the list number to maximum (lines 5–10). When we look into
each iteration, this is what happens:

114

Chapter 14. Playing with numbers

• When i is 1, numbers[1] is -5, which is not greater than 2, so we don’t do anything.
• When i is 2, numbers[2] is 34, which is greater than 2. Thus, 34 is the new maximum and we assign
it to the variable maximum.

• When i is 3, numbers[3] is 70, which is greater than 34. Thus, 70 is the new maximum and we assign
it to the variable. maximum.

• When i is 4, numbers[4] is 22, which is not greater than 70, so we don’t do anything. Since the
for loop is over, the value of maximum is 70, as we found in the previous iteration.

Finally, why do we initialize the variable maximum with the first element of the list and not with a very
small number? Suppose that we initialize the variable maximum with a small number like 0.000005. If
we try to find the maximum value in the list [0.000001, 0.000002, 0.000003] by comparing each
element to maximum, we won’t succeed because all elements in the list are smaller than 0.000005. As a
result, we will incorrectly conclude that the maximum is 0.000005, while the correct maximum should
be 0.000003. When we look for a maximum, picking a specific number as the initial maximum does not
allow us to generalize our code. We want to compare the numbers within the list.

True or false?

1. To change a number in a list, we need to reassign the new value to the same list
position.

T F

2. To calculate whether a number is divisible or multiple of another number, we used
the arithmetic operation floor division.

T F

3. To calculate the maximum of a number in a list, we compare the list numbers with
each other.

T F

Recap
• When dealing with lists of numbers, some of the basic tasks are:

■ Changing numbers in a list depending on conditions;
■ Separating numbers into new lists based on conditions;
■ Finding the maximum (or minimum) number in a list.

Don’t name variables with reserved words!
When naming variables, it’s important not to use reserved words, that is, names of built-in func-
tions or keywords. How do we know if a name is a reserved word? And what happens if we used
it as a variable name? Consider the following example:

[1]: 1 len = 10 len is assigned ten
2 print(len) print len
10

We create a variable called len to which we assign the number ten (line 1). As you can see, the
variable name is colored green, which means it is a reserve word—we know that len() is a
Python built-in function, and that variable names are colored black. When we print the variable
(line 2), we do not encounter any issue. However, if we want to calculate the length of a list in

115

Part 4. Numbers and algorithms

subsequent code, we get an error:

[2]: 1 numbers = [1, 2, 3] numbers is assigned one, two,
three

2 len(numbers) len numbers

TypeError Traceback (most recent call last)
Cell In[2], line 2

1 numbers = [1, 2, 3]
> 2 len (numbers)

TypeError: 'int' object is not callable

The error message says: 'int' object is not callable, which means that we want to use
len as a function; however, now len is an integer! In other words, by naming the variable len (cell
1, line 1), we overwrote the function len with an integer, and we cannot use it as a function
anymore. To solve this issue, we have to restart the kernel, that is, we need to erase all variables
and start from scratch (see the In more depth section in Chapter 7).

Let’s code!

1. Finding the minimum in a list of numbers. Given the following list of numbers:

numbers = [78, -900, 356, -103, 0, -78]

find the minimum number in the list.

2. Grouping numbers by position. Given the following list of numbers:

numbers = [4, 25, 7, -8, 59, 63, -10, 74]

separate the numbers in odd positions from the numbers in even positions using a for loop.

3. Number multiples. Given the following list of numbers:

numbers = [20, 24, 69, 15, 100, 16, 40, 80, 33, 57, 2, 200]

create a list for the numbers that are multiples of 10, a list for the numbers that are multiples of 3,
and a list for the remaining numbers. Finally, delete the list numbers.

4. Longest and shortest string. Given the following list of strings:

dogs = ["labrador", "chihuahua", "basset hound", "bernese shepherd", "poodle",
"cocker spaniel"]

find the longest and the shortest strings. Print out the two strings and their lengths.

5. Summing numbers in a list. Given the following list of numbers:

numbers = [3, 5, 2]

calculate the sum.

6. Fibonacci sequence. The Fibonacci sequence is a sequence of numbers where the current number
is the sum of the two previous numbers. Write code that asks the user for a number n and prints
out the Fibonacci sequence of n.

116

Chapter 14. Playing with numbers

Hint: Start the sequence as [1,1]

Example:

• User input: 10
• Output: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55].

117

15. Fortune cookies
The Python module random

Let’s continue our discovery of numbers in Python by learning how to generate random numbers. Ran-
domness is quite useful in coding, for example to create games or in scientific simulations. Read the
following example and try to understand it. You can find the code in Notebook 15. Let’s start!

• You are at a Chinese restaurant, and at the end of the meal, you get a fortune cookie. There are only
three fortune cookies left. Each of them contains a message:

[]: 1 fortune_cookies = ["The man on the top of the
mountain did not fall there", "If winter comes,
can spring be far behind?", "Land is always on
the mind of a flying bird"]

fortune cookies is assigned The
man on the top of the mountain did
not fall there, If winter comes,
can spring be far behind?, Land
is always on the mind of a flying
bird

• Which fortune cookie will you get? Let the computer decide! To do so, the computer needs a Python
module called random:

[]: 1 import random import random

• Here is your message when the computer picks an index:

[]: 1 # pick a message index pick a message index
2 message_index =

random.randint(len(fortune_cookies)-1)
message index is assigned random
dot randint len of fortune cookies
minus one

3 print(message_index) print message index
4
5 # get the message get the message
6 message = fortune_cookies[message_index] message is assigned fortune

cookies at message index
7 print(message) print message

• And here is your message when the computer directly picks an element:

[]: 1 # pick a message pick a message
2 message = random.choice(fortune_cookies) message is assigned random dot

choice fortune cookies
3 print(message) print message

True or false?

1. import is a function T F
2. random is a Python module T F
3. .randint() and .choice() are functions of the package random T F
4. The arguments of the functions .randint() and .choice() are of type string T F

118

Chapter 15. Fortune cookies

Computational thinking and syntax
Let’s begin by running the first cell:

[1]: 1 fortune_cookies = ["The man on the top of the
mountain did not fall there", "If winter comes,
can spring be far behind?", "Land is always on
the mind of a flying bird"]

fortune cookies is assigned The
man on the top of the mountain did
not fall there, If winter comes,
can spring be far behind?, Land
is always on the mind of a flying
bird

The variable fortune_cookies is a list containing 3 strings.

Let’s continue with the second cell:

[2]: 1 import random import random

We use the keyword import to import themodule random. What does this mean? As you know, Python
contains basic built-in functions, such as print(), input(), len(), range(), etc. However, when we
code, we often need tools for recurrent tasks, such as generating random numbers, browsing direc-
tories, computing statistics, etc. For this reason, Python contains additional units calledmodules. We
will talk about modules in greater detail in Chapter 32. For now, let’s keep in mind this definition:

Amodule is a unit containing functions for a specific task

Because in Python there are plenty of modules—which could slow down our computer if imported all
at once—we usually import only the module (or modules) that we are planning to use. To import a
module, we use the keyword import followed by themodule name.

Let’s now run cell number 3:

[3]: 1 # pick a message index pick a message index
2 message_index =

random.randint(len(fortune_cookies)-1)
message index is assigned random
dot randint len of fortune cookies
minus one

3 print(message_index) print message index
4
5 # get the message get the message
6 message = fortune_cookies[message_index] message is assigned fortune

cookies at message index
7 print(message) print message
2
Land is always on the mind of a flying bird

The module random contains several functions, and in this cell we use .randint() (line 2). As you can
see, the syntax to call a module function is as follows: (1) module name; (2) dot; (3) function name;
and (4) function inputs in between round brackets. The function .randint() takes two integers as
inputs—which we can we call a and b (.randint(a,b))—and returns a random number between them
included—that is, a and b can be the generated random number. In our example, we want to pick a
random number representing the index (or position) of an element in the list fortune_cookies. Thus,
we could write .randint(0,2). But what if we added or removed some strings to or from the list? We
would have tomanually change the endpoint b, and this could be prone to error! Similarly towhatwe do
for the stop in a for loop, we parameterise b, that is, wewrite b as a function of the length of a list. Thus,

119

Part 4. Numbers and algorithms

we type len(fortune_cookies), from which we subtract 1 because list indexes start from zero (i.e.,
len(fortune_cookies) is 3, but the index of the last element is 2). After creating the random number,
we assign it to message_index, and we print it (line 3). Finally, we slice the list fortune_cookies in
position message_index to extract a string that we assign to the variable message (line 6) and print
to the screen (line 7). One last note: try to run the cell several times. What happens? Every time
.randint() returns a different number (0, 1, or 2), and thus we get a different fortune cookie message!

Let’s have a look at the last cell:

[4]: 1 # pick a message pick a message
2 message = random.choice(fortune_cookies) message is assigned random dot

choice fortune cookies
3 print(message) print message
The man on the top of the mountain did not fall there

In this case, we use another function from the module random called .choice(), which takes a list as
an input and returns a randomly selected element of the list (line 2). Finally, we print the message (line
3).

What is the difference between .choice() and .randint()? When using .choice(), we do not know
the position of the element the computer randomly selects, whereas when using .randint(), we know
where the element is in the list.

Match the sentence halves

1. In range(start, stop, step) a. module name, dot, function name()
2. In .randint(a,b) b. returns a random element from a list
3. The function .randint(a,b) c. stop is excluded
4. The function .choice(list) d. variable name, dot, method name()
5. The syntax to use a string or list method

is
e. the endpoint b is included

6. The syntax to use a function from a module
is

f. returns a random integer between a and
b (included)

Recap
• A module is a unit containing functions for a specific task.
• To import a module, we use the keyword import. Imports are usually written at the beginning of
code, and only once.

• When calling a module function, we use the following syntax: module_name.function_name().
• random is a module to generate random numbers. It contains several functions, including:

■ .randint(a,b): returns a random integer between the endpoints a and b (included);
■ .choice(list_name): returns an element of a list.

120

Chapter 15. Fortune cookies

What if I don’t use the index in a for loop?
As we know from the previous chapters, in a for loop, the variable i changes its value from the
start to the stop (minus 1!) of the interval created by the function range(). Within the loop,
we use i to either print out the current loop number (e.g., print("This is loop number " +
str(i))) or to automatically slice list elements (e.g., print(friends[i])). However, in some
cases, we do not need i. Let’s look at an example:

[1]: 1 import random import random
2
3 # repeat the commands 3 times (index not

needed)
repeat the commands 3 times (index
not needed)

4 for _ in range(3): for underscore in range three
5 # create a random number between 10

and 20
create a random number between ten
and twenty

6 random_number = random.randint(10,20) random_number is assigned random
dot randint ten twenty

7 # print the number print the number
8 print("The random number is" +

random_number)
print The random number is
concatenated with random_number

The random numbers is: 14
The random numbers is: 17
The random numbers is: 12

We use a for loop to generate and print three random numbers (lines 4–8). As you can see, we
use the for loop to repeat commands that do not contain i. In this case, it is a Python style
convention to substitute i with an underscore (i.e., _) in the header of the for loop (line 4), to
signal that we do not need an index in the loop. Using i in the loop header would not be an error,
but it would decrease code readability.

Let’s code!

1. For each of the following scenarios, create code similar to that presented in this chapter:
a. Tossing a coin. What are the two possibilities when tossing a coin? Write them in a list. Then,
toss the coin, once using .randint() and once using .choice(). What do you get?

b. Rolling dice. What are the possibilities when rolling a die? Write them in a list. Then, roll the
die, once using .randint() and once using .choice(). What numbers do you get? Finally,
choose one method and roll the die three times. What numbers do you get?

2. Ten random numbers. Create a list of 10 random numbers between 0 and 100 using a for loop.

3. Unique random numbers multiple of a number. Create a list of 100 random numbers between 5 and
60. Divide them into two lists depending on whether they are a multiple of 4 or not. Then, create
another list called unique, where you add unique multiples of 4 from the previous list. This means
that, for example, that if 42 is present more than once, it will appear only once in unique. If the
number is already present in unique, print out a sentence like: The number x is already in unique.
How many unique multiples of 4 could you generate randomly?

121

Part 4. Numbers and algorithms

4. Playing with prime numbers. Create a list of 150 random numbers between 50 and 100, and divide
them into lists depending on whether they are multiple of the prime numbers 2, 3, 5, or 7 (a number
can be added to more than one lists if it is multiple of several prime numbers). Then, sum up all the
elements for each list separately (do not use built-in functions you might find online!). Is each sum
a multiple of the original prime number? That is, is the sum of all the multiples of 3 a multiple of 3
itself?

122

16. Rock paper scissors
Introduction to algorithms

Everybody knows the game rock paper scissors! Kids in every corner of the world play this game
originating at least 2,000 years ago in China1. In this chapter, we will learn how to implement this
game in Python. How would you do it? Write your ideas in the next exercise and try to write your own
implementation. Then, have a look at the computational solution below, implemented also in Notebook
16.

Complete the sentences

Think about three steps you need to implement rock paper scissors and write them below. Consider
that you will play against the computer: it will pick either paper, rock, or scissors, and you
will do the same. Who wins?

1. .

2. .

3. .

1. Computer pick
In the first step, the computer picks among paper, rock, and scissors. How? Let’s have a look at the
code below.
• Make the computer pick rock, paper, or scissors:

[1]: 1 import random import random
2
3 # list of game possibilities list of game possibilities
4 possibilities = ["rock", "paper", "scissors"] possibilities is assigned rock, paper,

scissors
5
6 # computer random pick computer random pick
7 computer_pick = random.choice(possibilities) computer pick is assigned random dot

choice possibilities
8 print(computer_pick) print computer pick
rock

We import the package random, which we learned in the previous chapter (line 1). Then, we create a
list containing the possible choices—that is, the three strings "rock", "paper" and "scissors" (line 4).
We use the function .choice() from the package random to randomly pick an element from the list
possibilities. Finally, we save the pick in the variable computer_pick (line 7) and we print it out (line
8). In this case, computer_pick is rock.

1https://en.wikipedia.org/wiki/Rock_paper_scissors

123

Part 4. Numbers and algorithms

2. Player choice
In the second step, it’s the player’s turn to choose among rock, paper, and scissors. Let’s have a look
below.
• Make the player choose among rock, paper, or scissors:

[2]: 1 # asking the player to make their choice asking the player to make their choice
2 player_choice = input("Rock, paper, or

scissors?")
player choice is assigned input rock,
paper, or scissors?

3 print(player_choice) print player choice
rock, paper, or scissors? rock
rock

We use the built-in function input to ask the player to choose among rock, paper, or scissors, and
we save the choice in the variable player_choice (line 2). Then, we print it out as a check (line 3). In
our example, the player chooses rock.

3. Determine who wins
It’s time to determine who wins! How do we do it? The computer has three possible picks, and so does
the player. Thus, there are nine possible scenarios. How do we code themwithout forgetting any? One
option is to define three situations where the computer’s pick is fixed and the player’s choice varies.
Let’s see the implementation!
• If the computer picks rock:

[3]: 1 if computer_pick == "rock": if computer pick equals rock
2
3 # compare to the player's choice compare to the player's choice
4 if player_choice == "rock": if player choice equals rock
5 print("Tie!") print Tie!
6 elif player_choice == "paper": elif player choice equals paper
7 print("You win!") print You win!
8 else: else
9 print("The computer wins!") print The computer wins!
Tie!

We start with an if condition to check if the computer pick equals "rock" (line 1). Then we evaluate
the player’s choice. If the player’s choice equals "rock" (line 4), then we print that it’s a tie (line 5). If
the player’s choice equals "paper" (line 6), then we print that the player wins (line 7). Finally, in the
remaining case—the player’s choice is "scissors"—(line 8), we print that the computer wins (line 9).
The code is very simple: an if condition containing an if/elif/else construct with prints in the
statements. As you can see, we print a message directly to the player, not to the coder. You might
remember that when we code, we alternate two hats: the coder hat or the player hat (see Chapter 1). If
we print "The player wins" (line 7), we tell the coder that the code works. But if we print You win!, we
talk to the player, who is the person we are coding for! Think about when you play a computer game:
what kind of messages do you get?

In an if/elif/else construct, it is important to test all conditions. We want to make sure that all
statements execute correctly, as we mentioned when we implemented a calculator (Chapter 13). What
does testing mean exactly?

124

Chapter 16. Rock paper scissors

Testing means to evaluate and verify that the code does what it is supposed to do

How do we test the code in this example? We rerun cell 2—where we ask the player to choose among
rock, paper, and scissors—two times: once entering paper and once entering scissors. After each
run, we rerun cell 3 to check that the corresponding printout is correct. It is important to enter the
strings in the same order as they appear in the conditions: first rock, then paper, and finally scissors.
Keeping the same order helps us make sure that we test all conditions, without skipping any.

Sometimes testing is confused with debugging, but they are two very different concepts. You might
have heard the word debugging many times. What is its exact meaning?

Debugging means identifying and removing errors from code

Debugging is a bit of a detective job. When we get error messages, or we do not obtain the result that
we expect, we need to understandwhere the error is so that we can fix it. A very commonway to debug
is to print variables after every line of code, to check the value they are assigned. When the variable
value is not the expected one, that’s where the error happens! Once we have found the error, we can
fix it, and then we can keep coding. To understand further why we use the word debugging, read the
In more depth section at the end of this chapter.

Let’s continue implementing rock paper scissors, looking at the second computer pick possibility.
• If the computer picks paper:

[4]: 1 if computer_pick == "paper": if computer pick equals paper
2
3 # compare to the player's choice compare to the player's choice
4 if player_choice == "paper": if player choice equals paper
5 print("Tie!") print Tie!
6 elif player_choice == "scissors": elif player choice equals scissors
7 print("You win!") print You win!
8 else: else
9 print("The computer wins!") print The computer wins!

The structure of the code is the same as in the previous cell: an if condition (line 1) containing an
if/elif/else construct (lines 4–9). What changes are the terms of comparison—that is, the strings—
in the conditions: we check if the computer picks "paper", and we change the conditions for the player
according to the printed messages.

When we write code with a repetitive structure—like in our example—it is crucial to use parallelism.
Do you know what it is?

Parallelismmeans maintaining a corresponding structure
for subsequent lines or blocks of code

In our example, we can either keep the conditions in the same order—e.g., the first term of comparison
is always "rock", the second is always "paper", and the third is always "scissors"—or we can keep the
statements in the same order—that is, the firstmessage is always "Tie!" (line 5 in both cells 3 and 4), the
second is always "You win!" (line 7 in both cells), and the third is always "The computer wins!" (line 9

125

Part 4. Numbers and algorithms

in both cells). Parallelism helps us remember to list all conditions in every construct, and it improves
code readability.

Once more, let’s not forget to test all conditions. We first have to make sure that the computer pick is
paper. Since we have only three options, a simple way is to rerun cell 1 until we get what we need—that
is, "paper". Then, we re-run cells 2 and 4 three times, each time entering the player choice and testing
the corresponding print, in the same order as in the if/elif/else construct. In other words, first we
enter "paper" at cell 2, and run cell 4 to test lines 4–5. Then, we enter "scissors" at cell 2, and run
cell 4 testing lines 6–7. And finally, we enter "scissors" at cell 2, and run cell 4 to test lines 8–9.

Let’s finally look into the third scenario.
• If the computer picks scissors:

[5]: 1 if computer_pick == "scissors" if computer pick equals scissors
2
3 # compare to the player's choice compare to the player's choice
4 if player_choice == "scissors": if player choice equals scissors
5 print("Tie!") print Tie!
6 elif player_choice == "rock": elif player choice equals rock
7 print("You win!") print You win!
8 else: else
9 print("The computer wins!") print The computer wins!

Also in this last case, the code structure is similar: an if condition (line 1) nesting an if/elif/else
construct (lines 4–9). We check if the computer picked "scissors" and if the player chose "scissors"
(line 4), "rock" (line 6), or "paper" (the else in line 8). As in cell 4, we construct the conditions so that
the print statements are parallel to the conditions in cell 3. Finally, once more, we want to make sure
we test the code. Thus, first we re-run cell 1, making sure that the computer_pick is "scissors". Then,
we re-run cells 2 and 5, subsequently entering and testing for "scissors", "rock", and "paper".

Note that we considered a well-behaved player, that is, a player that enters rock, paper, or scissors
correctly, without any misspelling. We will assume that we are dealing with well-behaved players in
all coming chapters to focus on computational thinking and coding syntax. We will learn to check for
input correctness in Chapter 30.

At this point, the code is completed! As coders, we have taken care of the various parts of the code,
writing and testing them. Now it’s time to put all the code together for the player!

Merging the code
• Let’s merge the code:

[6]: 1 import random import random
2
3 # list of game possibilities list of game possibilities
4 possibilities = ["rock", "paper", "scissors"] possibilities is assigned rock, paper,

scissors
5 # computer random pick computer random pick
6 computer_pick = random.choice(possibilities) computer_pick is assigned random dot

choice possibilities

126

Chapter 16. Rock paper scissors

7
8 # asking the player to make their choice asking the player to make their choice
9 player_choice = input("Rock, paper, or

scissors?")
player choice is assigned input rock,
paper, or scissors?

10
11 # determine who wins determine who wins
12 # if the computer picks rock if the computer picks rock
13 if computer_pick == "rock": if computer pick equals rock
14 # compare to the player's choice compare to the player's choice
15 if player_choice == "rock": if player choice equals rock
16 print("Tie!") print Tie!
17 elif player_choice == "paper": elif player choice equals paper
18 print("You win!") print You win!
19 else: else
20 print("The computer wins!") print The computer wins!
21
22 # if the computer picks paper if the computer picks paper
23 if computer_pick == "paper": if computer pick equals paper
24 # compare to the player's choice compare to the player's choice
25 if player_choice == "paper": if player choice equals paper
26 print("Tie!") print Tie!
27 elif player_choice == "scissors": elif player choice equals scissors
28 print("You win!") print You win!
29 else: else
30 print("The computer wins!") print The computer wins!
21
12 # if the computer picks scissors if the computer picks scissors
33 if computer_pick == "scissors" if computer pick equals scissors
34 # compare to the player's choice compare to the player's choice
35 if player_choice == "scissors": if player choice equals scissors
36 print("Tie!") print Tie!
37 elif player_choice == "rock": elif player choice equals rock
38 print("You win!") print You win!
39 else: else
40 print("The computer wins!") print The computer wins!
Rock, paper, or scissors? rock
You win!

When merging code, we usually do some editing to improve code use and readability. In this case,
we erased the print of computer_pick (which was in cell 1, line 8) because we do not want the player to
know the computer choice in advance. Similarly, we delete the print of player_choice (which was in
cell 2, line 3), as the player already sees their choice from the entry at line 9. Other editingmight include
improving comments, making variable names more meaningful, restructuring parts of the code, etc.

Let’s now zoom out and observe the procedure we use to implement the game. We first defined three
steps—see the exerciseComplete the sentences. Then, we implemented each step separately—see para-
graphs 1. Computer pick, 2. Player choice, and 3. Determine who wins. Finally, we merged all the code
together and edited it—see Merging the code. This way of approaching a task is called divide and con-
quer.

127

Part 4. Numbers and algorithms

Divide and conquermeans dividing a project into sub-projects, solving the sub-projects, and
combining the solutions of the sub-projects to obtain the solution of the whole project

In other words, there are three steps to solve a computational task:
1. Break the project into subprojects
2. Solve the subprojects separately
3. Merge the solutions of the subprojects to obtain the solution of the whole project

Last but not least, let’s talk about algorithms! You have surely heard this word many times. What is an
algorithm?

An algorithm is a sequence of rigorous steps to execute and complete a task

Algorithms are just procedures to solve tasks, problems, or assignments. They do not have to be com-
plicated. They can actually be pretty simple. There are plenty of algorithms in everyday life! Think
about the sequence of steps you make to brush your teeth: taking the toothpaste tube, opening and
squeezing it, placing toothpaste on the toothbrush, etc. This is an algorithm! Or think about cooking
recipes, especially printed recipes. At the top, there is a list of ingredients (e.g., 2 carrots, 3 onions),
which are the variables (e.g., carrots = 2, onions = 3). Then, there is the execution of the recipe,
that is, the steps to process the ingredients into the final dish. In programming, many algorithms have
been developed in the past few decades. The most famous algorithms were designed to sort lists, find
prime numbers, find elements in a list, etc. We will not look into them in this book, but you can find
plenty of examples and explanations in more advanced books and on the internet.

Complete the table

In this chapter, you learned several more important concepts in coding. Write their definitions
in your own words:

Concept Definition

Testing

Debugging

Parallelism

Divide and conquer

Algorithm

Recap
• An algorithms is a sequence of steps to execute a task.
• When writing an algorithm (and code in general), we largely use parallelism, testing, debugging, and
divide and conquer.

128

Chapter 16. Rock paper scissors

Why do we say Debugging, Divide and conquer, and Algorithms?

Do you know why we say debugging, divide and conquer, and algorithms? The term debugging
originated in 1947, when a moth was found in a relay of Mark II computer at Harvard Univer-
sity, causing the computer to malfunction. The moth was then taped to a log sheet, with the
annotation Relay 70 Panel F (moth) in relay. First actual case of a bug being found (see Figure
16.1). Although the word debugging is not mentioned in the annotation, it became popular thanks
to Grace Hopper, who worked on the same computera,b. Divide and conquer is attributed to
Philip II of Macedon, and it was reused by the Roman ruler Julius Caesar, the French emperor
Napoleon, and many morec. It refers to a military strategy where the invaders divide the en-
emy forces to defeat them more easily and conquer them as a whole. Finally, the term algorithm
derives from al-Khwarizmi, the last name of Muhammad ibn Musa al-Khwarizmi, a 9th-century
Persianmathematician and astronomer whose books were widely read in Europe in the lateMid-
dle Ages. He wrote a book on the Hindu–Arabic numeral system, which was translated into Latin
in the 12th century. The latin manuscript starts with the phrase Dixit Algorizmi (”Thus spoke Al-
Khwarizmi”), where ”Algorizmi” was the translator’s Latinization of Al-Khwarizmi’s last named.

Figure 16.1. The page of the log from the Mark II with the moth taped on it. It dates 9 September 1947.
The time is 15:45 as visible on the top left. The log book is at the Smithsonian Institution’s

National Museum of American History in Washington, D.C., United States.

ahttps://en.wikipedia.org/wiki/Debugging
bhttps://en.wikipedia.org/wiki/Grace_Hopper
chttps://en.wikipedia.org/wiki/Divide_and_rule
dhttps://en.wikipedia.org/wiki/Algorithm

Let’s code!

1. Trivia night! Trivia is a quiz game where players have to answer questions about various subjects.
For this implementation of Trivia, prepare 3 questions and their corresponding answers for 3 dif-
ferent topics. Ask the player to pick a topic, and then ask a randomly picked question about that
topic. Finally, tell the player whether the answer is correct. If not, print out the correct answer.
Here are some hints:
• How do you organize your questions and answers? What Python data types do you use?
• What is the sequence of actions you need to perform? Write them down before coding. You can
always update them while implementing.

• How do you test that your code is correct?
• Remember to divide and conquer!

129

PART 5
THE WHILE LOOP
AND CONDITIONS
In part 5, you will learn the last construct in coding: the while loop. You
will also learn various types of conditions that you can use in while loops and
if/elif/else statements. Let’s go!

17. Do you want more candies?
The while loop

In coding, there are three constructs: if/elif/else, for loops, and while loops. You have now mas-
tered the first two, and in this chapter, you will finally learn the while loop! Read the code below, and
try to understand what it does. Follow along with Notebook 17!

[]: 1 # initialize variable initialize variable
2 number_of_candies = 0 number_of_candies is assigned zero
3
4 # print the initial number of candies print the initial number of candies
5 print("You have " + str(number_of_candies) +

" candies")
print You have concatenated with str
number of candies concatenated with
candies

6
7 # ask if one wants a candy ask if one wants a candy
8 answer = input("Do you want a candy?

(yes/no)")
answer is assigned input Do you want a
candy? (yes/no)

9
10 # as long as the answer is yes as long as the answer is yes
11 while answer == "yes": while answer equals yes:
12
13 # add a candy add a candy
14 number_of_candies += 1 number_of_candies is incremented by one
15
16 # print the current number of candies print the current number of candies
17 print("You have " + str(number_of_candies)

+ " candies")
print You have concatenated with str
number of candies concatenated with
candies

18
19 # ask again if they want more candies ask again if they want more candies
20 answer = input("Do you want more candies?

(yes/no)")
answer is assigned input Do you want
more candies? (yes/no)

21
22 # print the final number of candies print the final number of candies
23 print("You have a total of" +

str(number_of_candies) + " candies")
print You have a total of concatenated
with str number of candies concatenated
with candies

Complete the following exercise to start getting to know the syntax and functionality of the while loop!

133

Part 5. The while loop and conditions

True or false?

1. while is a variable T F
2. The while loop header contains a condition T F
3. The variable answer appears 2 times in the code T F
4. The variable number_of_candies increases by one unit at each loop T F
5. The while loop continues as long as the player inputs yes and stops when the player

inputs no
T F

Computational thinking and syntax
Let’s run the cell, and let’s analyze the code in two separate blocks. We’ll start with the first block:

[1]: 1 # initialize variable initialize variable
2 number_of_candies = 0 number_of_candies is assigned zero
3
4 # print the initial number of candies print the initial number of candies
5 print("You have " + str(number_of_candies) +

" candies")
print You have concatenated with str
number of candies concatenated with
candies

Wecreate a variable called number_of_candies and initialize it to 0 (line 2). This variable will keep count
of the number of candies we want. It is a very important variable, and we will talk about it again when
analyzing the second block of code. At line 5, we print out the number of candies we have, which is
zero.

Let’s look into the next block, which is the core of the whole code:

7 # ask if one wants a candy ask if one wants a candy
8 answer = input("Do you want a candy?

(yes/no)")
answer is assigned input Do you want a
candy? (yes/no)

9
10 # as long as the answer is yes as long as the answer is yes
11 while answer == "yes": while answer equals yes:
12
13 # add a candy add a candy
14 number_of_candies += 1 number_of_candies is incremented by one
15
16 # print the current number of candies print the current number of candies
17 print("You have " + str(number_of_candies)

+ " candies")
print You have concatenated with str
number of candies concatenated with
candies

18
19 # ask again if they want more candies ask again if they want more candies
20 answer = input("Do you want more candies?

(yes/no)")
answer is assigned input Do you want
more candies? (yes/no)

21

134

Chapter 17. Do you want more candies?

22 # print the final number of candies print the final number of candies
23 print("You have a total of" +

str(number_of_candies) + " candies")
print You have a total of concatenated
with str number of candies concatenated
with candies

You have 0 candies
Do you want a candy? (yes/no) yes
You have 1 candies
Do you want more candies? (yes/no) yes
You have 2 candies
Do you want more candies? (yes/no) no
You have a total of 2 candies

Let’s see how the while loopworks. We ask the player whether theywant a candy, andwe save the reply
in the variable answer (line 8). Then, we continue with the while loop header, which says something
like: as long as the variable answer is equal to yes, do the following (line 11): add a unit to the variable
number_of_candies (line 14); print out the current number of candies (line 17), and ask again the player
if they want more candies (line 20). Then, we go back to the while loop header (line 11). If the answer at
line 20was yes, we’ll do the same as above, that is: add a unit to the variable number_of_candies (line 14);
print out the current number of candies (line 17), and ask again the player if theywantmore candies (line
20). Then, we will go back to the while loop header again (line 11). If the answer at line 20 was yes again,
we will do the same as above once more, that is: add a unit to the variable number_of_candies (line
14), ... We’ll keep doing this as long as the variable answer is equal to yes. What if the player answers
no at line 20? When we go back to the while loop header (line 11), the condition is not valid anymore,
because answer is not equal to yes! So the loop stops, and we go directly to the first line after the
while loop body (line 23). There, we print out the total number of candies.

Let’s now look into the syntax. The while loop starts with a header (line 11), which is composed of three
parts: (1) the keyword while, (2) a condition, and (3) colon : (every construct header ends with a colon!).
In this example, we check whether the value assigned to the variable answer equals the string "yes".
We will see other kinds of conditions in the next chapter. After the header, there is the body of the
while loop (lines 13–20). The body is indented, similarly to the for loop body and if/elif/else state-
ments. Let’s now focus our attention on two variables: answer and number_of_candies.

How many times do you see the variable answer and where? answer is in three different places: (1) be-
fore the while loop (line 8), (2) in the condition of the while loop, and (3) in the body of the while loop.
Why do we need it three times? Before a while loop, we always have to initialize the variable contained
in the condition of the while loop header; otherwise, we cannot evaluate the condition itself when the
loop starts. In our example, we initialize answerwith the first player’s answer (line 8). Then, we have to
check the condition involving the variable answer. In this case, we check if answer is equal to yes (line
11). Finally, we have to allow the variable to change (line 20), so that the loop can terminate; otherwise,
the loop will keep going indefinitely. Sooner or later, we all forget this last part, and we get into an
infinite loop! If that happens to you, just stop the cell (if it takes too long, restart the kernel!)

Let’s finally look into the variable number_of_candies. How many times do you see it and where?
number_of_candies is in two places: (1) before the while loop, where it is initialized (line 2), and (2) in
the while loop, where it is incremented by one unit at every loop (line 14). The variable
number_of_candies is generally called counter because it keeps count of the number of loops. The
symbol += is an assignment symbol, and we can pronounce it as incremented by. It is a compact way
of writing number_of_candies = number_of_candies + 1. For any arithmetic operator, there is the

135

Part 5. The while loop and conditions

associated assignment operator, that is, -= (decrease by), *= (multiply by and reassign), /= (divide by and
reassign), etc. Note that in assignment operators, the symbol = is always in the second position, after
an arithmetic operator.

What is the difference between a for loop and a while loop? In Chapter 8, we defined the while loop
as follows:

A for loop is the repetition of a group of commands
for a determined number of times

In a for loop, we know exactly how many times we are going to run the commands in the loop body.
Conversely, in a while loop we do not know howmany timeswe are going to run the commands in the
loop body because the duration of a while loop depends on the validity of the condition in the header.
Let’s define the while loop and summarize its characteristics:

A while loop is the repetition of a group of commands
as long as a condition holds

A while loop stops when the condition in the header is not true anymore. We always have to give
the variable in the condition the possibility to change so that the condition in the header can be false
and the loop can stop. If the variable in the condition (answer in our example) cannot change in the
while loop body, then we will get an infinite loop. Finally, to know how many times we run the loop,
we can use a counter (number_of_candies in our example) to keep track of the number of iterations.
The presence of a counter is not compulsory.

Insert into the right column

So far, you have learned several operators: arithmetic, assignment, and comparison operators.
Insert each symbol in the right column:

+, ==, *=, <, /, *, <=, =, //=, /=, //, !=, -=, -, +=, >=, %=, **, %, **=, >

Arithmetic operators Assignment operators Comparison operators

136

Chapter 17. Do you want more candies?

Recap
• A while loop is the repetition of a bunch of commands as long as a condition holds.
• The variable in the condition must be initialized before the condition. It also has to change some-
where in the loop body so that the loop can stop when the condition does not hold anymore.

• A while loop can have a counter. Counters keep track of the number of loops and must be initialized
before the loop header.

• When updating a variable with an arithmetic operation, we can use the corresponding assignment
operator, that is, +=, -=, etc.

Writing code is like writing an email!

What steps do we do when writing an email? We start with recipient’s address and email subject,
then we continue with the salutation, the body of the email, greetings, and we finish with signa-
ture (an algorithm, isn’t it?). Once we are done, we read the email again for a check. We correct
some misspellings, and we quickly edit a few things here and there. Often, we go deeper: we
reformulate some sentences or we completely rearrange some paragraphs. Without realizing it,
we have gone through the email a couple of times! Now, think about the steps we make when
writing code. First, we write the imports, the variables, and the implementation of an algorithm.
Then we test it to we check whether it works, and if not, we correct it. Once it finally works,
we remove unused variables, compact some code lines, improve variable names, and clean com-
ments. Like we do for emails, we look at our code circularly, that is, from top to bottom a couple
of times, exactly like when we re-read an email. But for some reason, when we code, we often
want the first draft to be the final implementation, and we get frustrated if this doesn’t happen.
When writing code, consider the time you spend testing, debugging, and improving the code
as part of the process, not as some extra time that prevents you from doing something else! It’s
all part of the process!

Let’s code!

1. For each of the following scenarios, create code similar to that presented in this chapter:
a. Do you want more cookies?
b. Do you want less exercises?

2. At the cheese shop. You own a cheese shop, and you sell slices of cheese at 50c each. A new customer
comes in, and you ask if they want cheese. The customer is uncertain of how much cheese to buy,
so after every slice, you ask again if they want another slice of cheese. As long as the customer
says yes, then you add a slice of cheese, update the final price, and tell them the amount of slices of
cheese and the price so far. How many slices of cheese did you sell? And what was the final price?

3. Playing with numbers. Given the following list: numbers = [0], ask the player if you should add
another number to the list. As long as the player says yes, add to the list the sum of the last number
you added and the counter of the current loop Example: If you run the while loop 7 times, you will
get the following list: [0, 1, 3, 6, 10, 15, 21, 28]

137

Part 5. The while loop and conditions

4. Generating even numbers. Given an empty list, ask the player if you should add another number
to the list. As long as the player says yes, create a random number between 0 and 100, and if the
number is even, then add it to the list. How many numbers did you generate? How many even?
How many odd? What is the ratio between the amount of even and odd numbers you generated?

138

18. Animals, unique numbers, and sum
Various kinds of conditions

In the previous chapter, we saw only one kind of condition in a while loop—that is, that a variable is
equal to "yes". Let’s now take a look at three examples with other kinds of conditions. First, try to
solve each task by yourself: read the requirements carefully, list the steps to execute, implement them
one by one, and merge the code to the solution (divide and conquer!). This time, also try to take it one
a step further: keep an eye on the processes that your mind goes through while solving the tasks. You
will often find recurring thinking patterns when coding. Knowing and recognizing themwill give you
awareness and thus speed up your work. For each of the following examples, you will see a possible
way to approach the coding task at hand. Maybe it will be similar to your thinking, or maybe it will
be different. In any case, it will give you an idea of possible thinking pathways. You can play with the
proposed solutions on Notebook 18. Enough talk—let’s start coding!

1. Guess the animal!
• Given the following list:

1 animals = ["giraffe", "dolphin", "penguin"] animals is assigned giraffe, dolphin,
penguin

• Create a game in which the computer randomly picks one of the three animals and the player has to
guess the animal picked by the computer. Make sure that the player keeps playing until they guess
the animal picked by the computer. At the end of the game, tell the player how many attempts it
took to guess the animal.

The game has four requirements: (1) the computer randomly picks one of the three animals; (2) the
player has to guess the animal picked by the computer; (3) the player keeps playing until they guess
the animal picked by the computer; and (4) at the end of the game, tell the player how many attempts
it took to guess the animal. Let’s see how to implement each requirement!

1. The computer randomly picks one of the three animals. This is pretty straightforward:

1 import random import random
2
3 # computer pick computer pick
4 computer_pick = random.choice(animals) computer pick is assigned random dot

choice animals
5 print(computer_pick) print computer pick
dolphin

We import the package random (line 1), and we use its function .choice() to make the computer pick
a random element from the list animals (line 4). Then, we print computer_pick as a check (line 5).

139

Part 5. The while loop and conditions

2. The player has to guess the animal picked by the computer. This task is also easy:

1 # player guess player guess
2 player_guess = input("Guess the animal!

Choices: giraffe, dolphin, penguin:")
player guess is assigned input Guess
the animal! Choices: giraffe, dolphin,
penguin:

Guess the animal! Choices: giraffe, dolphin, penguin: giraffe

We use the function input() to ask the player to input their guess (line 2). We assume that the player’s
input is giraffe.

3. The player keeps playing until they guess the animal picked by the computer. The phrase ”until they
guess the animal” is equivalent to ”as long as they guess the animal”, which immediately suggests to us
that we should use a while loop. What condition do we write in the header? Let’s see:

1 # as long as the player's guess and the
computer's pick are different

as long as the player's guess and the
computer's pick are different

2 while player_guess != computer_pick: while player guess is not equal to
computer pick:

3
4 # tell the player that the animal is

not right
tell the player that the animal is not
right

5 print("That's not the right animal!") print That's not the right animal!
6
7 # ask the player to guess again ask the player to guess again
8 player_guess = input("Try again! Guess

the animal! Choices: giraffe, dolphin,
penguin:")

player guess is assigned input Try
again! Guess the animal! Choices:
giraffe, dolphin, penguin:

9
10 # tell the player that they guessed the

right animal
tell the player that they guessed the
right animal

12 print("Well done! You guessed " +
computer_pick)

print Well done! You guessed
concatenated with computer pick

That's not the right animal!
Try again! Guess the animal! Choices: giraffe, dolphin, penguin: dolphin
Well done! You guessed dolphin

The loop must stop when the player guesses the animal, that is, until player_guess and
computer_pick are the same. In general, when a requirement defines the condition that stops a
while loop, we have to think the oppositeway: weneed to find the condition that allows the while loop
to keep going. In our example, the loop must keep going as long as player_guess is not equal to
computer_pick (line 2). In the loop body, we provide a feedback to the player saying that the animal
they picked in not right (line 5), and we ask the player to guess the animal again (line 8) so that the
while loop can continue. Finally, after the loop, we print out a message confirming that the player
guessed the right animal (line 12).

4. At the end of the game, tell the player how many attempts it took to guess the animal. We definitely
need a counter!

140

Chapter 18. Animals, unique numbers, and sum

1 # initializing the counter initializing the counter
2 n_of_attempts = 1 n of attempts is assigned one
3
4 # as long as the player's guess and the

computer's pick are different
as long as the player's guess and the
computer's pick are different

5 while player_guess != computer_pick: while player guess is not equal to
computer pick:

6
7 # tell the player that the animal is

not right
tell the player that the animal is not
right

8 print("That's not the right animal!") print That's not the right animal!
10 # print the numbers of attempts so far print the numbers of attempts so far
11 print("Number of attempts so far: " +

str(n_of_attempts)
print Number of attempts so far:
concatenated with str n of attempts

12
13 # increase the number of attempts increase the number of attempts
14 n_of_attempts += 1 n of attempts is incremented by one
15
16 # ask the player to guess again ask the player to guess again
17 player_guess = input("Try again! Guess

the animal! Choices: giraffe, dolphin,
penguin:")

player guess is assigned input Try
again! Guess the animal! Choices:
giraffe, dolphin, penguin:

18
19 # tell the player that they guessed the

right animal
tell the player that they guessed the
right animal

20 print("Well done! You guessed " +
computer_pick + " at attempt number " +
str(n_of_attempts)

print Well done! You guessed
concatenated with computer pick
concatenated with at attempt number
concatenated with str(n of attempts)

That's not the right animal!
Number of attempts so far: 1
Try again! Guess the animal! Choices: giraffe, dolphin, penguin: dolphin
Well done! You guessed dolphin at attempt number 2

We create the counter n_of_attempts (line 2), and we initialize it to 1. Why 1 and not to 0? Because the
player enters the first input before the while loop (see requirement 2. The player has to guess the animal
picked by the computer), and that is the first attempt! Then, we tell the player the current number of
attempts (line 11) and increase n_of_attempts by one unit at every loop (line 14). Finally, we include the
total number of attempts to the last print (line 20).

After solving the four tasks, we can merge the code together! Here is the complete solution:

[1]: 1 import random import random
2
3 # computer pick computer pick
4 computer_pick = random.choice(animals) computer pick is assigned random dot

choice animals
5 # print(computer_pick) print computer pick
6
7 # player guess computer pick
8 player_guess = input("Guess the animal!

Choices: giraffe, dolphin, penguin:")
player guess is assigned input Guess
the animal! Choices: giraffe, dolphin,
penguin:

141

Part 5. The while loop and conditions

9
10 # initializing the counter initializing the counter
11 n_of_attempts = 1 n of attempts is assigned 1
12
13 # as long as the player's guess and the

computer's pick are different
as long as the player's guess and the
computer's pick are different

14 while player_guess != computer_pick: while player guess is not equal to
computer pick:

15
16 # tell the player that the animal is

not right
tell the player that the animal is not
right

17 print("That's not the right animal!") print That's not the right animal!
18
19 # print the numbers of attempts so far print the numbers of attempts so far
20 print("Number of attempts so far: " +

str(n_of_attempts)
print Number of attempts so far:
concatenated with str n of attempts

21
22 # increase the number of attempts increase the number of attempts
23 n_of_attempts += 1 n of attempts is incremented by one
24
25 # ask the player to guess again ask the player to guess again
26 player_guess = input("Try again! Guess

the animal! Choices: giraffe, dolphin,
penguin:")

player guess is assigned input Try
again! Guess the animal! Choices:
giraffe, dolphin, penguin:

27
28 # tell the player that they guessed the

right animal
tell the player that they guessed the
right animal

29 print("Well done! You guessed " +
computer_pick)

print Well done! You guessed
concatenated with computer pick

Guess the animal! Choices: giraffe, dolphin, penguin: giraffe
That's not the right animal!
Number of attempts so far: 1
Try again! Guess the animal! Choices: giraffe, dolphin, penguin: dolphin
Well done! You guessed dolphin at attempt number 2

Note that we commented out the print of the computer_pick (line 5), as the final code is for a player
and not for a coder!

2. Create a list of 8 unique random numbers!
Here is our next task:
• Create a list of 8 random numbers between 0 and 10. Make sure they are unique, meaning each
number is present only once in the list. If the number is already in the list, then print the following:
The number x is already in the list. How many numbers did you generate before finding 8 unique
numbers?

The task has four requirements: (1) create a list of 8 random numbers between 0 and 10; (2) make sure
they are unique, that is, each number is present only once in the list; (3) if the number is already in the
list, then print The number x is already in the list; and (4) how many numbers did you generate before
finding 8 unique numbers? Let’s go through the requirements one by one!

142

Chapter 18. Animals, unique numbers, and sum

1. Create a list of 8 random numbers between 0 and 10.
According to this requirement only, we can create a list of 8 numbers using a for loop and the function
.randint() from the module .random:

1 import random import random
2
3 # initialize the number list initialize the number list
4 unique_random_numbers = [] unique random numbers is assigned an

empty list
5
6 # for 8 times for eight times
7 for _ in range(8): for underscore in range eight
8
9 # create a random number between 0 and 10 create a random number between zero

and ten
10 unique_random_numbers.append

(random.randint(0,10))
unique random numbers dot append
random dot randint zero ten

11
12 # print the list print the list
13 print(unique_random_numbers) print unique random numbers
[7, 9, 3, 2, 3, 0, 9, 6]

We import the package random (line 1), and we initialize unique_random_numbers—which will contain
the created numbers—to an empty list (line 4). Then, we create a for loop, where we generate eight
random numbers between 0 and 10, and we append them to unique_random_numbers (lines 6–10). Note
that we use an underscore instead of the variable i in the loop header because we do not need i in
the loop body (see the In more depth sectionWhat if I don’t use the index in a for loop? in Chapter 15).
Finally, we print unique_random_numbers to check that it actually contains eight random numbers (line
13). Let’s go to the next requirement!

2. Make sure they are unique, which means each number is present only once in the list. In the list we
printed out above, the numbers are not unique: both 3 and 9 are present twice. Thus, we need to
modify our code. How? We do not know how many random numbers we need to generate before
obtaining 8 unique numbers, that is, we do not know how many times we need to run the command
unique_random_numbers.append(random.randint(0,10)) (line 9 in the cell above). For this reason, we
cannot use a for loop—which we use when we know the exact number of iterations—but we need to
use a while loop, which we use when the number of iterations is determined by a condition. Making
changes in code during the drafting process is normal, aswementioned in the Inmore depth section of
the previous chapterWriting code is like writing an email! What condition dowe use in this while loop?
The list must be composed of 8 elements, thus its length has to be 8! Let’s see how we can transform
the code:

143

Part 5. The while loop and conditions

1 import random import random
2
3 # initialize the number list initialize the number list
4 unique_random_numbers = [] unique random numbers is assigned an

empty list
5
6 # as long as the length of the list is not 8 as long as the length of the list is

not eight
7 while len(unique_random_numbers) != 8: while len of unique random numbers is

not equal to eight
8
9 # create a random number between 0 and 10 create a random number between zero

and ten
10 number = random.randint(0,10) number is assigned random dot randint

zero ten
11
12 # if the number is already in the list if the number is already in the list
13 if number in unique_random_numbers: if number in unique random numbers:
14 # place holder place holder
15 a = 0 a is assigned zero
16 # otherwise otherwise
17 else: else
18 # add the new number to the list add the new number to the list
19 unique_random_numbers.append(number) unique random numbers dot append

number
20
21 # print the list print the list
22 print(unique_random_numbers) print unique random numbers
[1, 8, 10, 7, 3, 0, 5, 9]

At line 7, we substitute the header of the for loop with the header of a while loop, with the condition
that the loop keeps going as long as the length of the list is not equal to 8. Then, we generate a random
number (line 10). We need to make sure that the random number is a new one (or unique!) before
adding it to the list. Thus, we create an if ... in / else construct (lines 12–19), which we learned in
Chapter 3. If the number is already in the list (line 13), then we do not want to add it to the list. The
next requirement will tell us what to do, so right now we can just use a placeholder, or a nonfunctional
command in our code that we plan to substitute (a=0, line 15). Using placeholders is not very good
coding practice, but sometimes we can make an exception in the very early drafting phase. If the
number is not in the list (else at line 17), then we append it to the list (line 19).
3. If the number is already in the list, then print: The number x is already in the list
We substitute the placeholder a=0 with the print commands (line 15):

144

Chapter 18. Animals, unique numbers, and sum

1 import random import random
2
3 # initialize the number list initialize the number list
4 unique_random_numbers = [] unique random numbers is assigned an

empty list
5
6 # as long as the length of the list is not 8 as long as the length of the list is

not eight
7 while len(unique_random_numbers) != 8: while len of unique random numbers is

not equal to eight
8
9 # create a random number between 0 and 10 create a random number between zero

and ten
10 number = random.randint(0,10) number is assigned random dot randint

eight ten
11
12 # if the number is already in the list if the number is already in the list
13 if number in unique_random_numbers: if number in unique random numbers:
14 # print that the number is in the list print that the number is in the list
15 print("The number " + str(number) +

" is already in the list")
print The number concatenated with
str number concatenated with is
already in the list

16 # otherwise otherwise
17 else: else
18 # add the new number to the list add the new number to the list
19 unique_random_numbers.append(number) unique random numbers dot append

number
20
21 # print the list print the list
22 print(unique_random_numbers) print unique random numbers
The number 1 is already in the list
The number 10 is already in the list
The number 7 is already in the list
The number 5 is already in the list
[1, 8, 10, 7, 3, 0, 5, 9]

As we can see in the printouts, the numbers 1, 10, 7, and 5 were generated twice, but they are in the list
only once!

4. How many numbers did you generate before finding 8 unique numbers?
To satisfy this last requirement, we need a counter. It will keep track of the amount of numbers we
generated, which coincides with the number of iterations of the while loop!

145

Part 5. The while loop and conditions

[2]: 1 import random import random
2
3 # initialize the number list initialize the number list
4 unique_random_numbers = [] unique random numbers is assigned an

empty list
5
6 # initialize the counter initialize the counter
7 counter = 0 counter is assigned zero
8
9 # as long as the length of the list is not 8 as long as the length of the list is

not eight
10 while len(unique_random_numbers) != 8: while len of unique random numbers is

not equal to eight
11
12 # create a random number between 0 and 10 create a random number between zero

and ten
13 number = random.randint(0,10) number is assigned random dot randint

zero ten
14
15 # increase the counter by 1 increase the counter by one
16 counter += 1 counter is incremented by one
17
18 # if the number is already in the list if the number is already in the list
19 if number in unique_random_numbers: if number in unique random numbers:
20 # print that the number is in the list print that the number is in the list
21 print("The number " + str(number) +

" is already in the list")
print The number concatenated with
str number concatenated with is
already in the list

22 # otherwise otherwise
23 else: else
24 # add the new number to the list add the new number to the list
25 unique_random_numbers.append(number) unique random numbers dot append

number
26
27 # print the final list and the total amount

of generated numbers
print the final list and the total
amount of generated numbers

28 print(unique_random_numbers) print unique random numbers
29 print("The total amount of generated numbers

is: + str(counter))
print The total amount of generated
numbers is: concatenated with str
counter

The number 1 is already in the list
The number 10 is already in the list
The number 7 is already in the list
The number 5 is already in the list
[1, 8, 10, 7, 3, 0, 5, 9]
The total amount of generated numbers is: 12

We initialize the counter (line 7), increment it by one unit at each iteration (line 16), and print it out
(line 29).

146

Chapter 18. Animals, unique numbers, and sum

3. Sum up the multiples of 3
• Write code that continues asking a player to enter an integer until they enter a negative number. At
the end, print the sum of all entered integers that are multiples of 3.

The task has two requests: (1) keep asking a player to enter an integer until they enter a negative
number, and (2) at the end, print the sum of all entered integers that are multiples of 3. Let’s see how
to implement them!

1. Keep asking a player to enter an integer until they enter a negative number. The requirement is
straightforward: we use the input function to ask the player to enter numbers and a while loop to
keep asking. Which condition do we use in the header? Let’s have a look:

1 # ask the user for an integer ask the user for an integer
2 number = int(input("Enter an integer: ")) number is assigned int input Enter

an integer:
3
4 # as long as the number is positive as long as the number positive
5 while number >= 0: while number is greater than or

equal to zero
6 # ask for the next new integer ask for the next new integer
7 number = int(input("Enter another

integer: "))
number is assigned int input Enter
another integer:

Enter an integer: 3
Enter another integer: 6
Enter another integer: 4
Enter another integer: -1

The loop must continue as long as the player enters a negative number, that is, as long as number is
positive—greater than or equal to zero (line 5). As we learned in the previous chapter, the variable in
the condition has to be in three places: before the loop, in the loop header, and within the loop. Thus,
first we initialize the variable numberwith the integer entered by the player (line 2). Then, we condition
the variable in the while loop header (as we saw in line 5). And finally, to avoid an infinite loop, we ask
the player to enter a new number (line 7). Let’s implement the second requirement!

2. At the end, print the sum of all entered integers that are multiples of 3.
We need to check whether the numbers the user enters are multiples of 3, and, if they are, then sum
them up. Ideas on how to do it? Let’s start drafting the code:

147

Part 5. The while loop and conditions

1 # list containing the numbers to sum list containing the numbers to sum
2 numbers = [] numbers is assigned empty list
3
4 # ask the user for an integer ask the user for an integer
5 number = int(input("Enter an integer: ")) number is assigned int input Enter

an integer:
6
7 # as long as the number is positive as long as the number positive
8 while numbers >= 0: while number is greater than or

equal to zero
9
10 # if the number is multiple of 3 if the number is multiple of 3
11 if numbers % 3 == 0: if number modulus three is equal to

zero:
12 # add the number to the list add the number to the list
13 numbers.append(number) numbers dot append number
14
15 # ask for the next integer ask for the next integer
16 number = int(input("Enter another

integer: "))
number is assigned int input Enter
another integer:

17
21 # print the list of multiples of 3 print the list of multiples of 3
19 print(numbers) print numbers
20
21 # initialize the sum to 0 initialize the sum to zero
22 sum_of_numbers = 0 sum of numbers is assigned zero
23
24 # calculate the sum of numbers calculate the sum of numbers
25 for i in range(len(numbers)): for i in range len of numbers
26 sum_of_numbers = numbers[i] +

sum_of_numbers
sum of numbers is assigned numbers
in position i plus sum of numbers

27
28 # print the final sum print the final sum
29 print("The sum of the multiples of 3 is: +

str(sum_of_numbers))
print The sum of the multiples of
3 is: concatenated with str sum of
numbers

Enter an integer: 3
Enter another integer: 6
Enter another integer: 4
Enter another integer: -1
[3, 6]
The sum of the entered multiples of 3 is: 9

We can create an empty list called numbers that will contain the multiples of 3 (line 2). Then, within
the while loop, we add an if construct, in which we check whether the current number is a multiple
of 3 by using the modulo operator. If the condition is met, then we append the number to the list
numbers (line 13). At the end of the while loop (i.e., after the player has entered a negative number),
we sum up the numbers in the list, similarly to what we did in the exercise 5 of Chapter 14. First, we
create the variable sum_of_numbers, which will contain the final sum, and we initialize it to zero (line
22). Then, we use a for loop through the list numbers—containing themultiples of 3—to add the current
list element (numbers[i]) to the amount in sum_of_numbers (line 26). Finally, we print out the sum at

148

Chapter 18. Animals, unique numbers, and sum

line 29.

We solved the task, but can we improve our code? Let’s read the following requirement again: at the
end, print the sum of all entered integers that are multiples of 3. We are not asked to save the multiples
of 3 in a list—just to print out their sum. Do we need to create the list? Not really! So, how do we do
it? Let’s see this alternative solution:

[3]: 1 # initialize the sum to 0 initialize the sum to zero
2 sum_of_numbers = 0 sum of numbers is assigned zero
3
4 # ask the user for an integer ask the user for an integer
5 number = int(input("Enter an integer: ")) number is assigned int input Enter

an integer:
6
7 # as long as the number is positive as long as the number positive
8 while numbers >= 0: while number is greater than or

equal to zero
9
10 # if the number is a multiple of 3 if the number is a multiple of 3
11 if numbers % 3 == 0: if number modulus three is equal to

zero:
12 # add the number to the sum add the number to the sum
13 sum_of_numbers += number sum of numbers is incremented by

number
14
15 # ask for the next integer ask for the next integer
16 number = int(input("Enter another

integer: "))
number is assigned int input Enter
another integer:

17
18 # print the final sum print the final sum
19 print("The sum of the multiples of 3 is: +

str(sum_of_numbers))
print The sum of the multiples of
3 is: concatenated with str sum of
numbers

Enter an integer: 3
Enter another integer: 6
Enter another integer: 4
Enter another integer: -1
The sum of the entered multiples of 3 is: 9

We remove all the code related to the list numbers. We initialize sum_of_numbers to zero before the
while loop (line 2). Then, within the loop, we sum the current multiple of 3 (i.e., number) to the total
sum (line 13)—without saving it to a list. With this trick, we improve our code in two ways: (1) we do
not create a list, which occupies space in computer memory, and (2) we avoid a for loop that occupies
memory and time during the execution. The code thus becomes shorter, faster, and more elegant.

149

Part 5. The while loop and conditions

Match the sentence halves

1. An if/elif construct checks whether a con-
dition is true or false

a. for a determined number of times

2. A for loop is the repetition of a group
of commands

b. as long as a condition holds

3. A while loop is the repetition of a group
of commands

c. and executes code accordingly

Recap
• In a while loop header, we can write various kinds of conditions. The correct condition is the one
that keeps the loop going (not stopping!)

• When solving a task, it is common to decompose and analyze the requirements, solve the subtasks,
and merge the code to the solution (divide and conquer!)

• When coding, we often write a first draft, and then we improve the draft to make the code faster and
robust (writing code is like writing an email!)

Don’t confuse the while loop with if/elif!
When learning coding constructs, it can be easy to confuse the while loop with with the
if/else construct. If this happened to you while learning the past two chapters, read the
following paragraph. If you feel like you mastered the difference between while loops and
if/else constructs, feel free to skip the coming lines!
Consider the following example, similar to the first one in this chapter.
• Given the following list:

[1]: 1 fruits = ["mango", "orange", "banana"] fruits is assigned mango, orange,
banana

• Create a game where the computer randomly picks a fruit and the player has to guess the fruit
picked by the computer. Make sure that the player keeps playing until they guess the fruit
picked by the computer.

We have to solve 3 tasks: (1) the computer randomly picks a fruit, (2) the player has to guess the
fruit picked by the computer, and (3) we must make sure that the player keeps playing until they
guess the fruit picked by the computer. The first two requirements are straightforward, and we
will solve them quickly. We will focus on the third requirement.

150

Chapter 18. Animals, unique numbers, and sum

1. The computer randomly picks a fruit.

[2]: 1 import random import random
2
3 # computer pick computer pick
4 computer_pick = random.choice(fruits) computer pick is assigned random

dot choice fruits
5

We import the package random (line 1) and we use the method .choice() to make the computer
randomly pick an element of the list fruits.

2. The player the has to guess the fruit picked by the computer.

6 # player guess player guess
7 player_guess = input("Guess the fruit!

Choices: mango, orange, banana: ")
player guess is assigned input
Guess the fruit! Choices: mango,
orange, banana:

8

We use the built-in function input() to ask the player to enter a fruit (line 7).

3. Make sure that the player keeps playing until they guess the animal picked by the computer. The
first instinct would be to do the following:

9 # check the player guess check the player guess
10 if player_guess == computer_pick: if player guess is equal to

computer pick
11 print("That's right! The fruit is " +

computer_pick)
print That's right! The fruit is
concatenated with computer pick

10 else: else
11 print("Nope! Try again!") print Nope! Try again!

We check if player_guess is equal to computer_pick with an if/else construct, and we print
messages accordingly (lines 9–11). If the player did not guess the right fruit, we have to ask them
to guess again (like at line 7). Then, we have to check once more if the guess is correct (like at
lines 9–11), and so on. This is not feasible because we cannot know how many times it is going to
take the player to guess the correct fruit! In addition, we would repeat code, which means that
we can use a loop! So, here is the correct solution with the while loop:

9 while player_guess != computer_pick: while player guess is not equal to
computer pick:

10 # as long as the player's guess and the computer's pick are different
not right

as long as the player's guess and
the computer's pick are different

11 player_guess = input("Nope! Try again!
Guess the fruit! Choices: mango, orange,
banana: ")

player guess is assigned input
Nope! Try again! Guess the fruit!
Choices: mango, orange, banana:

As long as the player_guess is not equal to computer_pick (line 9), we ask the player to make a
guess (line 11), which we check in the condition of the while loop header (line 9), and the loop
keeps going as long as the condition holds.

151

Part 5. The while loop and conditions

Let’s code!

1. Guess the number! Create a game where the computer picks a number between 0 and 10, and the
player has to guess it. If the player guesses a number that is too high or too low, then the computer
tells the player. The game stops when the player guesses the number. At the end, tell the player
how many attempts it took to guess the number.

2. 12 even random numbers. Create a list of 12 even random numbers between 0 and 30. How many
odd numbers did you exclude?

3. Spelling game for kids. Create a game that helps kids learn spelling. The game has the following
requirements: (1) Create a list of words to be spelled. Among these words, choose a word randomly,
and tell the kid the chosen word (e.g., “Spell the word ‘hello’”). (2) The kid has to enter one letter at
the time. If the kid enters the correct letter, then provide positive reinforcement (e.g., “Well done!”),
and ask for the next letter. If the kid does not enter the correct letter, then tell them that the letter
is not correct, and ask for a letter again.

Challenge 1: Instead of creating only 1 list of words, create 3 lists, one per topic, so that the kid can
choose a topic before spelling a word.

Challenge 2: The game continues as long as the kid wants to spell a new word.

152

19. And, or, not, not in
Combining and reversing conditions

Up to now, we have considered only one condition in if/else constructs and while loops. What
if we need more than one condition? And what if we need to reverse a condition? In this chapter,
we will learn how to combine or reverse conditions using the logical operators and, or, not, and the
membership operator not in. As usual, try to solve the tasks yourself before looking at the solutions,
which you can also find in Notebook 19. Let’s start!

1. and
• Given the following list of integers:

[1]: 1 numbers = [1, 5, 7, 2, 8, 19] numbers is assigned one, five, seven,
two, eight, nineteen

• Print out the numbers that are between 5 and 10:

[2]: 1 # for each position in the list for each position in the list
2 for i in range(len(numbers)): for i in range len of numbers
3
4 # if the current number is between 5

and 10
if the current number is between
five and ten

5 if numbers[i] >= 5 and numbers[i] <= 10: if numbers in position i greater
than or equal to five and numbers in
position i less than or equal to ten

6
7 # print the current number print the current number
8 print("The number " + str(numbers[i])

+ " is between 5 and 10")
print The number concatenated with
str numbers in position i concatenated
with is between five and ten

The number 5 is between 5 and 10
The number 7 is between 5 and 10
The number 8 is between 5 and 10

We use a for loop to browse all the elements in the list (line 2). Then, we check if each number is
between 5 and 10 (line 5). To be in between two numbers, a number must be greater than or equal
to the smaller number and smaller than or equal to the greater number. The two conditions (greater
than or equal to and smaller than or equal to) must be valid at the same time. To check if two (or more)
conditions are valid simultaneously, we join them using the logical operator and.

We use the logical operator and when we want to check
whether all conditions are valid

Let’s look at the syntax. For each condition both before and after the logical operator and, we have to
write: (1) a variable (e.g., numbers[i]), (2) a comparison operator (e.g., >=), and (3) a term of comparison
(e.g., 5). At the end of the code, we print the numbers that satisfy both conditions (line 7).

153

Part 5. The while loop and conditions

2. or
• Given the following string:

[3]: 1 message = "Have a nice day!!!" message is assigned Have a nice day!!!

• And given all punctuation:

[4]: 1 punctuation = "\"\/'()[]{}<>.,;:?!^@∼#$%&*_-" punctuation is assigned
\"\/'()[]{}<>.,;:?!^@∼#$%&*_-

The string punctuation contains all punctuation on a Latin alphabet keyboard. Compare the sym-
bols with the ones on your keyboard and note whether there are additional ones! If so, add them to
punctuation in Jupyter Notebook 19! The symbols at the beginning of the string punctuation "\"\/
might be a bit confusing, so let’s disentangle them. The first quote "\"\/ is the symbol that introduces
the string. The following two symbols "\"\/ are special characters—you might remember the special
character "\n", which is used to go to a new line (Chapter 12). The backslash \ tells Python that the
following quote " is an actual backslash character and not the symbol that we use to close a string.
The last backslash "\"\/ is an actual backslash because the following forward slash / is not a special
character.
• Print and count the number of characters that are punctuation or vowels:

[5]: 1 # string of vowels string of vowels
2 vowels = "aeiou" vowels is assigned aeiou
3
4 # initialize counter initialize counter
5 counter = 0 counter is assigned zero
6
7 # for each position in the message for each position in the message
8 for i in range(len(message)): for i in range len of message
9
10 # if the current element is punctuation

or vowel
if the current element is
punctuation or vowel

11 if message[i] in punctuation or
message[i] in vowels:

if message in position i in
punctuation or message in position
i in vowels

12
13 # print a message print a message
14 print(message [i] + " is a vowel

or a punctuation")
print message in position i
concatenated with is a vowel or a
punctuation

15
16 # increase the counter increase the counter
17 counter += 1 counter is increased by one
18
19 # print the final amount print the final amount
20 print("The total amount of punctuation or

vowels is " + counter)
print(The total amount of punctuation
or vowels is concatenated with
counter

a is a vowel or a punctuation
e is a vowel or a punctuation
a is a vowel or a punctuation

154

Chapter 19. And, or, not, not in

i is a vowel or a punctuation
e is a vowel or a punctuation
a is a vowel or a punctuation
! is a vowel or a punctuation
! is a vowel or a punctuation
! is a vowel or a punctuation
The total amount of punctuation or vowels is 9

Similarly to what we did for punctuation, we create a string containing vowels (line 2). We also create
a counter, which we will use to calculate the number of characters that are punctuation or vowels, and
we initialize it to zero (line 5). Then, we get to the core of the solution! We use a for loop to browse
all the characters in the string message (line 8). For loops for strings work exactly the same way as
for loops for lists. In the loop body, we check if each character is a punctuation or a vowel by using
the membership operator in (line 11), which we learned in Chapter 3. More specifically, we check if
message[i] is in the string punctuation or in the string vowels. Note that as for the for loop, the
membership operator in works for strings the same way as it works for lists. Since only one of the
conditions can be valid (a character cannot be both a punctuation and a vowel at the same time!), we
merge the two conditions—that is, message[i] in punctuation or message[i] in vowels—using the
logical operator or.

We use the logical operator or when we want to check
whether at least one condition is valid

The syntax is the same as for the logical operator and: we need to write (1) a variable, (2) a comparison
operator, and (3) a term of comparison both before and after or. To conclude the loop body, we print a
message for the characters that satisfy at least one condition (line 14), and we increment the counter
by one unit (line 17). At the end of the loop, we print the final number of characters that are vowels or
punctuation (line 20).

3. not
• Given the following list of integers:

[7]: 1 numbers = [4, 6, 7, 9] numbers is assigned four, six, seven,
nine

• Print out the numbers that are not divisible by 2:

[8]: 1 # for each position in the list for each position in the list
2 for i in range(len(numbers)): for i in range len of numbers
3
4 # if the current number is not even # if the current number is not even
5 if not numbers[i] % 2 == 0: if not numbers in position i modulo

two equals zero
6
7 # print the current number print the current number
8 print(numbers[i]) print numbers in position i
7
9

155

Part 5. The while loop and conditions

For each position in the list (line 2), we have to check whether the number is not even. For a moment,
let’s think about the opposite: what condition would we write if we had to check whether the number
is even? if numbers[i] % 2 == 0. To negate a condition, we just add the logical operator not before
the condition—more specifically, before the variable at the beginning of the condition (line 5).

We use the logical operator not when we want to check
whether the opposite of a condition is valid

If the condition is satisfied, then we print the number (line 8).

Is this the only way to solve this task? Maybe the first idea you had in mind was more similar to this
one:

[8]: 1 # for each position in the list for each position in the list
2 for i in range(len(numbers)): for i in range len of numbers
3
4 # if the current number is odd # if the current number is odd
5 if numbers[i] % 2 != 0: if numbers in position i modulo two is

not equal to zero:
6
7 # print the current number print the current number
8 print(numbers[i]) print numbers in position i
7
9

For each position in the list (line 2), we check whether the remainder of numbers[i] divided by 2 is not
equal to 0 (line 5). If so, then we print the number (line 8).
What solution is better? It’s a matter of preference! If you are undecided, pick the solution that looks
like the simplest to you, both in term of syntax and reasoning. In coding, there are often various ways
of solving a task. Keeping the solution simple favors readability and understanding.

Last note about conditions: when combining conditions, we need to follow a precise order, similarly
to what we do with arithmetic operators (see Solving arithmetic expressions in Chapter 13). The order
from highest to lowest precedence is: not, and, or (easy-to-memorize acronym: NAO). When you are
uncertain, write the condition to prioritize within round brackets ().

4. not in
• Generate 5 random numbers between 0 and 10. If the random numbers are not already in the fol-
lowing list, then add them:

[9]: 1 numbers = [1, 4, 7] numbers is assigned one, four, seven

[10]: 1 import random import random
2

156

Chapter 19. And, or, not, not in

3 # for five times for five times
4 for _ in range(5): for underscore in range five
5
6 # generate a random number between 0 and 10 generate a random number between zero

and ten
7 number = random.randint(0, 10) number is assigned random dot randint

zero ten
8 # print the number as a check print the number as a check
9 print(number) print number
10
11 # if the new number is not in numbers if the new number is not in numbers
12 if number not in numbers: if number not in numbers:
13 # add the number to numbers add the number to numbers
14 numbers.append(number) numbers dot append number
15
16 # print the final list print the final list
17 print(numbers) print numbers
6
6
10
7
9
[1, 4, 7, 6, 10, 9]

We start by importing the package random (line 1). Then, we create a for loop that runs for five times
(line 4)—note the underscore instead of the variable i becausewewill not need any index in the for loop
body (seeWhat if I don’t use the index in a for loop? in Chapter 15). Then, we create a random variable
(line 7) and print it as a check (line 9). To evaluate if the variable number is not already in the list
numbers (line 12), we use the membership operator not in, which is the opposite of the membership
operator in (Chapter 3). If the condition is met, then we append the randomly generated number to
the list of numbers (line 14). Finally, we print the completed list (line 17).

Insert into the right column

You now know all membership, comparison, and logical operators. Insert each symbol in the right
column:

<, or, in, !=, not, >, ==, not in, >=, and, <=

Membership operators Comparison operators Logical operators

157

Part 5. The while loop and conditions

Recap
• The logical operators are and, or, and not.
• When combining conditions, the order of execution is not, and, or (NAO).
• The membership operators are in and not in.

What is GitHub?
You might have heard about GitHub, or you might have browsed some pages on its site
(github.com). Surely, you have checked the solutions of the exercises of this book on GitHub!
But what is GitHub exactly? In a simplified manner, we can think of GitHub as a cloud service
or a huge server for code. Instead of using Dropbox, Google Drive, etc., coders prefer to syn-
chronize their code with GitHub. GitHub has its own language: folders are called repositories,
sending files to the server is called a push, and getting files from the server is called a pull. Each
repository contains files—they can store any files, either containing code or not—and elements
that are specific to coding, such as issues, where anybody can indicate bugs to be solved or sug-
gest new features. Why do coders use GitHub instead of other cloud services? Because GitHub
supports version control, that is, it keeps track of code changes over time. Every timewe push a
code update, we can compare it with previous version(s), and if the new code does not work, then
we can go back to an earlier version. Furthermore, GitHub is useful for collaborative projects:
programmers can work on different sections of a task individually and then integrate the code
without accidentally influencing each other’s code, all while keeping track of each programmer’s
contribution. These tasks are actually executed byGit, which is a distributed version control sys-
tem, that is, a software that manages changes to code. Other platforms that employ Git include
GitLab (gitlab.com) and Bitbucket (bitbucket.org), with GitHub being the most popular.

Let’s code!

1. The Zen of Python. Solve the following 4 steps, and you will discover the Zen of Python!
a. Given the following list of strings:

strings_to_slice = ["reisk", "kpan", "xfsimpleg", "bosolutionb", "pobetterx",
"weorb", "ofworsep", "aathanx", "hoau", "hfcomplexx", "poors", "opcomplicatedx",
"rwsolutions", "re?o"]
Create a new list called sliced_strings containing the same strings but without the first two
letters and the last letter (example: "gfhio" will become "hi").

b. Given the following list of strings:
strings_to_invert= ["emos", "elpoep", "kniht", "taht", "xelpmoc", "ro",
"detacilpmoc", "si", "retteb", "naht", "elpmis"]
Create an new list called inverted_strings containing the same strings but inverted (example:
"ih" will become "hi").

c. Given the following list of strings:
strings_to_pick = ["this", "sounds", "simple", "but", "is", "it?", "some",
"things", "look", "better", "than", "when", "complex", "but", "complex",

158

Chapter 19. And, or, not, not in

"again", "is", "worse", "better", "than", "complicated", "I'm", "confused"]
Find the words that are present both in sliced_strings and inverted_strings, change them
to uppercase, and add them to a new list. What sentence do you get?

d. Where does the obtained sentence come from? Run the following Python command: import
this.

2. Playing with numbers. Given the following list of numbers:

numbers = [7, 9, 15, 19, 24, 30, 37, 45, 50]

a. Print the numbers that are divisible by 3 and 5.
b. Print the numbers that are divisible by 3 or 5.
c. Print the numbers that are divisible by 3 but not 5. Perform this task in two different ways,
once using not, and once without using not.

3. Upgrading Rock, paper, scissors. In Chapter 16, we implemented rock, paper, scissors. In that ver-
sion, there were many repetitions. In coding, we usually do not want repetitions because they can
invite errors. How can we make the code less repetitive? By combining conditions! What condi-
tions can you combine in this game? Rewrite rock, paper, scissors in a more succinct way using
logical operators. After you have optimized the code, make it a real game by adding a while loop
that allows players to play as long as they want. Hint: Instead of thinking in terms of computer and
player choices, think in terms of outcomes, i.e., tie and the player’s (or the computer’s) win.

159

20. Behind the scenes of comparisons and con-
ditions
Booleans

It’s finally time to unveil what’s behind comparisons and conditions! What does Python “see” when we
write a comparison or a condition? Let’s find it out with the code below! Follow along with Notebook
20.

1. Single comparison or condition
• Given the following assignment:

[1]: 1 number = 5 number is assigned five

• What is the outcome of the following comparison operation?

[2]: 1 print(number > 3) print number is greater than three
True

The printed value is True. In fact, it is true that 5 is greater than 3! But what is True? A string? A
variable? Let’s figure it out in the next cell!
• Assign the above operation to a variable and print it. What type is it?

[3]: 1 result = number > 3 result is assigned number is greater than three
2 print(result) print result
3 type(result) type result
True
bool

We assign the result of the comparison operation number > 3 to the variable result (line 1). Then, we
print result (line 2) and we get True—like in cell 2. Finally, we print the outcome of type(result) to
determine the type of the variable result (line 3)—wementioned the built-in function type() in Chap-
ter 13. We say that the variable result is of type Boolean and its value is True. Booleans are a data type
exactly like strings, lists, integers, etc.

Let’s continue our exploration of what lies behind comparisons and conditions. Let’s look at this ex-
ample:
• What is the outcome of the following comparison operation?

[4]: 1 print(number < 3) print number is less than three
False

This time, the print is False. Obviously, 3 is not smaller than 5. Let’s continue, similarly to what we did
in cell 3.

160

Chapter 20. Behind the scenes of comparisons and conditions

• Assign the above operation to a variable and print it. What type is it?

[5]: 1 result = number < 3 result is assigned number is less than three
2 print(result) print result
3 type(result) type result
False
bool

We assign the output of the comparison operation number < 3 to the variable result (line 1), and we
print it (line 2), obtaining False, like in cell 4. Then, we print the type of the variable result (line 3) and
we get `bool', like we did for True.

Booleans are a variable type. They can have only two values: True or False

When we write conditions in an if/else construct or in a while loop header, Python “reads” the result
behind the conditions: that is, True or False. For example, when we write:

1 if numbers > 3: if number is greater than three
2 print("Correct!") print Correct

Python “sees”:

1 if True: if True
2 print("Correct!") print Correct

2. Combining comparisons or conditions
Let’s take the operation a step further and see what happens when we combine conditions.
• What is the outcome of the following comparison operations?

[6]: 1 number = 3 number is assigned 3
2 print(number > 1) print number is greater than one
3 print(number < 5) print number is less than five
4 print(number > 1 and number < 5) print number is greater than one and number is

less than five
True
True
True

We assign 3 to the variable number (line 1). Then, we print the outcome of three comparison operations.
For all operations—number > 1 (line 2), number < 5 (line 3), and number > 1 and number < 5 (line 4)—
the outcome is True. Let’s focus on line 4, where we combine two comparison operations with the
logical operator and. For these combined operations, Python “sees”:

4 print(True and True): print True and True
True

As we can see, the output of two True conditions combined by the logical operator and is True.

161

Part 5. The while loop and conditions

• What happens if we change the first condition to be false?

[7]: 1 number = 3 number is assigned 3
2 print(number > 4) print number is greater than four
3 print(number < 5) print number is less than five
4 print(number > 4 and number < 5) print number is greater than four and number is

less than five
False
True
False

The first condition is now False because 3 is not larger than 4 (line 2), whereas the second condition
is still True (line 3). The combination of the False condition from line 2 with the True condition from
line 3 returns False (line 4). In this last case, Python “sees”:

4 print(False and True): print False and True
False

Thus, the output of one True and one False conditions merged by the logical operator and is False.
Let’s continue analyzing the remaining combinations!
• What happens if we change the second condition to be false?

[8]: 1 number = 3 number is assigned 3
2 print(number > 1) print number is greater than one
3 print(number < 2) print number is less than two
4 print(number > 1 and number < 2) print number is greater than one and number is

less than two
True
False
False

The first condition is True (line 2)—like it was in cell 6—whereas the second condition is now False be-
cause 3 is not smaller than 2 (line 3). Similarly to cell 7, the combination of one True condition and one
False condition (line 4) returns False. In this case, Python “reads”:

4 print(True and False): print True and False
False

We can deduce that the output of one False and one True conditions merged by the logical operator
and is always False, regardless of the order of the conditions.

• Finally, what happens if we change both conditions to be false?

[9]: 1 number = 3 number is assigned 3
2 print(number > 4) print number is greater than four
3 print(number < 2) print number is less than two
4 print(number > 4 and number < 2) print number is greater than four and number is

less than two
False
False
False

Both conditions are False because 4 is neither larger than 4 (line 2) nor smaller than 2 (line 3). The
combination of the two conditions is False too (line 4). This is what Python “sees”:

162

Chapter 20. Behind the scenes of comparisons and conditions

4 print(False and False): print False and False
False

We can summarize the outcome of combinations of conditions using the logical operators and in a
truth table:

First condition Second condition First condition and Second condition

(1) True True True

(2) False True False

(3) True False False

(4) False False False

Row 1 corresponds to the example we saw in cell 6, where both conditions were True, and their com-
bination was also True. We can pronounce the first row as True and True gives True. Row 2, where
True and False gives False, corresponds to the example in cell 7. Row 3—False and True gives False—
corresponds to the example at cell 8. Finally, row 4 corresponds to the example in cell 9, where False
and False gives False. When you write code that combines conditions using and, you can use this table
as a reference to determine the outcome!

What happens when we combine conditions using the logical operator or? Here is the truth table for
or:

First condition Second condition First condition or Second condition

(1) True True True

(2) False True True

(3) True False True

(4) False False False

For the logical operator or, True and True gives True (row 1), False and True gives True (row 2), True and
False gives True (row 3), and False and False gives False (row 4).

What are the similarities and differences between the and and or truth tables? The columns for the
first and second conditions are the same for both tables, but the results change. For and, the result
is True only when both conditions are True, and it is False in all other cases. Conversely, for or, the
result is False only when both conditions are False, and it is True for all other cases. A side note: In
other textbooks or on the Internet, you might find that the columns of the first and second condition
are inverted. But the results remain the same!

Let’s conclude with the truth table for the logical operator not. Here it is:

Condition not condition

(1) True False

(2) False True

not inverts conditions. When we write not in front of True condition, it becomes False (row 1). Con-
versely, when we write not in front of a False condition, it becomes True (row 2).

163

Part 5. The while loop and conditions

Create your examples

In a notebook, write an example for each row of the or truth table and of the not truth table,
similar to what we did above for and.

3. Where else do we use Booleans?
Booleans are often used as flags in while loops. What does this mean?
• Look at this modified version of the example Do you want more candies? from Chapter 17:

[13]: 1 # initialize variable initialize variable
2 number_of_candies = 0 number_of_candies is assigned zero
3
4 # use a Boolean as a flag use a Boolean as a flag
5 flag = True flag is assigned True
6
7 # print the initial number of candies print the initial number of candies
8 print("You have " + str(number_of_candies) +

" candies")
print You have concatenated with str
number of candies concatenated with
candies

9
10 # as long as the flag is True as long as the flag is True
11 while flag == True: while flag equals True
12
13 # ask if they want a candy ask if they want a candy
14 answer = input("Do you want a candy?

(yes/no)")
answer is assigned input Do you want a
candy? (yes/no)

15
16 # if the answer is yes if the answer is yes
17 if answer == "yes": if answer equals yes
18
19 # add a candy add a candy
20 number_of_candies += 1 number_of_candies is incremented by one
21
22 # print the total number of candies print the total number of candies
23 print("You have " +

str(number_of_candies) + " candies")
print You have concatenated with str
number of candies concatenated with
candies

24
25 # if the answer is not yes if the answer is not yes
26 else: else
27
28 # print the final number of candies print the final number of candies
29 print("You have a total of " +

str(number_of_candies) + " candies")
print You have a total of concatenated
with str number of candies concatenated
with candies

30
31 # stop the loop by assigning False to

the flag
stop the loop by assigning False to the
flag

32 flag = False flag is assigned False

164

Chapter 20. Behind the scenes of comparisons and conditions

Find the differences

Can you identify some differences between the while loop in the example above and the one in
Chapter 17?

As you might remember from Chapter 17, for a while loop, we have to create a variable that is: (1)
initialized before the header, (2) included in a condition within the header, and (3) allowed to change in
the body to avoid infinite iterations. In the example in Chapter 17, the variable following these three
rules was answer. In this example, it is flag. We initialize flag as a Boolean of value True (line 5),
then we check if its value is equal to True in the while loop header (line 11), and finally we allow it to
change to False (line 32) to avoid infinite loops. flag is a common variable name for a Boolean variable
that behaves this way—counter is another typical variable name for a variable that keeps count of the
number of iterations. We can think of a flag variable like a traffic light that makes the loop continue or
stop. As long as the traffic light is green (i.e., flag is True), the loop will continue. When the traffic light
changes to red (i.e., flag is assigned False), the loop ends. Using a Boolean flag in the while loop is
somewhat like providing the answer to a condition instead of asking the header to test the condition.

When using a flag, the construction of a while loop might change. What about the variable answer in
this new code version? We initialize answer at the beginning of the while loop body, where we use the
built-in function input to ask a question to the player (line 14). Then we create an if/else condition to
decide what to do based on the value of answer (lines 17–32). If the answer is "yes", then we increment
the counter number_of_candies by 1 (line 20) and we print a feedback to the player (line 23). Otherwise
(i.e., else), we print a final feedback to the player (line 29) and we allow the flag to change (line 32).

These are several ways towrite a while loop. Which one shouldwe use? All have pros and cons. Choose
the one that appears simpler and easier to understand!

Recap
• When we write a comparison or a condition, the outcome is a Boolean variable.
• Booleans are a Python type, like lists, strings, integers, etc.
• There are only 2 Boolean values: True and False.
• Combinations of conditions using and, or, not follow the truth tables.
• Booleans can be used as flags in while loops (they act like traffic lights).

165

Part 5. The while loop and conditions

What is the difference between GeeksforGeeks and Stack Overflow?
There are several online resources for coding. What are the differences among them? How
do we choose which to use? In a simple manner, we can categorize websites into two groups:
tutorial websites and question and answer (Q&A) websites. In tutorial websites, each page con-
tains clear and extensive explanations about a specific topic. Common website tutorials are
GeeksforGeeks (www.geeksforgeeks.org), W3Schools (www.w3schools.com), or learnpython.org
(www.learnpython.org). The last two also offer the possibility of typing code directly in their
webpages so that you can immediately test what you learn. On the other hand, in Q&A web-
site, each page starts with a question by a user, followed by answers by other users. Usually,
questions are about solving bugs or looking for better code implementations. Examples include
Stack Overflow (www.stackoverflow.com) or Reddit (www.reddit.com). Q&A websites are ex-
tremely useful for coders. We all encounter issues that we don’t know how to solve. The great
news is that there is always somebody else who had the same issue before us andwhose solutions
we can find online!

Let’s code!

1. Do you want less exercises? Rewrite the while loop from the exercise Do you want less exercises? in
Chapter 17 using a Boolean as a flag in the header.

2. Flipping coins! When flipping a coin, we have two outcomes: heads and tails. In this exercise, we
will use True for heads and False for tails. Flip a coin 8 times and save the outcomes in a list whose
elements are of type Boolean. Howmany outcomes of heads and tails did you get? What is the ratio
between the number of heads and tails? Now flip a coin 1000 times. What is the new ratio? How
do the two ratios differ?

3. Comparator. A comparator is an algorithm that compares two numbers. It is similar to a calculator,
but instead of using arithmetic operators, it uses comparison operators. Create a comparator that
asks a user for two integers and prints all the possible comparisons between the two integers.
Example: If the user enters 3 and 5, then print out:
3 > 5 is False
3 < 5 is True
etc.
Make sure to: (1) use all the comparison operators; (2) use Booleans wherever possible; and (3) allow
the user to use the comparator for as long as they want. Which numbers did you use to test that
the comparator works correctly? When do you get True as an output?

166

www.geeksforgeeks.org
www.w3schools.com
https://www.learnpython.org/
www.stackoverflow.com
www.reddit.com

PART 6
FOCUS ON LISTS
AND FOR LOOPS
In this part, you will integrate your existing knowledge of lists and for loops
with new concepts and properties. At the end of part 6, you will have fully
mastered lists and loops!

21. Overview of lists
Operations, methods, and tricks

We are halfway through our journey of learning computational thinking and coding in Python! Thus,
this is a good moment to take a break and summarize everything we have learned about lists so far. In
this chapter, we will put the “grammar” rules for Python lists to use and highlight some new important
properties that are worth knowing. The chapter contains a lot of examples and details that will help you
improve your coding skills and understand other people’s code. Let’s start! Follow alongwith Notebook
21!

1. Arithmetic operations on list elements
As you might remember from Chapter 13, in Python there are 7 arithmetic operations: addition (+),
subtraction (-), multiplication (*), exponentiation (**), division (/), floor division (//), and modulo (%).
To perform arithmetic operations element-wise—that is, on list elements—we use for loops. Element-
wise operations can be done (1) between two or more lists of the same length or (2) between a list and
a number. In both cases, we use a for loop. Let’s see two examples for addition (but they can be valid
for any operation).
• Sum two lists element-wise:

[1]: 1 odd_numbers = [1, 3, 5] odd_numbers is assigned one, three, five
2 even_numbers = [2, 4, 6] even_numbers is assigned two, four, six
3 summed = [] summed is assigned empty list
4
5 for i in range(len(odd_numbers)): for i in range len odd numbers
6 summed.append(odd_numbers[i] +

even_numbers[i])
summed dot append odd_numbers in position i
plus even numbers in position i

7
8 print(summed) print summed
[3, 7, 11]

We start with odd_numbers and even_numbers, which are two lists containing 3 integers each (lines 1
and 2), and summed, which we initialize as an empty list (line 3). Then, we create a for loop that spans
the indices of one of the lists of numbers (line 5), and we append to summed the sum of the current
element of the list odd_numbers to the element in the same position in the list even_numbers (line 6).
Finally, we print the result for a check (line 8). Note that we save the result in a third list (summed) that we
initialized as empty before the loop (line 3) and that we fill in during the loop (line 6). If we do not want
to create a third list, we can overwrite one of the existing lists (e.g., odd_numbers[i]=odd_numbers[i]
+ even_numbers[i]).
• Sum a number to each element of a list:

[2]: 1 numbers = [1, 2, 3] odd_numbers is assigned one, two, three
2 number = 3 number is assigned three
3

169

Part 6. Focus on lists and for loops

4 for i in range(len(numbers)): for i in range len of numbers
5 numbers[i] += number numbers in position i incremented by number
6
7 print(numbers) print numbers
[4, 5, 6]

We create the list numbers containing three integers (line 1) and the variable number to which we as-
sign the number 3 (line 2). Then, we use a for loop to browse all the positions of the list elements
(line 4), and we increase each element by the value of number (line 5). Finally, we print the result (line
7). Similar to the previous example, we can either overwrite the existing list (as we do in this exam-
ple) or we can create an empty list before the for loop (e.g., summed = []) and fill it in the loop (e.g.,
summed.append(numbers[i] + number)).

2. “Arithmetic” operations between lists
The operations between lists are not actually arithmetic, but they use arithmetic symbols with a differ-
ent meaning. The two possible operations are concatenation, which uses the symbol +
(pronounced as concatenated with) and replication, which uses the symbol * (pronounced as repli-
cated by [number]). Let’s see the examples:
• Concatenate two lists:

[3]: 1 odd_numbers = [1, 3, 5] odd_numbers is assigned one, three, five
2 even_numbers = [2, 4, 6] even_numbers is assigned two, four, six
3 concatenated = odd_numbers + even_numbers concatenated is assigned odd numbers

concatenated with even numbers
4 print(concatenated) print concatenated
[1, 3, 5, 2, 4, 6]

We create two lists, one containing odd numbers (odd_numbers; line 1) and one containing even num-
bers (even_numbers; line 2). Then we concatenate them using the concatenation symbol + (line 3), and
we store the result in a new list called concatenate (line 3). If we don’t want to create a new variable, we
can overwrite one of the two existing lists: odd_numbers = odd_numbers + even_numbers. Finally, we
print the result (line 4), which is a list containing the elements of odd_numbers and even_numbers se-
quentially merged.
• Replicate a list 3 times:

[4]: 1 numbers = [1, 2, 3] odd_numbers is assigned one,two,three
2 number = 3 number is assigned three
3 replicated = numbers * number replicated is assigned numbers replicated

by number
4 print(replicated) print replicated
[1, 2, 3, 1, 2, 3, 1, 2, 3]

We create a list called numbers (line 1) and an integer variable called number (line 2). Then we replicate
the list numbers by the number of times indicated by the variable number using the symbol *, and we
save the result in a new list called replicated (line 3). Once more, instead of creating a new variable,
we can overwrite the existing list: numbers = numbers * number. Finally, we print replicated (line
4). As you can see in the printout, replicated contains the list numbers repeated three times. When is
replication useful? Let’s see the following example:

170

Chapter 21. Overview of lists

[5]: 1 short_list = [0] short_list is assigned zero
2 number = 50 number is assigned fifty
3 long_list = short_list * number long list is assigned short list

replicated by number
4 print(long_list) print long_list
[0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

We initialize short_list as a list containing one zero (line 1) and the variable short_list containing
the value 50 (line 2). Then, we replicate short_list by the number of times indicated by number (line
3), and we store the result in the variable long_list. Finally, we print long_list (line 4). As you can
see, we obtained a list containing 50 zeros. If we had created long_listmanually, it would have been
very tedious, and we could have easily miscounted the number of zeros in the list! Finally, note that in
alternative to create the variables short_list and number, we can directly write: long_list=[0]*50.

3. List assignment
When we assign a list to another list, we have to be very careful! Let’s see why.
• Given a list containing a few integers:

[6]: 1 given_list = [1, 2, 3] given list is assigned one, two, three
2 print(given_list) print given list
[1, 2, 3]

We create a list called given_list containing some integers (line 1) and we print it (line 2).
• Assign given_list to new_list:

[7]: 1 new_list = given_list new list is assigned given list
2 print(new_list) print new list
[1, 2, 3]

We assign given_list to another list called new_list (line 1), and we print it (line 2). As we can see,
new_list contains the same elements as given_list, as expected. Let’s go one step further!
• Change the first list element of new_list:

[8]: 1 new_list[0] = 40 new list in position zero is assigned
forty

2 print(new_list) print new list
[40, 2, 3]

We change the first element of new_list to 40 (line 1) and we print new_list after the change (line 2).
As expected, the first element is now 40. What about given_list?
• Print given_list:

[9]: 1 print(given_list) print given list
[40, 2, 3]

The first element of given_list is also 40! This happens because when we assign a list to another, we
give two names to the same list. It is a bit like when a person has two names: for example, my brother’s
name is Flavio Alberto. Whether I call him Flavio or Alberto, he is always the same person!
• How can we create an independent copy of a list?

171

Part 6. Focus on lists and for loops

[10]: 1 given_list = [1, 2, 3] given list is assigned one, two, three
2 new_list = given_list.copy() new list is assigned given list dot copy
3 new_list[0] = 40 new list in position zero is assigned

forty
4 print(given_list) print given list
5 print(new_list) print new list
[1, 2, 3]
[40, 2, 3]

As we did in cell 6, we create the list given_list that contains a few numbers (line 1). Then, instead
of assigning given_list to new_list (line we did in cell 7), we use themethod .copy(), which creates
an independent copy of a list (line 2). Continuing the brother analogy, it is like if we created a twin
that is similar but independent, so that when wemake changes, they happen only in the list we actually
change. At the end of the example, we change the first element of new_list to 40 like we did in cell 8
(line 3), and we print out both lists (lines 4 and 5).

4. Adding one element or a list to a list
We can add an element to a list in two ways: either at the end using the method .append() (see
Chapter 4), or at a specific position using the method .insert() (see Chapter 5). Let’s see two easy
examples to refresh how the methods work.
• Add one element at the end of a list:

[11]: 1 numbers = [1, 2, 3] numbers is assigned one, two, three
2 numbers.append(4) numbers dot append four
3 print(numbers) print numbers
[1, 2, 3, 4]

We create the list numbers containing three integers (line 1), andwe add the number 4 using themethod
.append() (line 2). Then, we print number to check the result (line 3).
• Insert the number 2 in position 1:

[12]: 1 numbers = [1, 3, 4] numbers is assigned one, three, four
2 numbers.insert(1, 2) numbers dot insert at position one, two
3 print(numbers) print numbers
[1, 2, 3, 4]

We initialize a list containing the integers 1, 3, and 4 (line 1). At position 1, we insert the number 2 using
the method .insert(), which takes as arguments first the position and then the value of the new
element (line 2). Finally, we print out numbers (line 3).

There are two ways to add a list at the end of another list: concatenation (see cell 3 and another
example below) and the method .extend().
• Concatenate two lists:

[13]: 1 first_list = [1, 2, 3] first_list is assigned one, two, three
2 second_list = [4, 5, 6] second_list is assigned four, five, six
3 third_list = first_list + second_list third list is assigned first list

concatenated with second list
4 print(third_list) print third list
[1, 2, 3, 4, 5, 6]

172

Chapter 21. Overview of lists

We create two lists, called first_list and second_list, to which we assign some integers (lines 1 and
2). Then, we concatenate the two lists to obtain third_list (line 3). Finally, we print third_list (line 4).
• Add one list at the end of another list:

[14]: 1 first_list = [1, 2, 3] first_list is assigned one, two, three
2 second_list = [4, 5, 6] second_list is assigned four, five, six
3 first_list.extend(second_list) first list dot extend second list
4 print(first_list) print first list
[1, 2, 3, 4, 5, 6]

We use the same two lists as in cell 13 (lines 1 and 2), but we use the method .extend() to merge them.
The syntax for .extend() is (1) the list to which we want to add another list (2) dot, and (3) the added
list in between round brackets (line 3). Then, we print the merged list (line 4).

What are the differences between concatenation and .extend()? When using concatenation, we can
either create a new list (e.g., third_list = first_list + second_list), or we can add a list to an
existing one (e.g., first_list = first_list + second_list). Instead, when using .extend(), we can
only modify the list to which we apply the method (i.e., first_list in cell 14). In addition, when us-
ing .extend(), we can add a list only at the end of another list, whereas when using concatenation—
combined with slicing—we can add a list at the beginning (e.g. first_list = second_list +
first_list) or in the middle of another list (e.g. first_list = first_list[:2] +
second_list + first_list[2:]).

5. Removing elements from a list
We can remove list elements either based on their value, using .remove() (see Chapter 4) or on their
position, using .pop() (see Chapter 5). We can also remove all elements using .clear(). Let’s see some
example to refresh these methods and learn some new tricks.
• From the following list, remove all the elements "ciao":

[15]: 1 greetings = ["ciao","ciao","hello"] greetings is assigned ciao, ciao, hello
2 greetings.remove("ciao") greetings dot remove ciao
3 print(greetings) print greetings
['ciao', 'hello']

We start with a list containing three strings, where the element "ciao" is present twice (line 1). Then,
we use the method .remove(), to eliminate "ciao" (line 2). Finally, we print greetings (line 3). Only
one "ciao" (the first one) was removed! In lists containing multiple similar elements, the method
.remove() deletes only the first element. How do we remove both "ciao" from greetings? The first
instinctive idea might be to use a for loop that goes through all element positions and removes the un-
wanted elements based on a certain condition (in this case, remove the element if it is equal to "ciao").
However, this solution does not work for the reasons explained in the In more depth section at the end
of this chapter. What we need is a while loop:

[16]: 1 greetings = ["ciao", "ciao", "hello"] greetings is assigned ciao, ciao, hello
2 while "ciao" in greetings: while ciao in greetings
3 greetings.remove("ciao") greetings dot remove ciao
4 print(greetings) print greetings
['hello']

173

Part 6. Focus on lists and for loops

Westartwith the list greetings (line 1), thenwe create a while loopwhere as long as the string "ciao" is
in greetings (line 2), we remove it using the method .remove() (line 3). Finally, we print the result (line
4).
Let’s continue to see how to remove an element based on its position and all elements in a list. In the
following two cells (17 and 18), we write the list at line 1, and we print the result at line 3. At line 2, we
use a different list method. Let’s have a look at the examples:
• Remove the string "hello" based on its position:

[17]: 1 greetings = ["ciao", "ciao", "hello"] greetings is assigned ciao, ciao, hello
2 greetings.pop(2) greetings dot pop two
3 print(greetings) print greetings
['ciao', 'ciao']

To remove an element based on its position, we use the method .pop(), which we learn in Chapter 5
(line 2). As you might remember, the argument of the method is the position of the element to delete.
• Remove all elements in a list:

[18]: 1 greetings = ["ciao", "ciao", "hello"] greetings is assigned ciao, ciao, hello
2 greetings.clear() greetings dot clear
3 print(greetings) print greetings
[]

To remove all elements in a list, we use the method .clear() (line 2). The list becomes an empty list.

Another way to remove elements in a list is by using list comprehension. We will see it in the next
chapter.

6. Sorting a list
Sorting lists is a very common task in coding. For example, we might want to sort names alphabetically
(see the exercise “A further step!” below) or a list of prices increasingly or decreasingly. In the three
examples below (cells 19, 20, and 21), we will create a list of integers called numbers (line 1), use a new
method to execute the task (line 2), and print the outcome (line 3).
• Sort the following list of integers:

[19]: 1 numbers = [5, 7, 6] numbers is assigned five, seven, six
2 numbers.sort() numbers dot sort
3 print(numbers) print numbers
[5, 6, 7]

To sort the list number, we use the method .sort() (line 2). As you can see from the printout, the
numbers are sorted in an increasing (or ascending) way, that is from the smallest to the greatest.
What if we want to sort the numbers in a decreasing (or descending) way? The answer is in the next
example:
• Sort the following list of integers in a descending way:

[20]: 1 numbers = [5, 7, 6] numbers is assigned five, seven, six
2 numbers.sort(reverse = True) numbers dot sort reverse is assigned True
3 print(numbers) print numbers
[7, 6, 5]

174

Chapter 21. Overview of lists

We use .sort() as we did in the example above, but we add the argument reverse, to which we assign
the Boolean True—you will learn more about method (or function) parameters starting in Chapter 28.
As you can see from the printout, the list is now sorted in a descending way: that is, from the greatest
to the smallest number.
• Reverse the following list of integers:

[21]: 1 numbers = [5, 7, 6] numbers is assigned five, seven, six
2 numbers.reverse() numbers dot reverse
3 print(numbers) print numbers
[6, 7, 5]

We use the method .reverse() to invert the order of the elements in the list. Thus, the last will
become the first, the second to last element will become the second, etc. Note that .reverse() sorts
the element based on their position, whereas.sort() (see example above) sorts the elements based on
their value.

7. Searching elements
Let’s conclude our long journey through list methods by learning how to search and count elements.
• Create a list and search for a specific element:

[22]: 1 letters = ["a", "g", "c", "g"] letters is assigned a, g, c, g
2 position = letters.index("g") position is assigned letters dot index g
3 print(position) print position
1

We create the list letters containing strings (line 1), andwe look for the position of the element "g" by
using the method .index(), which we learned in Chapter 5. Then, we print the results (line 3). As you
can see, .index() just gives us the position of the first element, which is 1—because element positions
start from 0 in Python.
• How do we find all positions?

[23]: 1 letters = ["a", "g", "c", "g"] letters is assigned a, g, c, g
2 positions = [] positions is assigned empty list
3 for i in range(len(letters)): for i in range len of letters
4 if letters[i] == "g": if letters in position i is equal to g
5 positions.append(i) positions dot append i
6 print(positions) print positions
[1, 3]

To find all positions of an element in a list, we can use the for loop! We create the list letters (line
1) and the empty list positions that will contain the indices corresponding to the letter "g" (line 2).
Then, we create a for loop that browses all the positions of the letters (line 3), and if the current letter
is equal to "g" (line 4), then we append its position (that is, "i") to the list positions (line 5). Finally,
we print the result (line 6).

175

Part 6. Focus on lists and for loops

• Count how many times an element is present in a list:

[24]: 1 letters = ["a", "g", "c", "g"] letters is assigned a, g, c, g
2 n = letters.count("g") n is assigned letters dot count g
3 print(n) print n
2

We start with the same list letters as in the example above (line 1), and we use themethod .count()
to count how many times the letter "g" is in the list (line 2). Finally, we print the result (line 3).

In this chapter, you have refreshed and learned how to execute all the typical operations that we per-
form on lists by using list methods and various operators. At this point, you can consider yourself an
expert in lists! Congratulations!

A further step!

Answer the following questions to discover more tricks about lists!

1. How can we efficiently remove the elements of a list in even positions?

2. What is the difference between the method .clear() and the keyword del?

3. What is the output of the method .sort() for a list of strings? E.g.: sweets = ["chocolate",
"icecream", "candy", "cake"]

4. What is the output of the method .sort() for a list of strings and numbers? E.g.:
sweets_numbers = ["chocolate", 43, "icecream", "candy", "cake", 18]

Complete the table

In this chapter, you learned or refreshed the 11 list methods. Fill out the table below with
method definitions and alternative ways to implement the same operation. Some alternatives are
presented in this chapter or in previous chapters, but for others, you will have to come up with
new ideas (feel free to consult the internet!)

176

Chapter 21. Overview of lists

Method What it does Alternative

.append()

.clear()

.copy()

.count()

.extend()

.index()

.insert()

.pop()

.remove()

.reverse()

.sort()

Recap
• We can perform element-wise operations in lists using the arithmetic operators +,-, *, /, **, //, %.
• We can perform “arithmetic” operations on lists using concatenation + and replication *.
• The 11 methods for lists are: .append(), .clear(), .copy(), .count(), .extend(), .index(),
.insert(), .pop(), .remove(), .reverse(), .sort().

• Of the 11 methods, the 3 methods that return a new value are .copy(), .count(), and .index(). The
other 8 methods modify the lists themselves.

177

Part 6. Focus on lists and for loops

Why not use a for loop to remove list elements?

A for loop is not the right way to remove elements in a list for at least two reasons. Let’s see
them in this example:

[1]: 1 greetings = ["ciao","ciao","hello"] greetings is assigned ciao,ciao,hello
2 for i in range(len(greetings)): for i in range len of greetings
3 print("---------------") print dashes
4 print("i == " + str(i)) print i equal to concatenated with str i
5 print("before the if:") print before the if:
6 print("greetings") print greetings
7 if greetings[i] == "ciao": if greetings in position i is equal to ciao
8 del greetings[i] del greetings in position i
9 print("after the if:") print after the if:
10 print("greetings") print greetings

(a) i == 0
(b) before the if:
(c) ['ciao', 'ciao', 'hello']
(d) after the if:
(e) ['ciao', 'hello']
(f) ---------------
(g) i == 1
(h) before the if:
(i) ['ciao', 'hello']
(j) after the if:
(k) ['ciao', 'hello']
(l) ---------------
(m) i == 2
(n) before the if:
(o) ['ciao', 'hello']

IndexError Traceback (most recent call last)
Cell In[16], line 6

5 print("before the if:")
6 print("greetings")

> 7 if greetings[i] == "ciao":
8 del greetings[i]
9 print("after the if:")

IndexError: list index out of range

We start with the list greetings that we created in Paragraph 5 (line 1). Then, we create a for loop
that browses all the positions in the list (line 2). In the for loop, we use an if condition to check
whether the current element is equal to the element to remove (line 7). If that is the case, then
we remove the current element using the keyword del, which we learned in Chapter 6 (line
8). In between the main commands, we print some messages to check the list changes at each
iteration: a graphic separator for each loop (line 3), the number of the current iteration (line 4),
and the list before deletion (lines 5 and 6) and after deletion (lines 9 and 10). Note that for clarity
of the following explanation, the printed lines are identified with letters, which are not actually
printed when running the code.

178

Chapter 21. Overview of lists

Let’s see what happens at each loop:
• First loop (i==0): before the if, the list is complete ["ciao", "ciao", "hello"] (line (c)). After
the if, greetings contains only ["ciao", "hello"] (line (e)). Three changes happened: (1) the
string "ciao" in position 0 (in orange in Figure 21.1) is removed; (2) the element indices restarted
from 0, changing the positions of the remaining elements (that is, the green "ciao" was in
position 1 before the if and moved to position 0 after the if, and the string "hello" was in
position 2 before the if and moved to position 1 after the if); and (3) the length of the list
changed from 3 to 2. The changes (2) and (3) will have consequences in the second and third
loops.

0 1

"hello"greetings = "ciao"

0 1 2

"ciao" "hello"greetings = "ciao"

i == 0(before the if) (after the if)

Figure 21.1

Figure 21.1. Change of list content, element positions, and list length after deletion of a list element.

• Second loop (i==1): before the if, the list is the same as it was at the end of the previous loop,
that is ["ciao", "hello"] (line (i)). And after the if, the list remains the same (k) because the
current element greetings[1], that is, "hello", does not satisfy the if condition. Why wasn’t
the string "ciao" in position 0 (green in Figure 21.1) deleted? The change of list index in the
previous loop moved "ciao" from position 1 to position 0, so we skip its deletion because we
are currently at the second iteration of the for loop!

• Third loop (i==2): before the if, the list is still ["ciao", "hello"] (line (0)). Than, we get
an index error at line 6 of the code, where the if conditions is. This is because i is now
2, but greetings[2] does not exist because we shortened the list when we deleted the first
"ciao" in the first loop. Thus, the error “out of range” is due to a failed attempt to slice the
list greetings in position 2, which does not exist! Note that the index i is currently 2 because
in the header of the for loop (line 2), we stated that i goes from 0 to the length of the list
(len(greetings)), which is the initial list length and does not adapt to length changes during
the loop!

In conclusion, by using a for loop to delete an element in a list, we can cause two errors: (1) we
skip list elements that we should delete because of the index shift, and (2) we get out of range
errors related to the index because we shorten the list by removing some elements.

Let’s code!

1. Selling veggies at the market. At your stand at the market, you started the day with the following
items:

Item N. of items Price per item

carrots 10 0.7

zucchini 12 0.5

potatoes 11 0.2

a. Create three lists: one for the items, one for the number of items, and one for their prices.

179

Part 6. Focus on lists and for loops

b. Today you got 3 customers. You want to keep track of how much money each customer spent
and how much produce they bought. Create and initialize a list called total, where each el-
ement corresponds to the amount spent by a customer (how long is the list? what are its
content?).

c. The first customer bought 2 carrots, 4 zucchini, and 3 potatoes. Create a list where each
element is the number of bought items (i.e., the list will contain 3 elements, corresponding to
number of carrots, zucchini, and potatoes, respectively).

d. Howmuch did the customer pay? Save the amount in the first position of the list totalwithout
creating an intermediate variable (hint: if you don’t know how to do it, first solve the task by
using an intermediate variable, and then find a way to remove it).

e. The second customer got 3 carrots and 3 potatoes. Create the corresponding item list. How
much did the customer pay? Save the amount in the second position of the list total.

f. The third customer wanted 6 carrots, 4 zucchini, and 1 potatoes. Create the corresponding
item list.

g. Did you have enough items to sell? Compute it.
h. Given that the third customer is going to buy whatever is left (e.g., if they wanted 6 carrots,
but only 2 were left, they bought 2), how do you modify their item list? Use if/elif.

i. How much did the third customer pay? Save the amount in the third position of the list total.
j. What was the average amount a customer spent at your stand?
k. What was your most popular item today? And the one you sold the least of? Compute them!

2. New year’s countdown! Given the following list: numbers = [0,1,2,3,4,5,6,7,8,9], reverse it us-
ing:
a. A list method.
b. Slicing.
c. A for loop.

What are the differences among the three methods?

3. App store. You are running a market study on app store data. These are the prices of the apps in
the store:

app_prices = [
7.99, 7.99, 2.99, 4.99, 7.99, 9.99, 9.99, 1.99, 1.99, 1.99,
4.99, 5.99, 3.99, 5.99, 0.99, 3.99, 3.99, 2.99, 1.99, 4.99,
8.99, 1.99, 3.99, 1.99, 1.99, 8.99, 6.99, 0.99, 6.99, 8.99,
3.99, 1.99, 0.99, 1.99, 0.99, 8.99, 1.99, 7.99, 3.99, 1.99,
8.99, 2.99, 4.99, 6.99, 4.99, 7.99, 8.99, 1.99, 2.99, 0.99,
7.99, 6.99, 7.99, 6.99, 2.99, 0.99, 0.99, 3.99, 2.99, 5.99,
0.99, 0.99, 7.99, 9.99, 5.99, 5.99, 1.99, 4.99, 5.99, 5.99,
6.99, 9.99, 5.99, 5.99, 1.99, 8.99, 9.99, 4.99, 9.99, 4.99,
0.99, 0.99, 2.99, 9.99, 3.99, 6.99, 8.99, 4.99, 1.99, 9.99,
0.99, 7.99, 1.99, 4.99, 4.99, 0.99, 3.99, 3.99, 1.99, 8.99,
3.99, 9.99, 5.99, 2.99, 2.99, 2.99, 5.99, 4.99, 3.99, 8.99,
5.99, 8.99, 8.99, 1.99, 9.99, 7.99, 6.99, 7.99, 4.99, 4.99,
7.99, 8.99, 7.99, 4.99, 5.99, 5.99, 0.99, 2.99, 8.99, 7.99,
1.99, 3.99, 3.99, 4.99, 9.99, 0.99, 1.99, 3.99, 9.99, 5.99,
4.99, 8.99, 6.99, 5.99, 6.99, 7.99, 1.99, 2.99, 9.99, 6.99,

180

Chapter 21. Overview of lists

9.99, 6.99, 8.99, 8.99, 2.99, 1.99, 9.99, 1.99, 7.99, 9.99,
4.99, 3.99, 9.99, 9.99, 6.99, 6.99, 7.99, 9.99, 2.99, 4.99]

a. How many apps are there?
b. Howmany apps cost 4.99? Calculate the result in two ways, once using a list method, and once
using a for loop.

c. What is the percentage of apps that cost 4.99?
d. What are the unique prices of the apps in the store? Find them and sort them in ascending
order.

e. How many apps are there for each price?
f. What is the most popular price for an app?

181

22. More about the for loop
Various ways of repeating commands on lists and beyond

In the past several chapters, we have learned how to use the for loop to browse lists (Chapters 8 and
9), search elements in lists (Chapter 10), change list elements (Chapter 11), and create lists by adding
one element at a time (Chapter 12). In addition, we have used the for loop to repeat commands in-
dependently of lists (see the In more depth section in Chapter 15). We will start this chapter by briefly
refreshing what we already know for sake of completeness. Then, we will discover new for loops that
we can use with lists, each of themwith their own characteristics and usage. Ready? Follow along with
Notebook 22!

1. Repeating commands
As the definition says,

A for loop is the repetition of a group of commands
for a determined number of times.

Let’s get a refresher on this concept with the following example:
• Print 3 random numbers between 1 and 10:

[1]: 1 import random import random
2
3 for _ in range(3): for underscore in range three
4 number = random.randint(1, 10) number is assigned random dot randint one ten
5 print(number) print number
6
4
3

We import the package random (line 1). Then, we implement the for loop (lines 3–5). We start with the
header, which contains: (1) the keyword for; (2) a variable for the index; (3) the membership operator
in; and (4) the built-in function range() (line 3). In this case, we use an underscore as a variable for
the index because we do not need the index in the loop body. We will review the characteristics of
the built-in function range() in the next paragraph. In the body of the for loop—which is always
indented with respect to the header—we create a random number between 1 and 10 using the function
.randint() from the package random (line 4), and we print the created number (line 5). The lines of
code in the loop body are repeated at each loop or iteration—in this case, three times, as indicated by
range(3).

2. For loop with lists
There are at least 4 ways to use the for loop with lists. You already know the first one: the for loop
through indices. In this section, we’ll learn the for loop through elements, through indices and ele-
ments, and list comprehension. Note that through indices, through elements, and through indices and

182

Chapter 22. More about the for loop

elements are not technical terms; however, we will use them to distinguish between the different types
of for loops. On the contrary, list comprehension is a technical term that you can find in any Python
book or coding website. In all the examples in this section, we will start with the following list, which
contains three strings:

[]: 1 last_names = ["garcia", "smith", "zhang"] last names is assigned garcia, smith,
zhang

Our task will be to change the first letter of each string to upper case. For that, we will apply the
method .title() to each list element, and we will overwrite the existing list whenever possible.

2.1 For loop through indices

You already know this for loop type. Let’s refresh our memories with the following example.
• Capitalize each string using a for loop through indices:

[2]: 1 last_names = ["garcia", "smith", "zhang"] last names is assigned garcia,
smith, zhang

2
3 for i in range(len(last_names)): for i in range len last names
4 print("The element in position " + str(i) +

" is: " + last_names[i])
print The element in position
concatenated with str of i
concatenated with is concatenated
with last names in position i

5 last_names[i] = last_names[i].title() last names in position i is
assigned last names in position
i dot title

6
7 print(last_names) print last names
The element in position 0 is: garcia
The element in position 1 is: smith
The element in position 2 is: zhang
['Garcia', 'Smith', 'Zhang']

We start with the list to modify (line 1). Then, we write the for loop header, which is composed of: (1)
the keyword for; (2) the index variable i; (3) the membership operator in; and (4) the built-in function
range (line 3). range() can have three parameters: start, which we omit when it is 0—like in this case;
stop, which usually coincides with the length of the list; and step, which we omit when it is 1—like in
this example. If we need to browse only the first half of the list, we canwrite range(0,len(last_names)
//2), or if we want to browse only every second position of the list, we can write range(0,
len(last_names),2). Also, let’s not forget that range() is a built-in function that can be used in-
dependently from a for loop to creates a range of integers: for example, list(range(0,4)) returns
the list [0,1,2,3] and list(range(0,4,2)) returns [0,2]. Why do we use list() combined with
range() when creating a list? Because the built-in function list() converts the output of range()—
which is its own data type—to a list. In the for loop body, we print the current value of the index
i and the corresponding element last_names[i], extracted by slicing (line 4). Then, we change the
current element last_names[i] by applying the string method .title() and reassigning the result to
last_names[i] itself (line 5). Finally, we print last_names to check the modified list (line 7).

183

Part 6. Focus on lists and for loops

2.2 For loop through elements

Let’s learn the first new way of implementing the for loop: the for loop through elements. Read the
example below and try to understand what it does:
• Capitalize each string using a for loop through elements:

[3]: 1 last_names = ["garcia", "smith", "zhang"] last names is assigned garcia,
smith, zhang

2 last_names_upper = [] last names upper is assigned
empty list

3
4 for last_name in last_names: for last_name in last names
5 print("The current element is " + last_name) print The current element is

concatenated with last name
6 last_names_upper.append(last_name.title()) last names upper dot append last

name dot title
7
8 print(last_names_upper) print last names upper
The current element is: garcia
The current element is: smith
The current element is: zhang
['Garcia', 'Smith', 'Zhang']

As in the previous example, we start with the list to modify (line 1). We continue with a new empty list
called last_names_upper that we will fill within the loop (line 2). Then, we create the for loop through
elements (lines 4–6). The syntax of the header is: (1) the keyword for; (2) a variable; (3) the membership
operator in; and (4) the list to browse. There are two differences with respect to the for loop through
indices. First, the variable in position (2) is not named index or i, but it is usually called with the
singular version of the list name—that is, if the list name is last_names, then the variable name is
last_name; if the list name is numbers, then the variable name is number; and so on. This is not a rule
but a useful convention among Python coders. The second difference is that we directly use the list
itself—that is, last_names—in position (4), instead of range(len(last_names)). Let’s now focus on
the loop body. First, we print the current element last_name (line 5). As you may notice, there is no
slicing (that is, no [i]). This is because in a for loop through elements, the variable in position (2)—
that is, last_name—automatically browses list elements one after the other, without knowing their
position. This is the opposite of what happens in a for loop through indices, where the variable in
position (2)—that is, i—browses list positions without knowing the corresponding elements; to get an
element, we must use slicing (e.g., last_name[i]). See a schematic of the difference between the two
loops in Figure 22.1.

210

"garcia" "smith" " zhang"

for loop through indices:

for loop through elements:

i =

last_name =

Figure 22.1

Figure 22.1. Schematics of a for loop through indices, where an index browses positions (orange),
and a for loop through elements, where a variable browses elements (yellow).

In the first iteration of the example, last_name is "garcia"; in the second iteration, it is "smith"; and in

184

Chapter 22. More about the for loop

the third iteration, it is "zhang". We conclude by applying themethod .title() to the string last_name
and appending the output to last_names_upper (line 6). Finally, we print last_names_upper
(line 8). Why don’t we directly modify last_names? Because in a for loop through elements,we cannot
modify the list we are browsing. We can only create a new list (that is, last_name_upper) to which we
append the modified elements (that is, last_name.title()). Let’s see what happens if we try to use a
for loop through elements to change elements:

[]: 1 for last_name in last_names: for last_name in last names
2 print("last_name before change: " + last_name) print last_name before change:

concatenated with last name
3 last_name = last_name.title() last names is assigned last

name dot title
4 print("last_name after change: " + last_name) print last_name after change:

concatenated with last name
5 print(last_names) print last names
last_name before change: garcia
last_name after change: Garcia
last_name before change: smith
last_name after change: Smith
last_name before change: zhang
last_name after change: Zhang
['garcia', 'smith', 'zhang']

In the first iteration, the variable last_name is "garcia" (line 2), we change it to "Garcia" (line 3), and
we print it (line 4). In the second iteration, last_name is "smith" (line 2), we change it to "Smith" (line
3), and we print it (line 4). The procedure follows in the third iteration for "zhang". However, when
we print the final list, all strings are still lower case (line 6). This is because the for loop through
elements does not keep track of element positions, so it is impossible to know where to overwrite a
list element. Finally, note that because there is no index, in a for loop through elements we cannot
keep track of the iteration number. If we need to know the iteration number, we can either use a
for loop through indices (Section 2.1) or a for loop through indices and elements (Section 2.3).

2.3 For loop through indices and elements

As the name implies, the for loop through indices and elements combines a for loop through indices
with a for loop through elements. Its implementation is straightforward. Try to understand the exam-
ple below before reading the subsequent explanation.
• Capitalize each string using a for loop through indices and elements:

[4]: 1 last_names = ["garcia", "smith", "zhang"] last names is assigned garcia, smith,
zhang

2
3 for i,last_name in enumerate(last_names): for i last_name in enumerate last_names
4 print("The element in position " +

str(i) + " is: " + last_name)
print The element in position
concatenated with str of i concatenated
with is concatenated with last name

5 last_names[i] = last_name.title() last names in position i is assigned last
name dot title

6

185

Part 6. Focus on lists and for loops

7 print(last_names) print last names
The element in position 0 is: garcia
The element in position 1 is: smith
The element in position 2 is: zhang
['Garcia', 'Smith', 'Zhang']

The for loop header consists of (1) the keyword for; (2) two variables separated by comma, called i and
last_name; (3) the membership operator in; and (4) the built-in function enumerate() with the list
last_names as an argument (line 3). The differences with the other for loop headers is again in the
components (2) and (4). The role of i and last_name is quite intuitive: i is the index that browses
all the positions in the list—like in a for loop through indices—and last_name is the variable that
browses all the elements in the list—like in a for loop through elements. The values to browse are
provided by enumerate(), as we can see from the following command (where we use list() to convert
enumerate()’s output data type into a list to be printed):

[]: print(list(enumerate(last_names))) print list enumerate last names
[(0, 'garcia'), (1, 'smith'), (2, 'zhang')]

The built-in function enumerate() provides a list of coupled indices and elements—that is, (0,
'garcia'), (1, 'smith'), and (2, 'zhang'). Each pair is between round brackets, which indicate
a tuple. Tuples are sequences of elements separated by comma and in between round brackets. We
will talk about tuple characteristics in Chapter 29. During the for loop in this example, the variable
i is assigned the first element of each pair—that is, 0, 1, and 2—and the variable last_name is assigned
the second element of each pair—that is, `garcia', `smith', and `zhang'. In the remaining part of
the example, first we print the position of each element i and its value last_name (line 4). Then, we
apply the method .title() to last_name, and we assign the result to the element in the same position
last_names[i] (line 5). Finally, we print the resulting list (line 6). The for loop through indices and
positions is useful when we need to extract both positions and elements of a whole list.

2.4 List comprehension

The fourth and last method to use a for loop in combination with lists is called list comprehension. It
might look complex at first glance, but we are going to untangle it right away!
• Capitalize each string using list comprehension containing a for loop through indices:

[5]: 1 last_names = ["garcia", "smith", "zhang"] last names is assigned garcia, smith,
zhang

2 last_names = [last_name.title() for
i in range(len(last_names))]

last names is assigned last name dot
title for i in range len last names

3 print(last_names) print last names
['Garcia', 'Smith', 'Zhang']

At line 2, we see: (1) the list name; (2) the assignment symbol; and (3) the list comprehension. In the list
comprehension, there are two components embedded within a pair of square brackets: (1) the value of
the list element that we are going to insert into the list—that is, last_name.title(); and (2) a for loop
header—that is, for i in range(len(last_names)). To better understand the syntax, let’s have a look
at Figure 22.2 comparing the for loop through indices from cell 2 and the list comprehension from the
cell above.

186

Chapter 22. More about the for loop

(a)
(b)

(c)

Figure 22.2

Figure 22.2. Comparison between a for loop through indices (lines a–b) and list comprehension (line c).

As you can see, the components of a list comprehension are the same as the components of a for loop,
just in a somewhat inverted position. In a for loop, first we write the header (line (a); orange rectangle),
and then we assign the modified element (yellow rectangle) to the element itself (line (b)). In a list
comprehension (line (c)), we write first the modified element (yellow rectangle) and then the for loop
header (orange rectangle). As you can see, list comprehension is a one-line command to create or
modify a list in a fast and compact way. We conclude the previous example by printing the new list
(line 3).

Can we write a list comprehension containing the header of a for loop through elements? Yes! Let’s
see how.
• Capitalize each string using list comprehension containing a for loop through elements:

[6]: 1 last_names = ["garcia", "smith", "zhang"] last names is assigned garcia, smith,
zhang

2 last_names = [last_name.title() for
last_name in last_names]

last names is assigned last name dot
title for last name in last names

3 print(last_names) print last names
['Garcia', 'Smith', 'Zhang']

Similarly to before, in the list comprehension we write first the new element of the list—that is,
last_name.title()—and then the header of a for loop through elements—that is, for last_name in
last_names (line 2). Let’s compare the for loop through elements from cell 3 with the list comprehen-
sion in the cell above. This time, there is a big difference between the for loop and the corresponding
list comprehension. Can you find it?

(a)

(b)

(c)

Figure 22.3

Figure 22.3. Comparison between for loop through elements (lines a–b) and list comprehension (line c).

The difference is that in a for loop through elements, we must create a new list—that is,
last_names_upper (line (b))—whereas in the list comprehension, we can overwrite the existing list—
that is, last_names (line (c)). The remaining syntax correspondence is the same. In a for loop, first
we write the header (line (a); orange rectangle), and then we modify an element (line (b); yellow rect-
angle). On the other hand, in a list comprehension (line (c)), we write first a modified element (yellow
rectangle) and then a for loop header (orange rectangle).

Another interesting characteristic of list comprehensions is that they can contain a conditional con-
struct. Let’s have a look at it!
• Keep and capitalize only the elements shorter than 6 characters:

187

Part 6. Focus on lists and for loops

[7]: 1 last_names = ["garcia", "smith", "zhang"] last names is assigned garcia, smith,
zhang

2 last_names = [last_name.title() for
last_name in last_names if
len(last_name) < 6]

last names is assigned last name dot
title for last name in last names if len
last name less than six

3 print(last_names) print last names
['Smith', 'Zhang']

Wemodify the code from cell 6 by adding an if condition at the end of the list comprehension (line 2).
Once more, let’s compare the construct of a list comprehension with the corresponding for loop.

(a)
(b)

(d)

(c)

Figure 22.4

Figure 22.4. Comparison between for loop through elements with condition (lines a, b, and c)
and list comprehension (line c).

Similarly to above, in the list comprehension (line (d)) first we write the new element, which is in the
last line of the for loop body (yellow rectangle; line (c) in the for loop). Then, we essentially restart
from the beginning of the loop and add commands consecutively. Thus, we first write the for loop
header (orange rectangle; line (a) in the loop) and then the if condition (black rectangle; line (c) in the
loop).

Finally, list comprehensions are extremely useful to delete list elements based on conditions. In cell
16 of the previous chapter, we used a while loop containing .remove() to delete several elements with
similar characteristics. Now, let’s learn how to delete elements in a much more compact way with list
comprehension.
• Delete elements that are composed of 5 characters:

[8]: 1 last_names = ["garcia", "smith", "zhang"] last names is assigned garcia, smith,
zhang

2 last_names = [last_name.title()
for last_name in last_names
if len(last_name) != 5]

last names is assigned last_name dot
title for last name in last names if len
last name not equal to five

3 print(last_names) print last names
['garcia']

When deleting elements with list comprehensions, we have to think about the elements that we are
going to keep, not about those that we are going to delete! This is because in a list comprehension, in
the first position we must write the element that we are going to insert into the list. Thus, if we want
to delete the elements whose length is 5, we need to reverse our thinking and write the condition that
allows us to keep the elements whose length is not equal to 5—that is if len(last_name) != 5 (line 2).

Complete the table

In this chapter, you have learned four different ways to write a for loop with lists. Which one

188

Chapter 22. More about the for loop

do we use and when? Highlight the differences among the for loops by completing the following
table with Yes or No.

Operation For loop
through
indices

For loop
through
elements

For loop
through
indices and
elements

List
comprehension

Get the current index

Change list elements

Delete list elements

Browse a full list

Browse only a part of
a list

3. Nested for loops
As the last topic for this chapter, let’s learn about nested for loops. A nested for loop is a for loop
within another for loop. How does it work? Read the example below, and try to understand what
happens.
• Given the following list of vowels:

[9]: 1 vowels = ["A", "E", "I", "O", "U"] vowels is assigned A, E, I, O, U

We start with a list of strings (line 1).
• For each vowel, print all the vowels on the right:

[10]: 1 for i in range(len(vowels)): for i in range len vowels
2 print("-- " + vowels[i]) print dash dash concatenated with vowels

in position i
3 for j in range(i + 1, len(vowels)): for j in range i plus one len vowels
4 print(vowels[i]) print vowels in position i
-- A
E
I
O
U
-- E
I
O
U
-- I
O
U
-- O
U
-- U

The nested for loop in this example is composed of an outer for loop, whose header is at line 1, and

189

Part 6. Focus on lists and for loops

an inner for loop, whose header is at line 3. In the outer for loop, the index i goes from 0 (omitted) to
the length of the list (line 1); thus, iwill browse all list positions. In the inner for loop, the index j goes
from i+1 to the length of the list (line 3); thus, j will browse all remaining list positions on the right of
the current position i. For each iteration of the outer loop, the inner loop has to be completed before
moving to the next iteration of the outer loop. Here is what happens at each loop:
• In the first outer loop, i is 0. We print "-- " + vowels[0], which is -- A (line 2). Then, we run the
whole inner for loop (lines 3–4). The index j will start at i+1—which is 0+1, and thus 1—and stop at
len(vowels)-1 for the plus one rule—that is, 4. Thus, j will go through the positions: [1, 2, 3, 4].
Therefore, in the inner for loop:
■ In the first iteration, j is 1. We print vowels[1], which is E.
■ In the second iteration, j is 2. Thus, we print vowels[2], which is I.
■ In the third iteration, j is 3 and we print vowels[3], which is O.
■ In the fourth iteration, j is 4 and we print vowels[4], which is U. The inner loop is completed and
we go back to the outer loop.

• In the second outer loop, i is 1, thus we print "-- " + vowels[1], which is --- E (line 2). Then, we
run the whole inner for loop again (lines 3–4). The start of the inner loop is i+1, which is 1+1—that
is, 2. Thus, j will go through the positions: [2, 3, 4]. Therefore, in the inner loop:
■ In the first loop, j is 2 and we print vowels[2], which is I.
■ In the second loop, j is 3 and we print vowels[3], which is O.
■ In the third loop, j is 3 and we print vowels[3], which is U. Once again, the inner loop is completed
and we go back to the outer loop.

• In the third outer loop, i is 2, so we print -- I. Then, we run the full inner loop as above, with
j browsing the positions 3 and 4, corresponding to the elements O and U, respectively.

• In the fourth outer loop, i is 3, so we print -- O. In the inner loop, j is assigned only the position 4,
corresponding to the elements U.

• In the last outer loop, i is 4, so we print -- U. There is no inner loop, because the start, i+1, is 5 and
coincides with the stop, which is 5 too.

Canwehavemore loops nestedwithin each other? Yes! As a convention, the index names are i, j, k, etc.
However, it is strongly recommended not to use too many for loops because they are computationally
very expensive, that is, they use a lot ofmemory and time. Wewill talk a bitmore about nested for loops
in the next chapter, where we will use them to browse lists of lists.

Recap
• When we use a for loop to repeat commands that do not need the index, we substitute the index
with an underscore.

• There are at least 4 types of for loops with lists: through indices (uses range()), through elements,
through indices and elements (uses enumerate()), and list comprehension.

• The built-in functions list() can be used to transform the output of range() and enumerate() into
a list.

• The built-in function enumerate() simultaneously extracts coupled indices and elements from a list.
• Tuples are sequences of elements separated by commas and in between round brackets.
• Nested for loops are for loops within for loops.

190

Chapter 22. More about the for loop

Basics of Markdown
As you know, in Jupyter Notebooks we can use cells to either write code or to write text. Writing
text is fundamental to embed our code into a story (or narrative) that explains theworkflow—that
is, howwe go from the problem formulation to its computational solution. In Jupyter Notebooks,
narrative is written in amarkup language calledMarkdown—markup languages are basically cod-
ing languages used to write text. Markdown is a simplified version of HTML, the coding language
used to program websites. The syntax of Markdown is very simple. The basic syntax rules are:
• Titles start with 1 hash symbol (#), subtitles with 2 hash symbols (##), sub-subtitles with 3 hash
symbols (###), etc. to a maximum of 6 hash symbols (######)).

Command Rendering

#Title Title
##Subtitle Subtitle

###Sub-subtitle Sub-subtitle

• To italicize text, we add 1 asterisk before and after a word or phrase; to bold text, we add 2
asterisks before and after a word or phrase.

Command Rendering

italic text italic text

bold text bold text

• To display text as code, we add a backtick ̀ before and after the command.

Command Rendering

 ̀print('command in markdown')̀ print('command in markdown')

Using Markdown, we can also create tables, add images, write ordered and unordered lists, etc.,
and integrateHTML code—in case you know it. Find all Markdown rules of syntax at the following
website: https://www.markdownguide.org/.

Let’s code!

1. All you can eat. These friends are at an all-you-can-eat restaurant:

friends = ["Geetha", "Huanxiang", "Megan", "Pedro"]

This is the finger food at the buffet: food = ["sushi", "nachos", "samosa", "cheese"]

Each person tries each type of finger food. Print out sentences like:
Geetha eats sushi

191

https://www.markdownguide.org/

Part 6. Focus on lists and for loops

Geetha eats nachos
...
for all the friends:
a. Using nested for loops through indices.
b. Using nested for loops through elements.

2. Playing kids. At kindergarten, kids are playing a game where they have to pair up with another kid
every time the teacher rings a bell. Eventually, every kid will pair up with all the other kids. Given
this list of kids:

kids = ["Paul", "Juhee", "Luca", "Maria"]

a. Print out all the possible combinations starting from the first kid, that is:
Paul plays with Juhee
Paul plays with Luca
Paul plays with Maria
Juhee plays with Luca
Juhee plays with Maria
Luca plays with Maria

b. Print all the possible combinations starting from the last kid (Maria).

3. Cities of the world. Given the following list cities:

cities = ["Bogota", "Riga", "Kinshasa", "Damascus", "New Delhi", "Auckland"]

a. Using a for loop through indices, create a new list containing city names with more than 7
characters and change them to upper case.

b. Using a for loop through elements, create a new list containing initials of cities with a number
of characters between 7 and 10.

c. Using a for loop through indices and elements, print out each element in lower case and its
position.

d. Using a list comprehension, create a new list containing the city names with less than 7 char-
acters and change them to lower case.

4. Learning to count. Print consecutive numbers from 10 to 29 using a nested for loop. The outer
for loop will print the first digit, whereas the inner for loop will print out the second digit, such as:
10
11
12
...
29

5. Triangle of numbers. Ask a user for a number. Then print a triangle of numbers where themaximum
row is the queried number. For example:

Input: 5
Output:
1
2 2
3 3 3
4 4 4 4
5 5 5 5 5

192

Chapter 22. More about the for loop

Hint: Consider using the parameter end in the print() function. Look for examples on how to use
end online.

193

23. Lists of lists
Slicing, nested for loops, and flattening

What is a list of lists?

A list of lists is a list whose elements are lists.

Lists of lists follow the same rules as lists; they just add an “extra layer” of indices. In this chapter, you
will learn how to slice lists of lists, use nested for loops to iterate through them, and explore ways to
flatten them. Follow along with Notebook 23. Let’s go!

1. Slicing
To slice a list of lists, we modify the slicing rules that we learned for lists in Chapter 6: by adding an
extra layer of indices. Let’s see how it works!
• Given the following list of lists:

[1]: 1 animals = [["dog", "cat"], ["cow",
"sheep", "horse", "chicken", "rabbit"],
["panda", "elephant", "giraffe",
"penguin"]]

animals is assigned dog, cat, cow, sheep,
horse, chicken, rabbit, panda, elephant,
giraffe, penguin

The list of lists animals is composed of three elements, which are the lists ["dog", "cat"], ["cow",
"sheep", "horse", "chicken", "rabbit"], and ["panda", "elephant", "giraffe", "penguin"]
(line 1). We call each of these lists sub-lists and their elements ("dog", "cat", "cow", etc.) sub-
element. Let’s learn how to slice sub-lists and sub-elements!
• Print the sub-lists containing pets, farm animals, and wild animals:

[2]: 1 print (animals[0]) print animals in position zero
2 print (animals[1]) print animals in position one
3 print (animals[2]) print animals in position two
['dog', 'cat']
['cow', 'sheep', 'horse', 'chicken', 'rabbit']
['panda', 'elephant', 'giraffe', 'penguin']

The sub-list containing pets—["dog", "cat"]—is in position 0; thus, we print animals[0]. Similarly,
the list containing farm animals—["cow", "sheep", "horse", "chicken", "rabbit"]—is in position
1, soweprint itwith the command print(animals[1]) (line 2). Finally, the list containingwild animals—
["panda", "elephant", "giraffe", "penguin"]—is in position 2, and thus the command is print(animals[2]) (line
3).

194

Chapter 23. Lists of lists

• Print the sub-elements “cat”, “rabbit”, and from “panda” to “giraffe”:

[3]: 1 print(animals[0][1]) print animals in position zero in position one
2 print(animals[1][-1]) print animals in position one in position minus one
3 print(animals[2][:3]) print animals in position two in position from the

beginning of the sub-list to three
cat
rabbit
['panda', 'elephant', 'giraffe']

To extract sub-elements, we use double slicing, where the first slicing—indicated by the first pair of
square brackets—extracts a sub-list and the second slicing—indicated by the second pair of square
brackets—extracts one or more sub-elements. To extract the sub-element "cat", first we extract the
sub-list of pets ["dog", "cat"] with the command animals[0]—like in cell 2, line 1. Then, from the
obtained sub-list, we slice "cat", which is in position 1. Thus, the complete command is animals[0][1]
(line 1). The string "rabbit" is the last element of the second sub-list containing farm animals. Thus,
to slice "rabbit", we write animals[1][-1], where the first slicing [1] extracts the sub-list of farm
animals—as we did at cell 2, line 2—and the second slicing [-1] extracts the sub-element "rabbit" (line
2). Finally, the sub-elements from "panda" to "giraffe" are in the sub-list of wild animals, which is
animals[2]—as we saw in cell 2, line 3. Within this sub-list, "panda" is in position 0, which we omit,
and "giraffe" is in position 2, to which we add 1 for the plus one rule. Thus, the final command is
print(animals[2][:3])

2. Nested for loops
To browse elements in a list of lists, we can use a nested for loop, where the outer loop browses the
list of lists and the inner loop browses the sub-lists. Try to understand what the following example
does and then read the explanation.
• Given the following list of lists:

[4]: 1 sports = [["skiing", "skating",
"curling"], ["canoeing", "cycling",
"swimming", "surfing"]]

sports is assigned skiing, skating, curling,
canoeing, cycling, swimming, surfing

We start with a list of lists containing two sub-lists. The first sub-list contains 3 strings, and the second
sub-list is composed of 4 strings (line 1).
• Print the sub-list elements one-by-one using a nested for loops through indices:

[5]: 1 for i in range(len(sports)): for i in range len sports
2 for j in range(len(sports[i])): for j in range len sports in position i
3 print(sports[i][j]) print sports in position i in position j
skiing
skating
curling
canoeing
cycling
swimming
surfing

In the outer for loop, the index i iterates through the positions 0—corresponding to the sub-list

195

Part 6. Focus on lists and for loops

["skiing", "skating", "curling"]—and 1—corresponding to the sub-list ["canoeing", "cycling",
"swimming", "surfing"]—(line 1). During each outer for loop, the inner for loop browses the current
sub-list from 0 (omitted) to the length of the sub-list, which is len(sports[i]) (line 2). At each iteration
of the inner for loop, we print the current element sports[i][j] (line 3). In practice:
• In the first outer loop, i is 0, and we execute a full inner loop to browse the first sub-list:

■ In the first inner loop, j is 0, so we print sports[0][0], which is "skiing".
■ In the second inner loop, j is 1, so we print sports[0][1], which is "skating".
■ In the third inner loop, j is 2, so we print sports[0][2], which is "curling". The inner for loop
is over, and we go to the second outer for loop.

• In the second outer loop, i is 1, andwe execute another full inner loop to browse the second sub-list:
■ In the first inner loop, j is 0, so we print sports[1][0], which is "canoeing".
■ In the second inner loop, j is 1, so we print sports[1][1], which is "cycling".
■ In the third inner loop, j is 2, so we print sports[1][2], which is "swimming".
■ In the fourth inner loop, j is 3, so we print sports[1][3], which is "surfing". The inner for loop
is over; also, the outer for loop is concluded because there are no more sub-lists.

Can we do the same with a for loop through elements? Yes! Think about how we might go about doing
this before looking into the following code.
• Print the sub-list elements one-by-one using a nested for loops through elements:

[6]: 1 for seasonal_sports in sports: for seasonal sports in sports:
2 for sport in seasonal_sports: for sport in seasonal sports
3 print(sport) print sport
skiing
skating
curling
canoeing
cycling
swimming
surfing

In the outer for loop, the variable seasonal_sports is assigned once the first sub-list and once the
second sub-list (line 1). In the inner for loop, the variable sport is assigned each element of the current
sub-list (line 2). For each iteration of the inner for loop, we print the current value of the variable
sport (line 3). In other words:
• In the first iteration of the outer for loop, seasonal_sports is ["skiing", "skating", "curling"]
and the inner for loop browses all the sub-elements of seasonal_sports in the following way:
■ In the first inner loop, sport is "skiing".
■ In the second inner loop, sport is "skating".
■ In the third inner loop, sport is "curling". The inner for loop ends, and we go back to the outer
for loop.

• In the second iteration of the outer for loop, seasonal_sports is ["canoeing", "cycling",
"swimming", "surfing"], and the inner for loop browses all the sub-elements of seasonal_sports
in the following way:
■ In the first inner loop, sport is "canoeing".
■ In the second inner loop, sport is "cycling".
■ In the third inner loop, sport is "swimming".
■ In the fourth inner loop, sport is "surfing". The inner for loop ends—as does the outer for loop

196

Chapter 23. Lists of lists

because we went thought all the sub-lists.

3. Flattening
Flattening means transforming a list of lists into a list. In other words, we take the sub-elements out
of their sub-lists and we put them in a list. There are many ways of performing this operation. We’ll
look at four different ways of doing so, but there can be more. For each method of flattening, try to
implement it yourself first, and then look into the example and explanation below.
• Given the following list of lists:

[7]: 1 instruments = [["contrabass", "cello",
"clarinet"], ["gong", "guitar"],
["tambourine", "trumpet", "trombone",
"triangle"]]

instruments is assigned contrabass,
cello, clarinet, gong, guitar,
tambourine, trumpet, trombone, triangle

• Flatten the list using a nested for loop through indices:

[8]: 1 flat_instruments = [] flat instruments is assigned empty list
2 for i in range(len(instruments)): for i in range len instruments
3 for j in range(len(instruments[i])): for j in range len instruments in

position i
4 flat_instruments.append

(instruments[i][j])
flat instruments dot append instruments
in position i in position j

5 print(flat_instruments) print flat instruments
['contrabass', 'cello', 'clarinet', 'gong', 'guitar', 'tambourine', 'trumpet',
'trombone', 'triangle']

We start with the empty list flat_instruments, which we are going to fill out during the subsequent
nested for loop (line 1). Then, for each position in the list of lists (line 2) and each position in each
sub-list (line 3), we append the current sub-element instruments[i][j] to flat_instruments (line 4).
Finally, we print the final list (line 5). As you can see, we flattened instruments, that is, we transform a
list of lists into a list whose elements are instruments’s sub-elements.
• Flatten the list using a nested for loop through elements:

[9]: 1 flat_instruments = [] flat instruments is assigned empty list
2 for group in instruments: for group in instruments
3 for instrument in group: for instrument in group
4 flat_instruments.append(instrument) flat instruments dot append instrument
5 print(flat_instruments) print flat instruments
['contrabass', 'cello', 'clarinet', 'gong', 'guitar', 'tambourine', 'trumpet',
'trombone', 'triangle']

Like the previous example, we start with the empty list flat_instruments (line 1). We browse the sub-
lists using the outer for loop (line 2), and within each sub-list, we browse the sub-elements using the
inner for loop (line 3). We append the current sub-element to flat_instruments (line 4). Finally, we
print the obtained flattened list (line 5).

197

Part 6. Focus on lists and for loops

• Flatten the list using a for loop and list concatenation:

[10]: 1 flat_instruments = [] flat instruments is assigned empty list
2 for group in instruments: for group in instruments
3 flat_instruments += group flat instruments increased by group
4 print(flat_instruments) print flat instruments
['contrabass', 'cello', 'clarinet', 'gong', 'guitar', 'tambourine', 'trumpet',
'trombone', 'triangle']

Once more, we start with the empty list flat_instruments (line 1). We write a for loop through ele-
ments to browse the sub-lists (line 2). We concatenate each sub-list to flat_instruments (line 3)—the
corresponding explicit command is flat_instruments = flat_instruments + group. Finally, we print
flat_instruments (line 4). The advantage of this method is that we use only one for loop. As you
might remember, for loops are computationally expensive—in terms of memory and time—and it is
good practice to minimize their use.
• Flatten the list using list comprehension:

[11]: 1 instruments = [instrument for group in
instruments for instrument in group]

instruments is assigned instrument for
group in instruments for instrument in
group

2 print(instruments) print instruments
['contrabass', 'cello', 'clarinet', 'gong', 'guitar', 'tambourine', 'trumpet',
'trombone', 'triangle']

As you might remember from the previous chapter, when using list comprehension, we do not need to
create a new list, but we can directly modify the current one—which is instruments in this example. In
the list comprehension, wewrite: (1) whatwewant to add to the list, which is instrument; (2) the header
of the outer for loop, that is, for group in instruments; and (3) the header of the inner for loop,
which is for instrument in group) (line 1). Note that within the list comprehension we can use a
nested for loop through elements because we do not need element positions. Finally, we print the
result (line 2).

Recap
• Lists of lists are lists with lists as elements.
• When slicing, we use two pairs of square brackets. In the first pair, we write the position of the
sub-list to slice; in the second pair, we write the position of the sub-element(s).

• We can use nested for loops to browse sub-elements.
• We can flatten a list of lists with a nested for loop, a for loop combined with concatenation, or a list
comprehension.

198

Chapter 23. Lists of lists

Lists of lists and images

You surely know that digital images are composed of pixels, that is, small colorful squares orga-
nized in a grid. We can think of the grid as a list of lists where each sub-element corresponds to
a pixel of a specific color. Let’s consider Figure 23.1.

Figure 23.1. Digital representation of a checkerboard. Left: Image rendering. Center: Numerical
values corresponding to the checkerboard colors. Right: List of lists encoding the checkerboard colors.

Each black square corresponds to a pixel containing 0, and each white square corresponds to
a pixel containing 1. Thus, the first (and the third) row of the checkerboard is represented by
the sub-list [0,1,0,1,0], and the second (and the fourth) row is represented by the sub-list
[1,0,1,0,1]. The last row of the checkerboard contains pixels colored with various shades of
grey. Each pixel corresponds to a decimal (float) number. Darker greys are closer to 0 (that is, to
black), whereas brighter greys are closer to 1 (that is, to white).
What about digital colored images? Each pixel is encoded by an RGB list composed of three
numbers, each representing a different color: the first number is for the red (R) component, the
second number for the green (G) component, and the third number for the blue (B) component.
Let’s have a look at Figure 23.2.

Figure 23.2. Digital representation of a colored image. Top (from left to right): RBG image, red components,
green components, and blue components. Bottom: list of lists behind the rendered colored image.

Each pixel is represented by a sub-list composed of three numbers. For example, the top left
pixel is red and is represented by the sub-list [255, 0, 0], where 255 represents the amount
of red, the first 0 is for the amount of green, and the second zero 0 is for the amount of blue.
Each row is a list of lists, enclosed in a list of lists of lists! Finally, note that for both greyscale and
colored images, the range of the numbers defining the color can go from 0 to 1 or from 0 to 255.

199

Part 6. Focus on lists and for loops

Let’s code!

1. Playing around. Given the following list of lists:
numbers = [[3,7,1],[7,6,5,4],[8,9,7,4,5]].
a. How long is each sub-list?
b. In the first sub-list, replace the third element with the sum of the previous two elements.
c. In the second sub-list, sort the elements in ascending order.
d. In the third sub-list, substitute the number 4 with the number 3.
e. How many number 7 are there in total? Save their positions in a list of lists (expected result:

[[0, 1], [1, 3], [2, 2]]).
2. Summing up. Given the following list of lists:

numbers = [[1,3,5],[7,2,8],[3,4,9]].
a. Create a list containing the sum of the numbers in each sub-list (expected result: [9, 17, 16]).
b. Sum all the elements of the list of list using (1) a for loop through indices and (2) a for loop
through values.

3. Matrix time! Give the following matrix:
matrix = [[4,1,3,9], [2,1,6,5], [4,0,3,8], [7,2,6,2]]
(If you are not familiar with matrices, think of a matrix as a table containing numbers.)
a. Print the matrix as a 4x4 table (expected result:

[4, 1, 3, 9]
[2, 1, 6, 5]
[4, 0, 3, 8]
[7, 2, 6, 2]).

b. Multiply all the elements on the main diagonal and print the result (expected result: 24). Note:
The main diagonal goes from top-left to bottom-right. In this example, the main diagonal
contains: 4,1,3,2.

c. Sum the matrix values vertically (expected result: [17, 4, 18, 24]).

200

PART 7
DICTIONARIES AND
OVERVIEW OF STRINGS
In the first three chapters of this part, you will learn a new data type called
dictionary. In the last chapter, you will integrate your knowledge of strings
with new methods and tricks. Let’s start!

24. Inventory at the English bookstore
Dictionaries

You already know several data types: strings, lists, integers, floats, and Booleans. In this chapter, you
will learn a new data type called dictionary. What are dictionaries and what can we do with them? Let’s
start from this example. Read the code below aloud and follow along with Notebook 24.

• You are the owner of an English bookstore, and these are some classics you sell:

[]: 1 classics = {"Austen":"Pride and Prejudice",
"Shelley":"Frankenstein",
"Joyce":"Ulyssessss"}

classics is assigned Austen:Pride
and Prejudice, Shelley:Frankenstein,
Joyce:Ulyssessss

2 print(classics) print classics

• You are conducting an inventory, and you need to print authors and titles:

[]: 1 # as dict_items as dict_items
2 print(classics.items()) print classics dot items
3 # as a list of tuples as a list of tuples
4 print(list(classics.items())) print list classics dot items

• Then, you need to print authors and titles separately:

[]: 1 # authors as dict_items authors as dict_items
2 print(classics.keys()) print classics dot keys
3 # authors as a list authors as a list
4 print(list(classics.keys())) print list classics dot keys
5
6 # titles as dict_items titles as dict_items
7 print(classics.values()) print classics dot values
8 # titles as a list titles as a list
9 print(list(classics.values())) print list classics dot values

• You notice that the title of the last book is wrong, so you correct it:

[]: 1 print("Wrong title: " + classics["Joyce"]) print Wrong title: concatenated
with classics at key Joyce

2 classics["Joyce"] = "Ulysses" classics at key Joyce is assigned
Ulysses

3 print("Corrected title: " + classics["Joyce"]) print Corrected title: concatenated
with classics at key Joyce

203

Part 7. Dictionaries and overview of strings

• Then you add two new books that have just arrived: Gulliver’s Travels by Swift and Jane Eyre by
Bronte:

[]: 1 # adding the first book (syntax 1) adding the first book (syntax 1)
2 classics["Swift"] = "Gulliver's travels" classics at key Swift is assigned

Gulliver's travels
3 print(classics) print classics
4
5 # adding the second book (syntax 2) adding the second book (syntax 2)
6 classics.update({"Bronte":"Jane Eyre"}) classics dot update Bronte:Jane Eyre
7 print(classics) print classics

• Finally, you remove the books by Austen and Joyce because you have just sold them:

[]: 1 # deleting the first book (syntax 1) deleting the first book (syntax 1)
2 del classics["Austen"] del classics at key Austen
3 print(classics) print classics
4
5 # deleting the second book (syntax 2) deleting the second book (syntax 2)
6 classics.pop("Joyce") classics dot pop Joyce
7 print(classics) print classics

To continue discovering dictionaries, solve the following exercise!

True or false?

1. A dictionary is a Python type enclosed in squared brackets T F
2. In a dictionary, items are in pairs and are separated by commas T F
3. Items are composed of a key and a value separated by an exclamation mark T F
4. .items(), .keys(), .values(), .update(), and .pop() are dictionary elements T F
5. To add an item to a dictionary, we can use either the keyword del or the method

.pop()
T F

Computational thinking and syntax
Let’s discover dictionaries step-by-step. Let’s start by running the first cell.

[1]: 1 classics = {"Austen":"Pride and Prejudice",
"Shelley":"Frankenstein",
"Joyce":"Ulyssessss"}

classics is assigned Austen:Pride
and Prejudice, Shelley:Frankenstein,
Joyce:Ulyssessss

2 print(classics) print classics
{'Austen': 'Pride and Prejudice', 'Shelley': 'Frankenstein', 'Joyce': 'Ulyssessss'}

At line 1, there is a variable called classics to which we assign a sequence of items separated by
comma and enclosed within curly brackets {}. Each item (e.g., "Austen":"Pride and Prejudice") is
composed of a key ("Austen") and a value ("Pride and Prejudice"), which are separated by a colon : .
Thus, we can define a dictionary as follows:

204

Chapter 24. Inventory at the English bookstore

A dictionary is a sequence of key:value pairs separated by commas ,
and in between curly brackets {}

At line 2, we print the dictionary.

Let’s continue by running the second cell.

[2]: 1 # as dict_items as dict_items
2 print(classics.items()) print classics dot items
3 # as a list of tuples as a list of tuples
4 print(list(classics.items())) print list classics dot items
dict_items([('Austen', 'Pride and Prejudice'), ('Shelley', 'Frankenstein'),
('Joyce', 'Ulyssessss')])
[('Austen', 'Pride and Prejudice'), ('Shelley', 'Frankenstein'), ('Joyce', 'Ulyssessss')]

To print the dictionary items, we use the method .items(), which extracts items from a dictionary
(line 2). As you can see in the printout, .items() returns a specific type called dict_items, which
contains a list whose elements are the items. We can ignore dict_items and print the contained list
by enclosing the method output into the built-in function list() (line 4).

What if we want to extract all keys and all values separately? Let’s look at the following cell.

[3]: 1 # authors as dict_items authors as dict_items
2 print(classics.keys()) print classics dot keys
3 # authors as a list authors as a list
4 print(list(classics.keys())) print list classics dot keys
5
6 # titles as dict_items titles as dict_items
7 print(classics.values()) print classics dot values
8 # titles as a list titles as a list
9 print(list(classics.values())) print list classics dot values
dict_keys(['Austen', 'Shelley', 'Joyce'])
['Austen', 'Shelley', 'Joyce']
dict_values(['Pride and Prejudice', 'Frankenstein', 'Ulyssessss'])
['Pride and Prejudice', 'Frankenstein', 'Ulyssessss']

To extract dictionary keys, we use the method .keys() (line 2). Like .items(), .keys() returns its
datatype, called dict_keys (line 4). To extract the list of keys from the dict_keys, we can use the built-
in function list(). Finally, to extract dictionary values, we use the method .values() (line 7), which
returns the list of values embedded in another datatype called dict_values. Once again, to extract the
list of values, we use list() (line 9).

How do we extract a specific value and how do we change it? Let’s run cell 4.

[4]: 1 print("Wrong title: " + classics["Joyce"]) print Wrong title: concatenated
with classics at key Joyce

2 classics["Joyce"] = "Ulysses" classics at key Joyce is assigned
Ulysses

3 print("Corrected title: " + classics["Joyce"]) print Corrected title: concatenated
with classics at key Joyce

Wrong title: Ulyssessss
Corrected title: Ulysses

205

Part 7. Dictionaries and overview of strings

To slice a value, the syntax is dictionary[key] (pronunciation: dictionary at key), as we can see in
classics["Joyce"] (line 1). Isn’t it similar to the slicing syntax for lists? Let’s analyze some similarities
and differences between dictionaries and lists with the help of Figure 24.1. In a list, there are elements
(e.g., "burger", "salad", "coke")—which are the content of a list—and corresponding indices (e.g., 0,
1, 2)—which define the position of each element. When we want to extract (or slice) an element, we
write the name of the list and the index of the element that we want in between squared brackets
(list[index]). Thus, todays_menu[0] gives us "burger". Similarly, in a dictionary, there are values
(e.g., "Pride and Prejudice", "Frankenstein", "Ulysses")—which are the content of a dictionary—
and keys (e.g., "Austen", "Shelley", "Joyce")—which define the position of each value. When we want
to access (or slice) a value, we indicate the name of the dictionary and the key corresponding to the
value that we want in between squared brackets. (dictionary[key]). Thus, classics["Austen"] gives
us "Pride and Prejudice". The main difference between lists and dictionaries lies in the way we
define the position of an element or value. In lists, indices order elements from position 0 to position
len(list)-1, in a consecutive and progressive way (we cannot skip a position!). On the other side, in
dictionaries, keys are in no specific order. Also, note that numbers cannot be used as keys!

0 1 2

todays_menu = "salad" "coke""burger"

classics = "Austen" "Pride and Prejudice"

”Shelley" "Frankenstein"

"Joyce" "Ulysses"

Indices

Elements

Keys Values

list[index]
todays_menu[0]

dictionary[key]
classics["Austen"]

Slicing a list element

Slicing a dictionary value

List

Dictionary

Figure 24.1

Figure 24.1. Comparing structure and slicing syntax for lists (top) and dictionaries (bottom).

As we cannot change indices but only elements in lists, we cannot change keys but only values in
dictionaries. As you might have noticed, in the item "Joyce":"Ulyssessss", we need to correct
"Ulyssessss" to "Ulysses". To do so, we overwrite the value "Ulyssessss" using the same syntax
as that used in slicing: classics["Joyce"] = "Ulysses" (line 2). Once more, this is the same syntax as
that used in lists (e.g., if we want to change "coke" to "water", we write todays_menu[2] = "water").
At the end of cell 4, we check the correction by printing a string ("Corrected title: ") concatenated
with the sliced new value (classics["Joyce"], which is "Ulysses"; line 3).

How do we add a new key:value pair to an existing dictionary? There are two ways. Let’s learn them
in cell 5!

206

Chapter 24. Inventory at the English bookstore

[5]: 1 # adding the first book (syntax 1) adding the first book (syntax 1)
2 classics["Swift"] = "Gulliver's travels" classics at key Swift is assigned

Gulliver's travels
3 print(classics) print classics
4
5 # adding the second book (syntax 2) adding the second book (syntax 2)
6 classics.update({"Bronte":"Jane Eyre"}) classics dot update Bronte:Jane Eyre
7 print(classics) print classics
{'Austen': 'Pride and Prejudice', 'Shelley': 'Frankenstein', 'Joyce': 'Ulysses',
'Swift': 'Gulliver's travels'}
{'Austen': 'Pride and Prejudice', 'Shelley': 'Frankenstein', 'Joyce': 'Ulysses',
'Swift': 'Gulliver's travels', 'Bronte': 'Jane Eyre'}

The first way is to use a slicing-like syntax, where wewrite: (1) dictionary name (classics); (2) new key
in between square brackets (["Swift"]); (3) assignment symbol (=); and (4) new value
("Gulliver's travels") (line 2). The second way is to use the method .update(). As an argument, we
use a key:value pair in between curly brackets—that is, a dictionary! (line 6). To make sure that we
added items correctly, we print the dictionary after every modification (lines 3 and 7).

What about deleting items? Let’s look into the last cell!

[6]: 1 # deleting the first book (syntax 1) deleting the first book (syntax 1)
2 del classics["Austen"] del classics at key Austen
3 print(classics) print classics
4
5 # deleting the second book (syntax 2) deleting the second book (syntax 2)
6 classics.pop("Joyce") classics dot pop Joyce
7 print(classics) print classics
{'Shelley': 'Frankenstein', 'Joyce': 'Ulysses', 'Swift': 'Gulliver's travels',
'Bronte': 'Jane Eyre'}
{'Shelley': 'Frankenstein', 'Swift': 'Gulliver's travels', 'Bronte': 'Jane Eyre'}

Also in this case, there are two possibilities. The first way to delete an item is to use the keyword del,
followed by the dictionary name and the key enclosed within square brackets (classic["Austen"]; line
2). The second way is to use the method .pop(), with the key of the item to delete as an argument (line
6). (Once more, this is similar to lists, where we use the method .pop() to delete an element based on
its position.) After each deletions, we print the dictionary to check for correctness (lines 3 and 7).

207

Part 7. Dictionaries and overview of strings

Complete the table

In this chapter, you have learned five dictionary methods. Summarize what they do by completing
the following table.

Dictionary method What it does

.items()

.keys()

.values()

.update()

.pop()

Recap
• A dictionary is a Python type containing a sequence of key:value items separated by comma, and in
between curly brackets {}.

• The dictionarymethods .items(), .keys(), and .values() are used to access items, keys, and values,
respectively.

• To change a dictionary value, we overwrite the existing value using slicing.
• To add a new item, we use a slicing-like syntax or the method .update().
• To delete an item, we use the keyword del or the method .pop().

Lists of dictionaries
Can we have lists of dictionaries? Yes! When dealing with them, we just have to remember that
they are lists—and not dictionaries! Let’s see how they work. Find the code below in Notebook
24.
• Given the following list of dictionaries:

[1]: 1 countries = [{"name": "China", "capital": "Beijing"},
{"name": "France":"capital": "Paris"}]

countries is
assigned name:China,
capital:Beijing,
name:France, capital:Paris

2 print(countries) print countries
[{'name': 'China', 'capital': 'Beijing'}, {'name': 'France', 'capital': 'Paris'}]

We create a list called countries, composed of two elements that are dictionaries—that
is, {"name":"China", "capital":"Beijing"} and {"name":"France", "capital":"Paris"}.
Each dictionary is composed of two items, where the keys are "name" and "capital" (line1).
At line 2, we print countries.

208

Chapter 24. Inventory at the English bookstore

• Add a list element:

[2]: 1 countries.append({"name": "Brazil",
"capital": "Brasilia"})

countries dot append name:Brazil,
capital:Brasilia

2 print(countries) print countries
[{'name': 'China', 'capital': 'Beijing'}, {'name': 'France', 'capital': 'Paris'},
{'name': 'Brazil', 'capital': 'Brasilia'}]

Because country is a list (and not a dictionary!), we use themethod .append() (and not .update!).
As an argument, we write the new dictionary that we want to add as the third element of the list
(i.e., {"name": "Brazil", "capital": "Brasilia"}; line 1). Then, we print to check for cor-
rectness (line 2).

• Slice the second element:

[3]: 1 print(countries[1]) print countries in position 1
[{'name': 'France', 'capital': 'Paris'}

To slice the second element, we use the usual syntax, list[index], and we obtain the desired
element (line 1).

• Print list elements using a for loop through elements and a for loop through indices:

[4]: 1 # for loop though elements for loop though elements
2 print("-> for loop though elements") print -> for loop though elements
3 for country in countries: for country in countries
4 print(country) print country
5
6 # for loop though indices for loop though indices
7 print("-> for loop though indices") print -> for loop though indices
8 for i in range(len(countries)): for i in range len countries
9 print(countries[i]) print countries in position i
-> for loop though elements
{'name': 'China', 'capital': 'Beijing'}
{'name': 'France', 'capital': 'Paris'}
{'name': 'Brazil', 'capital': 'Brasilia'}
-> for loop though indices
{'name': 'China', 'capital': 'Beijing'}
{'name': 'France', 'capital': 'Paris'}
{'name': 'Brazil', 'capital': 'Brasilia'}

In the for loop through elements (lines 3–4), country browses the list elements, which are
dictionaries. Thus, in the first loop, country is {"name": "China", "capital": "Beijing"};
in the second loop, country is {"name": "France", "capital": "Paris"}; and in the third
loop, country is {"name": "Brazil", "capital": "Brasilia"}. In the for loop through indices
(lines 8–9), i iterates over the positions 0, 1, and 2. Thus, country[i] browses the corresponding
elements—that is, the three dictionaries.

209

Part 7. Dictionaries and overview of strings

• Print the country names using a for loop through indices and a for loop through values:

[5]: 1 # for loop though elements for loop though elements
2 print("-> for loop though elements") print -> for loop though elements
3 for country in countries: for country in countries
4 print(country["name"]) print country at key name
5
6 # for loop though indices for loop though indices
7 print("-> for loop though indices") print -> for loop though indices
8 for i in range(len(countries)): for i in range len countries
9 print(countries[i]["name"]) print countries in position i at key name
-> for loop though elements
China
France
Brazil
-> for loop though indices
China
France
Brazil

To print the country names, we add a layer of slicing to the for loops that we implemented
in cell 4. As we mentioned above, in the first iteration of the for loop through elements
(lines 3–4), country is the dictionary {"name": "China", "capital": "Beijing"}. To extract
"China", we need to slice at the key "name"—similarly for the other iterations. Thus, we print
country["name"]. In the every iteration of the loop through elements (lines 8–9), country[i] is
one of the dictionaries. To extract the value corresponding to the key "name", we have to
write country[i]["name"]—in other words: country[i] slices the current list element, and
["name] slices the dictionary at the key "name".

Let’s code!

1. Student’s information. For the following scenario, create code similar to that presented in this chap-
ter. You work in a school Registrar’s Office, and here are the data of a student:

student = {"First name":"Bruce", "Last name":"Zhiang", "Sex":"Male", "Age":21,
"Course":"Literature", "Hobby":"Swimming"}

a. Print all the keys and their values.
b. Print all the keys.
c. Print all the values.
d. Bruce has recently changed his study course from Literature to Foreign Languages, so you up-
date his data.

e. There are two pieces of information missing: Address and Phone number, so you add them (use
two different syntaxes).

f. Finally, because of new privacy policies, you have to remove Sex and Hobby.

2. New T-shirts in the store. You are the owner of a clothing store, and you are getting ready for the
summer season. Your supplier has just provided a new set of trendy T-shirts.

210

Chapter 24. Inventory at the English bookstore

a. You create a dictionary containing characteristics of the new T-shirts: they are red, of size M,
and have a round neck.

b. Then, you add more information: you received a total of 25 T-shirts and their logo’s color is
blue (use two different syntaxes).

c. Summer is over, and your sales went well. You have sold 20 T-shirts, so you add a new item
containing the number of sold T-shirts.

d. Finally, you number the amount of T-shirts accordingly (calculate the quantity using the pre-
viously created item).

3. Colosseum. You are helping your neighbor’s kid with her history assignment. She needs to collect
data about the Colosseum. So, you go to the Wikipedia page (https://en.wikipedia.org/wiki/Co
losseum) and look for some information.
a. You start with some information in a table on the right side of Wikipedia’s page. Thus, you
create a dictionary containing location (Rome), construction years (70–80 AD), and type of
structure (amphitheater).

b. Then you read the text, and in the first paragraph, you learn that construction began in 72 AD
and was completed in 80 AD. So, you remove the previous key about the year of construction.
Then, you add two separate keys, one for the starting year and one for the completion year
(using two different syntaxes).

c. How many years did it take to build the Colosseum?
d. How many years have passed since its construction started?

4. At a pet clinic. You are a vet at a pet clinic, and here are some of the pets you are currently taking
care of:

pets = [{"name":"Toby", "animal type":"dog", "age":2},
{"name":"Kitty", "animal type":"cat", "age":5},
{"name":"Tiki", "animal type":"parrot", "age":1}]

a. You have just received a new patient, a 4-year-old horse called Sugar, and you add it to the list.
b. Now, you need to print all the animal names. Do it first with a for loop through elements and
then with a for loop through indices.

c. Finally, you add an item that states that all the animals are currently in the clinic (what
datatype do you use?).

5. Juices! You own a juice stand, and you need to keep track of juices and sales.
a. Create a list of dictionaries containing 3 juice flavors (orange, lemon, and pomegranate), their
prices, and their colors.

b. For each juice, add a new item where the key is ’in shop,’ and the value is a Boolean.
c. You just received a new order (grape juice), and you add it to your list.
d. What is the average price of a juice?

211

https://en.wikipedia.org/wiki/Colosseum
https://en.wikipedia.org/wiki/Colosseum

25. Trip to Switzerland
Dictionaries with lists as values

In the previous chapter, you learned about dictionaries and lists of dictionaries. In this chapter, you
will learn to code with dictionaries whose values are lists. Follow along with Notebook 25!

• Your friend is planning a trip to Switzerland, and he has asked you for some tips. You start with an
empty dictionary to fill out:

[]: 1 tips = {} tips is assigned an empty dictionary

• He would like to visit some cities and taste typical food. Therefore, you add some recommendations:

[]: 1 tips["cities"] = ["Bern", "Lucern"] tips at key cities is assigned Bern,
Lucern

2 tips["food"] = ["chocolate", "raclette"] tips at key food is assigned chocolate,
raclette

3 print(tips) print tips

• Because his stay is four days, you add two more cities and two more dishes:

[]: 1 tips["cities"].append("Lugano") tips at key cities dot append Lugano
2 print(tips) print tips

[]: 1 tips["cities"] += ["Geneva"] tips at key cities is incremented by Geneva
2 print(tips) print tips

[]: 1 tips.get("food").append("onion tarte") tips dot get food dot append onion tarte
2 print(tips) print tips

[]: 1 tips["food"] = tips.get("food") + ["fondue"] tips at key food is assigned tips dot
get food concatenated with fondue

2 print(tips) print tips

• You want to check that the dictionary is correct, so you print all items one by one:

[]: 1 for k,v in tips.items(): for k v in tips dot items
2 print(k,v) print k v

• Finally, you improve the print for improved readability:

[]: 1 for k,v in tips.items(): for k v in tips dot items
2 print("{:>6}: {}".format(k,v)) print symbols dot format k v

True or false?

1. There are at list 3 ways to add an element to a list that is a dictionary’s value. T F
2. .get() is a list method, and .append() is a dictionary method T F
3. The built-in function print() can take comma-separated variables as an argument T F

212

Chapter 25. Trip to Switzerland

Computational thinking and syntax
Let’s start analyzing the code above by running the first cell:

[1]: 1 tips = {} tips is assigned an empty dictionary

We initialize an empty list by assigning curly brackets to the variable tips (line 1).

Let’s run the second cell:

[2]: 1 tips["cities"] = ["Bern", "Lucern"] tips at key cities is assigned Bern,
Lucern

2 tips["food"] = ["chocolate", "raclette"] tips at key food is assigned chocolate,
raclette

3 print(tips) print tips
{'cities': ['Bern', 'Lucern'], 'food': ['chocolate', 'raclette']}

We fill out the empty dictionary tips with two new items. The first item has the string "cities" as
a key and the list ["Bern", "Lucern"] as a value (line 1). The second item has the string "food" as a
key and the list ["chocolate", "raclette"] as a value (line 2). To check for correctness, we print the
dictionary (line 3).

We want to add new elements to the two lists that are tips’s values. How do we go about doing so?
Let’s see four possibilities, one in each of the next four cells. In the first two cells we will add a city,
and in the last two cells we will add two types of food. In all cases, the command will be composed
of two steps: (1) extracting the value (i.e., the list) corresponding to a certain key, and (2) adding the
new element to the list.

Let’s add the first city, which is "Lugano":

[3]: 1 tips["cities"].append("Lugano") tips at key cities dot append Lugano
2 print(tips) print tips
{'cities': ['Bern', 'Lucern', 'Lugano'], 'food': ['chocolate', 'raclette']}

First, we slice the list from the dictionary—tips["cities"] is ["Bern", "Lucern"]. Then, we add the
new elements to the list using .append() (line 1). Finally, we print to check for correctness (line 2).

Let’s add the second city, that is, "Geneva":

[4]: 1 tips["cities"] += ["Geneva"] tips at key cities is incremented by Geneva
2 print(tips) print tips
{'cities': ['Bern', 'Lucern', 'Lugano', 'Geneva'], 'food': ['chocolate', 'raclette']}

Like above, we slice the list from the dictionary—tips["cities"] is now ["Bern", "Lucern",
"Lugano"]. Then, we use list concatenation as an alternative to the method .append(). As you might
remember, when using list concatenation we must reassign the changed value to the variable. In this
example, we combine assignment and concatenation with the += operator—the extended command is
tips["cities"] = tips["cities"] + ["Geneva"] (line 1). At line 2, we print tips to check the dic-
tionary’s content.

Let’s now add the first type of food, which is "onion tarte":

[5]: 1 tips.get("food").append("onion tarte") tips dot get food dot append onion tarte
2 print(tips) print tips
{'cities': ['Bern', 'Lucern', 'Lugano', 'Geneva'], 'food': ['chocolate', 'raclette',
'onion tarte']}

213

Part 7. Dictionaries and overview of strings

As an alternative to slicing, we can extract a value using the dictionary method .get(), which takes
the corresponding key as an argument. In our case, .get("food") returns the list ["chocolate",
"raclette"]. Then, we add the new element ("onion tarte") using the list method .append() (line 1).
As you might have noticed, we created a “chain” of methods, combining a dictionary method (.get())
that returns a list, with a list method (.append()) that modifies the list. At the end of the cell, we print
tips to check for correctness (line 2).

Finally, let’s add the second type of food, that is, "fondue":

[6]: 1 tips["food"] = tips.get("food") + ["fondue"] tips at key food is assigned tips dot
get food concatenated with fondue

2 print(tips) print tips
{'cities': ['Bern', 'Lucern', 'Lugano', 'Geneva'], 'food': ['chocolate', 'raclette',
'onion tarte', 'fondue']}

Like above, we use the method .get() to extract the value corresponding to "food", which is the list
["chocolate", "raclette", "onion tarte"]. Then, we use concatenation to add the last element
"fondue". Note that in this case we cannot use the compact operator += because we cannot reassign
to tips.get("food"). We can only reassign the outcome to tips["food"] (line 1). Finally, we print the
dictionary to check for correctness (line 2).

In summary, the four ways that we have to add an element to a list that is a value of a dictionary are a
combination of slicing or dictionary method .get() to slice the value from the dictionary, and of list
method .append() or concatenation to add a new element to the list. When coding, you can choose
to use only one way or to alternate several ways. But it is important to know all ways to understand
code written by somebody else.

In the examples above, you might have noticed that reading the print of a dictionary can be hard when
several keys and values are displayed in one long line. Let’s learn how to print a key:value pair per line
to improve readability:

[7]: 1 for k,v in tips.items(): for k v in tips dot items
2 print(k,v) print k v
cities ['Bern', 'Lucern', 'Lugano', 'Geneva']
food ['chocolate', 'raclette', 'onion tarte', 'fondue']

We use a for loop through values with two variables k—for the keys—and v—for the values. The two
names could be different, but conventionally we use the initial of the variable they represent. k and
v simultaneously browse the dictionary items returned by the .items()method (line 1). At each itera-
tion, we print the current key kwith the corresponding value v (line 2). Note that k and v are separated
by comma. This is independent from the fact that we are printing the items of a dictionary. The built-in
function print() can take variables of different types separated by comma as an argument. For ex-
ample, we can use print("The Swiss cities in the list are", 4) as an alternative to print("The
Swiss cities in the list are" + str(4)).

What if we want to print only the keys or only the values? Let’s have a look!

[]: 1 for k in tips.keys(): for k in tips dot keys
2 print(k) print k
cities
food

214

Chapter 25. Trip to Switzerland

In the for loop header, we use only the variable k in combination with the method .keys() (line 1), and
we print k only (line 2). Similarly for the values:

[]: 1 for v in tips.values(): for v in tips dot values
2 print(v) print v
['Bern', 'Lucern', 'Lugano', 'Geneva']
['chocolate', 'raclette', 'onion tarte', 'fondue']

In the for loop header, we use only the variable v in combination with the method .values() (line 1),
and we print v only (line 2).

Finally, let’s have a look at one more elegant way to print dictionaries:

[8]: 1 for k,v in tips.items(): for k v in tips dot items
2 print("{:>6}: {}".format(k,v)) print symbols dot format k v
cities: ['Bern', 'Lucern', 'Lugano', 'Geneva']
food: ['chocolate', 'raclette', 'onion tarte', 'fondue']

The for loop header is the same as in cell 7: k and v iteratively browse keys and values returned by
.items() (line 1). The argument of the built-in function print() at line 2 looks a bit more complicated.
Let’s disentangle it! There is a string—constituted by red characters in between quotes—followedby the
string method .format(), which takes two arguments: k and v. The symbols in the string contain two
pairs of curly brackets, one with the symbols {:>6}, and one empty {}. These pairs of curly brackets
have nothing to do with dictionaries. They are placeholders for the arguments of the string method
.format(). The first argument kwill be printed at the place of {:>6} and the second argument v at the
place of {}. What is the meaning of {:>6}? It is composed of three parts: (1) the symbol : indicates
to print the whole text; (2) the symbol > specifies that the text is aligned to the right; and (3) the
symbol 6 indicates that the printing space is made of 6 characters—because cities has 6 characters.
What about the colon between the two placeholders? It is simply the colon printed between each key
and the corresponding value—e.g., cities: ['Bern' ... Finally, what is the function of the string
method .format()? It formats the arguments and inserts them into the placeholders.

215

Part 7. Dictionaries and overview of strings

Insert into the right column

Insert string, list, and dictionary methods into the right column:

.keys(), .upper(), .insert(), .append(), .values(), .copy(), .lower(), .pop(), .count(),
.format(), .capitalize(), .index(), .extend(), .get(), .items(), .title(), .remove(), .clear(),

.update(), .pop(), .reverse(), .sort()

Dictionary methods String methods List methods

Recap
• To initialize a dictionary, we use a pair of empty curly brackets {}.
• The dictionary method .get() takes a key as an argument and returns the corresponding value.
• There are at least 4 differentways to access andmodify dictionary values that are lists, by combining:

■ Slicing or .get() to extract a list from a dictionary.
■ List operations (such as concatenation) or methods (e.g., .append()) to modify a list.

• We can use the for loop through values to browse items, keys, and values of a dictionary.
• The built-in function print() can take several variables as an argument:

■ Separated by comma, or
■ Using placeholders {} in combination with the string method .format().

216

Chapter 25. Trip to Switzerland

Dealing with KeyError

When coding with dictionaries, key errors can occur. Let’s see what it means and how to fix it!
Let’s consider the same example as in this chapter, and let’s slice the value corresponding to the
key "cities":

[1]: 1 tips ["city"] tips at key city

KeyError Traceback (most recent call last)
Cell In[3], line 1

> 1 tips ["city"]
KeyError: 'city'

As you know, to understand an error, we start from the last line. It says KeyError: 'city', which
means that wemade an error on the key 'city'—it should be 'cities'! To knowwhere the error
is, we look for the green arrow, which shows that we need to correct at line 1. To fix it, we just
replace "city", with "cities" in the code. Note that we can get the same error message when
a key does not exist.

Let’s code!

1. For each of the following scenarios, create code similar to that presented in this chapter.
a. Olympic Games. You are a sports journalist, and your task is to collect a dictionary of summer
and winter sports performed at the Olympic Games.
a. Create an empty dictionary that you will fill out with some Olympic Games.
b. Add two summer sports and two winter sports.
c. The lists in the values look a bit short. Add two more summer sports and two more winter
sports. Add each element with a different method.

d. Print all items one by one in two different ways.
e. Finally, print only the sports lists.

b. Teaching Python. You are teaching Python to some students, and you want to list their names
according to the course they are attending.
a. Create an empty dictionary called students.
b. So far, there are two students for the basic course and three students for the advanced
course. Add their names to the dictionary.

c. You have just received four new registrations: three for the basic course and one for the
advanced course. So, you add the new students’ names to the dictionary using four differ-
ent ways.

d. After checking the background of the students attending the basic course, you realize that
one of them should be in the advanced course. So you move the student from the basic to
the advanced course.

e. To check for correctness, you print all items one by one in two different ways.
f. Finally, you print the course names and the students’ names separately.

2. Furniture store. You are themanager of a furniture store. Here are the pieces of furniture in storage:

store = {"furniture": ["chair", "table", "sofa"],

217

Part 7. Dictionaries and overview of strings

"amount": [24, 7, 6],
"price" : [200, 500, 1200]}

a. A new customer comes in and buys 4 chairs. Update the dictionary using an arithmetic oper-
ation.

b. After a few days, you receive new pieces of furniture: 9 carpets worth 150 each and 4 lamps
worth 180 each. So, you add them to the dictionary (use different syntaxes).

c. The owner of a restaurant comes to your shop and buys all the tables. Update the dictionary
(use at least 2 different syntaxes).

d. To better visualize what is left, you print the dictionary aligning the keys to the right and the
values to the left.

e. What is the total price of the furniture in storage?

3. Shifting list elements! Given the following dictionary:

dictionary = {"numbers":[2,3,4,5,6,7,8,9,10]}

a. Add a key:value pair where the key is the string even and the value is a list containing True for
even numbers and False for odd numbers.
(Expected result:
{"numbers": [2, 3, 4, 5, 6, 7, 8, 9, 10],
"even": [True, False, True, False, True, False, True, False, True]}).

b. Subtract 1 from each number.
c. How do you modify the Boolean list so that it corresponds to the new list of numbers? Hint:
Just shift it!

4. Numbers in a triangle! Ask a player for an integer. Then, print a triangle where each row contains
a consecutive integer between 1 and the number entered by the player. Additionally, each row
should include a list containing the number from that row repeated the same number of times as
the number itself. To do that, use a dictionary and allow the player to play as long as they want!
(Example input: 5.
Expected output:
1 [1]
2 [2, 2]
3 [3, 3, 3]
4 [4, 4, 4, 4]
5 [5, 5, 5, 5, 5]).

218

26. Counting, compressing, and sorting
What are dictionaries for?

In this chapter, the final one dedicated to dictionaries, you will learn some typical situations where
using dictionaries is very convenient. Try to solve each example by yourself before looking into the
solution. You can find the code in Notebook 26!

1. Counting elements
Dictionaries are extremely convenient when we need to save occurrences, that is, the number of times
something happens. Let’s understand what this means with the following example.
• Given the following string:

[1]: 1 greetings = "hello! how are you?" greetings is assigned hello! how are you?

• Create a dictionary where the keys are the letters of the alphabet found in the string, and the corre-
sponding values are the number of times each letter is present. Write the code in two ways: (1) using
if/elif; and (2) using .get().

1. Using if/elif:

[2]: 1 letter_counter = {} letter counter is assigned an empty
dictionary

2
3 for letter in greetings: for letter in greetings
4 if letter not in letter_counter.keys(): if letter not in letter counter dot keys
5 letter_counter[letter] = 1 letter counter at key letter is assigned

one
6 else: else
7 letter_counter[letter] += 1 letter counter at key letter is

incremented by one
8
9 for k,v in letter_counter.items(): for k v in letter counter dot items
10 print(k,v) print k v
h 2
e 2
l 2
o 3
! 1
3

w 1
a 1
r 1
y 1
u 1
? 1

We start with an empty dictionary called letter_counter (line 1). We browse each character of the
string greetings using a for loop through elements (line 3)—the for loop through elements works the

219

Part 7. Dictionaries and overview of strings

sameway for lists and strings. Then, for each character, we check if it is a key of letter_counter andwe
act accordingly (lines 4–7). More precisely, we first evaluate if the current character is not already a key
of letter_counter by checking if letter, which is a string, is not in the output of
letter_counter.keys() (line 4). Note that we can directly check the membership of letter in
dict_keys (returned by .keys()) without having to transform into a list—in other words, we do not
need to write list(letter_counter.keys()). If the condition at line 4 is satisfied, then we add a new
key:value pair, where the key is letter, and the value is 1 (line 5). On the other hand, if the current
character is already a key in letter_counter (else at line 6), thenwe add 1 to the already existing corre-
sponding value (line7)—the explicit command is letter_counter[letter] = letter_counter[letter]
+ 1. To better understand this, let’s look at what happens at the third and fourth loops. At the third
loop, letter is l (hello). Because l is not already a key in letter_counter (line 4), we create a new
dictionary item, where l is the key and 1 is the value (line 5). At the fourth loop, letter is l again
(hello). Because this time l is already a key (line 6), we slice the value at letter_counter[l], which is
1, add 1, and we reassign it into the dictionary (line 7). We terminate the task by printing each letter
and its corresponding amount with a for loop through keys and values (lines 9–10).

2. Using .get():

[3]: 1 letter_counter = {} letter counter is assigned an empty
dictionary

2
3 for letter in greetings: for letter in greetings
4 letter_counter[letter] =

letter_counter.get(letter, 0) + 1
letter counter at key letter is assigned
letter counter dot get letter zero plus
one

5
6 for k,v in letter_counter.items(): for k v in letter counter dot items
7 print(k,v) print k v
h 2
e 2
l 2
o 3
! 1
3

w 1
a 1
r 1
y 1
u 1
? 1

Similarly to cell 2, we start with the empty dictionary letter_counter (line 1), continue with a for loop
through elements (line 3), and conclude by printing the obtained dictionary to check the correctness
of the results (lines 6–7). As opposed to what we saw above, the four lines of code containing the
if/else construct (lines 4–7, cell 2) are replaced by one single line containing the following: an assign-
ment, the method .get(), and a sum (line 4). The method .get() contains two arguments, letter and
0, and it acts as follows: if the key does not exist, .get() returns the second argument; if the key
already exists, .get() returns the corresponding value. Thus, this is what happens at line 4:
• If the current key letter does not exist yet—as in the third loop where letter is the first l in hello—
then .get(letter, 0) returns 0. Then, we add 1 to 0, and we create a new key:value pair in the

220

Chapter 26. Counting, compressing, and sorting

dictionary by assigning the result to letter_counter[letter].
• If the current key letter already exists—as in the fourth loopwhere letter is the second l in hello—
then .get(letter, 0) returns the value corresponding to letter—that is, 1. We add 1 to the re-
turned 1 to increment the count, and we update the existing key:value pair in the dictionary by
reassigning.

Why do we use 0 as the second argument? Since in this line of code we need to have +1 to update the
counts of the already existing letters, the only way we have to obtain 1 for a new letter is to sum to 0.

2. Compressing information
Dictionaries are extremely convenient for compressing redundant information: for example, to store
signals acquired by sensors over a long time. Think of a sensor used to detect vibrations in the case of an
earthquake. Most of the time, the sensor just records zeros as there is no seismic event. However, when
an earthquake occurs, the sensor registers a spike (or a group of spikes) whose magnitude is different
from zero. Saving days and days of zeros in a list would require a significant amount of computer
memory, and it would be somewhat pointless because the signal information is in the spikes. To reduce
the amount of storagememory while keeping the information, we can use a dictionary. Howwould you
do it? And how would you then go back from the dictionary to the original list?

• Given the following list:

[4]: 1 sparse_vector = [0, 0, 0, 1, 0, 7, 0, 0,
4, 0, 0, 0, 8, 0, 0, 0, 6, 0, 0, 0, 0, 0,
0, 0, 9, 0, 0]

sparse vector is assigned a list of
numbers

We start with a list called sparse_vector, containing many zeros and a few integers spread among the
zeros. (Note: in linear algebra, sparse vectors are vectors where themajority of components are zeros.)
• Convert it into a dictionary:

[5]: 1 # create the dictionary create the dictionary
2 sparse_dict = {} sparse dict is assigned an empty

dictionary
3 for i in range(len(sparse_vector)): for i in range len of sparse vector
4 if sparse_vector[i] != 0: if sparse vector in position i is not

equal to zero
5 sparse_dict[i] = sparse_vector[i] sparse dict at key i is assigned sparse

vector in position i
6
7 # save the list length save the list length
8 sparse_dict["length"] = len(sparse_vector) sparse dict at key length is assigned

len of sparse_vector
9
10 # print print
11 for k,v in sparse_dict.items(): for k v in sparse dict dot items
12 print(k,v) print k v
3 1
5 7
8 4
12 8

221

Part 7. Dictionaries and overview of strings

16 6
24 9
length 27

We start with an empty dictionary called sparse_dict (line 2). Then, we browse the list
sparse_vector with a for loop through indices (line 3) to select and save the information—that is,
the nonzero integers and their positions in the list. If the current list element sparse_vector[i] is
not equal to zero (line 4), then we add a new item to the dictionary sparse_dict, where the key is the
position of the element in the list—that is, [i]—and the value is the current nonzero element—that is,
sparse_vector[i] (line 5). After the loop, we save an itemwhere the key is the string "length", and the
value is the actual length of the list (len(sparse_vector); line 8). This key:value pair will be useful to
convert the dictionary back into a list, like we will see in the next cell. Finally, we print each dictionary
item with a for loop through elements to check the correctness of our code (lines 11–12).
• How do we get back to the sparse vector?

[6]: 1 # create a list of zeros create a list of zeros
2 sparse_vector_back = [0] *

sparse_dict["length"]
sparse vector back is assigned 0 times
sparse dict at key length

3
4 # add nonzero values add nonzero values
5 for k,v in sparse_dict.items(): for k v in sparse dict dot items
6 if k != "length": if k is not equal to length
7 sparse_vector_back [k] = v sparse vector back at key k is assigned v
8
9 # print print
10 print(sparse_vector_back) print sparse vector back
[0, 0, 0, 1, 0, 7, 0, 0, 4, 0, 0, 0, 8, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0]

We start by creating a list of zeros called sparse_vector_back of the same length as the original list
sparse_vector. To create sparse_vector_back, we use list replication, where we replicate a list con-
taining a zero ([0]) for a number of times equal to the length of the original list—whose value we saved
in correspondence with the key "length". Then, we overwrite the nonzero values into the list. With
a for loop, we browse each key:value pair in the dictionary (line 5). If the current key is not equal to
"length" (line 6)—we need to make sure that we do not access that item—then we assign the current
value v, which represents the magnitude of a spike, to the list sparse_vector_back in position k (line
7). Finally, we print the list to check for correctness (line 10).

3. Sorting dictionaries
In this last example about dictionaries and their applications, we will learn how to sort dictionaries
according to their keys or values. Consider a simplified city registry containing citizens’ names as keys
and their ages as values. Officersmight need to sort the registry according to names to send out letters,
or according to age to distinguish the kids from the elderly. Let’s see how to do it!
• Given the following dictionary:

[7]: 1 registry = {"Shaili":4, "Chris":90,
"Maria":70}

registry is assigned Shaili:4, Chris:90,
Maria:70

222

Chapter 26. Counting, compressing, and sorting

• Sort the dictionary items according to their keys:

[8]: 1 # create a new dictionary create a new dictionary
2 sorted_registry = {} sorted registry is assigned empty

dictionary
3
4 # sort the keys sort the keys
5 sorted_keys = list(registry.keys()) sorted keys is assigned list registry dot

keys
6 sorted_keys.sort() sorted keys dot sort
7
8 # fill out the new dictionary fill out the new dictionary
9 for k in sorted_keys: for k in sorted keys
10 sorted_registry[k] = registry[k] sorted registry at key k is assigned

registry at key k
11
12 print(sorted_registry) print sorted registry
{'Chris': 90, 'Maria': 70, 'Shaili': 4}

We start with an empty dictionary called sorted_registry that will have the same content as
registry, but the items will be sorted according to the keys (line 2). To sort the keys, we execute two
steps. First, we extract the keys using the dictionary method .keys() and then transform its output—
whose type is dict_keys—into a list using the built-in function list() (line 5). Then, we sort the
obtained keys—['Shaili', 'Chris', 'Maria']—in alphabetical order using the list method .sort(),
obtaining ['Chris', 'Maria', 'Shaili'] (line 6). Finally, we browse the list of sorted keys using a
for loop through elements (line 9) to fill out sorted_registry. For each key k, we extract the corre-
sponding value in registry (registry[k]) and assign it to sorted_registry at key k
(sorted_registry[k]), thus creating a new dictionary item. For example, in the first loop, k is "Chris",
so extract 90 from registry (registry[k]), and we assign it to "Chris" in sorted_registry
(sorted_registry[k]). Then, we do the same for the keys "Maria" and ’"Shaili". Finally, we print
sorted_registry[k] to check for correctness (line 12).

• Sort the dictionary items according to their values:

[9]: 1 # create a new dictionary create a new dictionary
2 sorted_registry = {} sorted registry is assigned empty dictionary
3
4 # sort keys according to values sort keys according to values
5 sorted_keys = sorted(registry,

key = registry.get)
sorted keys is assigned sorted registry key
is assigned registry dot get

6
7 # fill out the new dictionary fill out the new dictionary
8 for k in sorted_keys: for k in sorted keys
9 sorted_registry[k] = registry[k] sorted registry at key k is assigned

registry at key k
10
11 print(sorted_registry) print sorted registry
{'Shaili': 4, 'Maria': 70, 'Chris': 90}

To sort a dictionary according to values, we use the same procedure as above: we create an empty
dictionary (line 2); we sort the keys (line 5); we fill out the empty dictionary using a for loop through
elements that browses the sorted keys (line 8) and adds sorted key:value pairs to the dictionary (line

223

Part 7. Dictionaries and overview of strings

9); and we print to check for correctness (line 11). What is different is the way we sort the keys, that
is, according to dictionary values. To do that, we use the built-in function sorted() (line 5), which
takes two arguments: (1) the dictionary whose keys we want to sort and (2) the dictionary combined
with the method .get (note the absence of round brackets). Note that sorted() can be used also
with lists and strings—mainly with only one argument—as an alternative to the method .sort(). The
difference is that sorted() returns a variable (e.g., sorted_list = sorted(original_list)), whereas
.sort() directly acts on the list (e.g., original_list.sort()).

Recap
• Some typical examples of dictionary use include counting elements, compressing information, and
sorting a dictionary according to keys and values.

• The dictionary method .get(key,initial value) is used to initialize a key:value pair in a dictio-
nary and fill it up during a for loop.

• The built-in function sorted() is used to sort a dictionary; note that it creates a new variable.

Remaining dictionary methods

Dictionaries have 11 methods. In the past three chapters, we have learned six dictionary meth-
ods: .items(), .keys(), .values(), .get(), .update(), and .pop(). Here are the remaining 5
methods:
• .clear(): Deletes all the elements from the dictionary (makes the dictionary empty).
• .copy(): Provides a copy of the dictionary and thus allows separate modification.
• .fromkeys(): Creates a dictionary with the keys specified in a list and a default value.
• .popitem(): Removes the last inserted key:value pair.
• .setdefault(): Returns the value of the specified key. If the key does not exist, then it inserts
the new key:value pair into the dictionary.

Create your examples
In a notebook, write an example for each of the new dictionary methods introduced in the In more
depth section above: .clear(), .copy(), .fromkeys(), .popitem(), and .setdefault(). If you want,
you can start from this dictionary:

fruit_colors = {"strawberry":"red", "banana":"yellow", "kiwi":"green"}

Let’s code!

1. From dictionary to list of lists and back! Given the following dictionary:

cars = {"sports car":4, "convertible": 5, "limousine": 2}

224

Chapter 26. Counting, compressing, and sorting

a. Transform the dictionary into a list of lists.
(Expected result:[['sports car', 4], ['convertible', 5], ['limousine', 2]]).

b. Transform the list of lists back to the original dictionary.

2. Multiplication table game! You are a programmer at an educational game company. Your task is
to create a game where a kid enters a number, and you display the corresponding multiplication
table. To implement the game, create a dictionary where the keys are numbers from 1 to 10 and the
values are the results of the multiplications between the key and the value entered by the kid. Use
a for loop and allow the kid to play as long as they want.
(Example input: 4
Example output:
1 x 4 = 4
2 x 4 = 8
3 x 4 = 12
4 x 4 = 16
5 x 4 = 20
6 x 4 = 24
7 x 4 = 28
8 x 4 = 32
9 x 4 = 36
10 x 4 = 40).

3. Spices and herbs. You work in a grocery store selling spices and herbs. Here are the spices and
herbs in the shop:

spices_herbs = ["basil", "cinnamon", "licorice", "mint", "rosemary", "thyme",
"cardamom", "turmeric", "cilantro", "oregano", "pepper", "chili", "dill",
"cayenne pepper", "ginger", "garlic", "marjoram", "nutmeg", "sage", "saffron",
"star anise", "bay leaves"]

a. You have to change the labels on the containers and give them amoremodern look. The length
of the new labels is proportional to the length of the word written on it. Create a dictionary
where keys are word lengths and values are lists of words with that length.

b. You need to know how many labels you have to cut for each length. Create another dictionary
where keys are word lengths in an ascending order, and values are the number of labels you
have to cut for each length.

c. What is the most common label? How many letters does it correspond to? Compute it!

225

27. Overview of strings
Operations, methods, and printing

In this chapter, we will summarize the characteristics of strings, similar to what we did for lists in
Chapter 21. You’ll notice a lot of commonalities between the two data types, but also some important
differences. Follow along with Notebook 27. As usual, try to solve the tasks before looking into the
solution. Let’s start!

1. String slicing
String slicing works like list slicing (see Chapter 12). Take a look at the two examples below as a re-
fresher.
• Given the following string:

[1]: 1 two_ways = "rsecwyadrkd" two ways is assigned rsecwyadrkd

We start with a string of characters (line 1). You might remember that in coding we use the word
characters instead of letters.
• Extract every second character:

[2]: 1 print(two_ways[:,:,2]) print two ways from the beginning to the
end with a step of two

reward

The start is the beginning of the string, so we can omit it. Similarly, the stop is the end of the string, so
we can omit it too. The step is 2. The outcome is reward (line 1).
• Extract every second character and invert the outcome:

[3]: 1 print(two_ways[:,:,-2]) print two ways from the beginning to the
end with a step of minus two

drawer

Opposite to the above, the start is the end of the string, and the stop is the beginning of the string;
therefore, we can omit both. Since we are going backwards, the step is -2 (note the minus symbol). In
this case, the outcome is drawer. (Did you know that the reverse of reward is drawer?)

2. “Arithmetic” operations on strings
There are two “arithmetic” operations on strings: concatenation and replication. They follow the same
principles as lists do. Let’s quickly look at a refresher on how they work.
• Concatenate two strings:

[4]: 1 first = "sun" first is assigned sun
2 second = "screen" second is assigned screen
3 combo = first + second combo is assigned first concatenated with second
4 print(combo) print combo
sunscreen

226

Chapter 27. Overview of strings

Given two separate strings—"sun" (line 1) and "screen" (line 2)—we can merge them using the con-
catenation symbol + to obtain "sunscreen" (line 3). We print the result to check for correctness (line
4).
• Replicate a string 5 times:

[5]: 1 one_smile = ":-)" one smile is assigned smiley face
2 five_smiles = one_smile * 5 five smiles is assigned one smile replicated by five
3 print(five_smiles) print five smiles
:-):-):-):-):-)

Given a string containing some characters—for example, a smiley face (line 1)—we replicate it by using
the replication symbol * and the number of times we want to replicate (5 in this case; line 2). Finally,
we print the obtained five smileys (line 3).

3. Replacing or removing substrings
Substrings are parts of strings. In many of the following examples, we will use substrings composed
of only one character for simplicity. However, the rules in the examples are also valid so for substrings
composed of multiple characters. Let’s learn how to replace or remove substrings in a string based on
a substring position or content. Let’s start by changing a substring based on its position.
• Given the following string:

[6]: 1 favorites = "I like cooking, my family,
and my friends"

favorites is assigned I like cooking, my
family, and my friends

We start with a string containing a sentence (line 1).
• Replace the character at position 0 with U using slicing and assignment. What happens?

[7]: 1 favorites [0] = "U" favorites in position zero is
assigned U

TypeError Traceback (most recent call last)
Cell In[7], line 1

> 1 favorites [0] = "U"
TypeError: 'str' object does not support item assignment

Why do we get the type error 'str' object does not support item assignment? Because in
Python strings are immutable, that is, they cannot be changed by assignment. To change a string—or
parts of it—we have to use slicing combined with concatenation or string methods. Let’s have a look.
• Redo the same task using slicing and concatenation:

[8]: 1 from_position_one = favorites [1:] from position one is assigned favorites
from one to the end of the string

2 favorites = "U" + from_position_one favorites is assigned U concatenated with
from position one

3 print(favorites) print favorites
U like cooking, my family, and my friends

The first way to change a substring is to use a combination of slicing and concatenation. We slice
the part of the string that we want to keep, that is, from the character in position 1—the space after

227

Part 7. Dictionaries and overview of strings

I—to the end, and we save it in the variable from_position_one (line 1). Then, we concatenate the
desired character in position 0—that is, "U"—to the string from_position_one (line 2). Obviously, we
can compress the two lines of code into one line: favorites = "U" + favorites[1:]—here they are
separated for clarity of explanation. Finally, we print out the resulting string (line 3).
• Redo the same task using the string method .split():

[9]: 1 favorites = "I like cooking, my family, and
my friends"

favorites is assigned I like cooking,
my family, and my friends

2
3 parts = favorites.split("I") parts is assigned favorites dot split

I
4 print(parts) print parts
5
6 favorites = "U" + parts[1] favorites is assigned U concatenated

with parts in position one
7 print(favorites) print favorites
['', ' like cooking, my family, and my friends']
[U like cooking, my family, and my friends]

The secondway to change a substring is to combine themethod .split() and concatenation. We start
with the string to modify (line 1)—we need to rewrite the original string because we changed it in the
previous cell. Then, we apply the method .split(), whose argument is the substring around which
we want to split the original string—in our case, the character "I"—and we assign the output to the
variable parts (line 3). As we can see from the print of parts (line 4), .split() returns a list with two
elements. The first element contains the characters that are before the argument "I"—that is, an empty
string because "I" is in position 0. The second element represents the characters that are after the
argument "I"—that is, ' like cooking, my family, and my friends' (notice the space in the first
position). As another example, if we want to split the string at the word "cooking", we can write: parts
= favorites.split("cooking"), and we obtain ['I like ', ', my family, and my friends']. We
conclude the string modification by concatenating "U" with the second element in parts (line 6), and
we print the final result (line 7).

What if we want tomodify a substring based on its content instead of position? Let’s have a look!
• Replace the commas with semicolons using the string method: .replace():

[10]: 1 favorites = "I like cooking, my family,
and my friends"

favorites is assigned I like cooking, my
family, and my friends

2 favorites = favorites.replace(",", ";") favorites is assigned favorites dot
replace comma semicolon

3 print(favorites) print favorites
[I like cooking; my family; and my friends]

We start by rewriting the original string (line 1). Then, we use themethod .replace(), which takes two
arguments: the substring that we want to remove, and the substring that we want to add. Note that
we reassign the outcome to the original string favorites to make the change effective (line 2). Finally,
we print to check for correctness (line 3).

What about removing substrings? If we want to remove based on position, we can just use a combina-
tion of slicing (or .split()) and concatenation. For example: if we want to remove cooking from the
string favorites, we can write: favorites[:6] + favorites[15:], and we get: I like my family,
and my friends. On the other side, to remove a substring based on its content, we need to use a trick.

228

Chapter 27. Overview of strings

Let’s have a look at it!
• Remove the commas:

[11]: 1 favorites = "I like cooking, my family,
and my friends"

favorites is assigned I like cooking, my
family, and my friends

2 favorites = favorites.replace(",", "") favorites is assigned favorites dot
replace comma empty string

3 print(favorites) print favorites
[I like cooking my family and my friends]

After rewriting the original string (line 1), we use the method .replace(), where the first argument
is a comma—the substring we want to remove—and the second argument is an empty string. With
this trick, we remove the unwanted substring and we do not substitute it with any new substring
(line 2). Finally, we print favorites as a check (line 3). Fun parallel: How does the meaning of the
sentence change when you remove the comma?

4. Searching a substring in a string
How do we find a substring in a string? Let’s see below!
• Given the following string:

[12]: 1 us = "we are" us is assigned "we are"

We start with a short string named us (line 1).
• Find the positions of the character e using the method .find():

[13]: 1 positions = us.find("e") positions is assigned us dot find e
2 print(positions) print positions
1

We use the method .find() that takes the substring that we want to find as an argument—in our
case, "e". We assign the outcome to the variable positions (line 1) and we print it (line 2). Anything
unexpected in the outcome? We get only the position 1, whereas in us, "e" is at positions 1 and 5. This
happens because the method .find() returns only the position of the first substring that it finds.
How can we find the position of all substrings "e"? Try to answer this question before looking into the
solution below!
• Find the positions of the character e using an alternative way:

[14]: 1 # initializing positions initializing positions
2 positions = [] positions is assigned empty list
3
4 # find all positions of e find all positions of e
5 for i in range(len(us)): for i in range len of us
6 if us[i] == "e": if us in position i is equal to e
7 positions.append(i) positions dot append i
8 print(positions) print positions
[1, 5]

We initialize the variable positions—which will contain the positions of all the substrings e—as an
empty list (line 2). Then, we create a for loop through indices to browse all the positions in us (line

229

Part 7. Dictionaries and overview of strings

5). If the character at the current position i is equal to "e" (line 6), then we append i to the list
positions (line 7). Finally, we print positions to check for correctness (line 8).

What happens if we look for a substring that is not in the string? Let’s have a look!
• Find the positions of the character f using the method .find():

[15]: 1 positions = us.find("f") positions is assigned us dot find f
2 print(positions) print positions
-1

Similarly to cell 13, we use the method .find() to look for the substring "f" in the string us, and we
assign the outcome to the variable positions (line 1). Then, we print positions (line 2). The outcome
is -1. Thus,whenwe search for a substring that is not in the string, .find() returns -1. This is a trick
that is often used in conditions, such as: if us.find("f") == -1: print("Character not found!").

5. Counting the number of substrings in a string
• Given the following string:

[16]: 1 hobbies = "I like going to the movies,
traveling, and singing"

hobbies is assigned I like going to the
movies, traveling, and singing

We start with a string containing text about hobbies (line 1).
• Count the numbers of substrings ing using the method .count():

[17]: 1 n_substrings = string.count("ing") n substrings is assigned string dot count ing
2 print(n_substrings) print n substrings
4

We use themethod .count() which takes the substring whose occurrence we want to count—in our
case "ing"—as an argument, and we save the outcome in the variable n_substrings (line 1). Then we
print the result (line 2). The substring is present 4 times: I like going to the movies, traveling,
and singing.

6. String to list and back
It can be convenient to separate the words in a string into list elements or to merge strings that are
elements of a list into a single string. Let’s see how to do both operations.
• Given the following string:

[18]: 1 string = "How are you" string is assigned How are you

We start with a string containing three words: How, are, and you (line 1).
• Transform the string into a list of strings where each element is a word:

[19]: 1 list_of_strings = string.split() list of strings is assigned string dot
split

2 print(list_of_strings) print list of strings
['How', 'are', 'you']

230

Chapter 27. Overview of strings

Words are separated by spaces. Thus, we can use the method .split(" ") with a space as an argu-
ment. However, an empty string " " is the default argument for .split(), thus we can omit it—in other
words, writing .split() is equivalent to writing .split(" "). We assign the outcome to the variable
list_of_strings (line 1), and we print it (line 2). As you can see, list_of_strings
is a list containing three elements, each of them corresponding to one of the words in string.
How do we go back to a list? Let’s learn it in the next cell!
• Transform the list of strings into a string using the method .join():

[20]: 1 string_from_list = " ".join(list_of_strings) string from list is assigned space dot
join list of strings

2 print(string_from_list) print string from list
How are you

The method .join() connects the elements of the list in the argument, separating them with the
string it refers to. In our case, the list in the argument is list_of_strings, which contains the three
strings "How", "are", and "you". The string to which .join() is applied is a space—that is, " " (line 1).
The command might look peculiar at first because we apply the method directly to the string value—
" ".join(). As an alternative, we could assign the space to a variable—space = " "—and then apply
the method to the variable—space.join(). To conclude the task, we print list_of_strings to check
for correctness (line 2).

7. Changing character cases
There are several options when changing character cases. Let’s have a quick look at them with the
simple example below.
• Given the following string:

[21]: 1 greeting = "Hello! How are you?" greeting is assigned Hello! How are you?

We start with a string where the first character of "Hello" and "How" are uppercase and all the other
characters are lowercase.
• Modify the string to uppercase and lowercase; change to uppercase only the first character of the
string, and then each word of the string; finally, invert the cases:

[22]: 1 # uppercase uppercase
2 print(greeting.upper()) print greeting dot upper
3 # lowercase lowercase
4 print(greeting.lower()) print greeting dot lower
5 # change the first character of the

string to uppercase
change the first character of the string
to uppercase

6 print(greeting.capitalize()) print greeting dot capitalize
7 # change the first character of each word

to uppercase
change the first character of each word
to uppercase

8 print(greeting.title()) print greeting dot title

231

Part 7. Dictionaries and overview of strings

9 # invert cases invert cases
10 print(greeting.swapcase()) print greeting dot swapcase
HELLO! HOW ARE YOU?
hello! how are you?
Hello! how are you?
Hello! How Are You?
hELLO! hOW ARE YOU?

To change the string to uppercase, we use the method .upper() (line 2) and we get: HELLO! HOW ARE
YOU?. Inversely, to change the string to lowercase, we use .lower() (line 4) and we obtain: hello!
how are you?. To change to uppercase only the first character of the string, we use the method
.capitalize() (line 6), and the string becomes Hello! how are you?, where only the H of Hello is
uppercase. To change to uppercase the first characters of all the words, we use the method .title()
(line _8). In our example, the outcome is Hello! How Are You? , where H, H, A, and Y are uppercase. Fi-
nally, to swap characters from uppercase to lowercase and vice versa, we use the method .swapcase()
(line _10). We obtain: hELLO! hOW ARE YOU?, where h from hELLO and h from hOW are lowercase, and
all the other characters are uppercase.

8. Printing variables
Printing is particularly useful in coding to check for correctness of operations and algorithms. In the
previous chapters, we learned that the arguments of the built-in function print() can be either con-
catenated variables (Chapter 2), variables separated by commas (Chapter 25), or a string in combination
with the method .format() (Chapter 25). Beyond refreshing these printing modalities and pointing
out some peculiarities, we will learn f-strings and easier ways to better print numerical variables. Let’s
start!
• Given the following string:

[23]: 1 part_of_day = "morning" part of day is assigned morning

We start with the variable part_of_day containing the string "morning" as a value (line 1).
• Print Good morning! in 4 different ways, using (1) string concatenation, (2) comma separation, (3) the
method .format(), and (4) f-strings:

[24]: 1 # (1) string concatenation (1) string concatenation
2 print("Good " + part_of_day + "!") print Good concatenated with part of day

concatenated with !
3 # (2) variable separation by comma (2) variable separation by comma
4 print("Good", part_of_day, "!") print Good part of day !
5 # (3) the method .format() (3) the method .format()
6 print("Good {}!".format(part_of_day)) print Good placeholder ! dot format part

of day
7 # (4) f-strings (4) f-strings
8 print(f"""Good {part_of_day}!""") print f Good part of day !
Good morning!
Good morning !
Good morning!
Good morning!

To print Good morning! using concatenation, we concatenate part_of_day to two strings:

232

Chapter 27. Overview of strings

"Good " and "!" (line 2). Note that "Good " contains a space as the last character; without that space,
we would print "Goodmorning!". As an alternative to concatenation, we can use comma separation—
that is, we separate the variables by comma (line 4). Note that the printed line contains a space between
morning and the exclamation mark (morning !). This happens because in comma-separated printing,
variables are always separated by a space. Another way is to use the string method
.format(), which places its argument in the placeholder {} in the string (line 6). In our case, the
value of part_of_day—which is the argument of .format()—is positioned in the curly brackets in "Good
{}!". A last method is to use f-strings, where f stands for formatted. Within the round brackets of
print(), we write: (1) f, (2) tree opening double quotes """, (3) what we want to print, and (4) tree
closing double quotes """. In our case, what we want to print is composed of some characters (e.g.,
Good and !) and a variable that must be enclosed in a pair of curly brackets—that is, {part_of_day}
(line 8).

What if we want to print a string combined with a numerical variable? Let’s have a look!
• Given a string and a numerical variable:

[25]: 1 part_of_day = "morning" part of day is assigned morning
1 time_of_day = 10 time of day is assigned ten

We consider two variables: part_of_day—containing the string "morning" (line 1)—and
time_of_day— containing the integer 10 (line 2).
• Print
Good morning!
It's 10a.m.
using the same four methods above (note that the sentences are on two separate lines):

[26]: 1 # (1) string concatenation (1) string concatenation
2 print("Good " + part_of_day + "!\nIt's "

+ str(time_of_day) + "a.m.")
print Good concatenated with part of
day concatenated with ! backslash n
It's concatenated with str time of day
concatenated with a.m.

3 # (2) variable separation by comma (2) variable separation by comma
4 print("Good", part_of_day, "!\nIt's",

time_of_day, "a.m.")
print Good part of day ! backslash n It's
time of day a.m.

5 # (3) the method .format() (3) the method .format()
6 print("Good {}!\nIt's {}a.m."

.format(part_of_day, time_of_day))
print Good placeholder ! backslash n It's
placeholder a.m. dot format part of day
time of day

7 # (4) f-strings (4) f-strings
8 print(f"""Good {part_of_day}! print f Good part of day !
9 It's {time_of_day}a.m.""") It's time of day a.m.
Good morning!
It's 10a.m.
Good morning !
It's 10 a.m.
Good morning!
It's 10a.m.
Good morning!
It's 10a.m.

When using string concatenation (line 2), we have to consider a few aspects. First, we embed the escape

233

Part 7. Dictionaries and overview of strings

character \n—which indicates newline—into the string "!\nIt's", where ! is the last character of the
first line, and It's is the beginning of the second line. Second, since time_of_day is an integer, we
need to transform it into a string by using the built-in function str() for concatenation. And finally,
we have to leave a space after Good and It's to have the correct spaces in the printout. When using
comma separation (line 4), the code looks similar to concatenation. However, we do not need to change
the numerical variable time_of_day into a string. Also, we do not need to add spaces in the strings
"Good" and "!\nIt's". In the printout, we can notice again that there is a space between morning and
!, and between 10 and a.m.. When using .format(), we have to include two placeholders, one for
part_of_day and one for time_of_day. Note that both variables are arguments of .format() (line 6).
Finally, when using f-strings, we include the two variables directly in between their placeholders—that
is,{part_of_day} and {time_of_day}. We also can go to the new line without having to write \n, but
just by writing the text on two consecutive lines (lines _8–9).
What about printing numbers with a reduced number of decimals? Let’s see the following examples.
• Given the numerical variable:

[27]: 1 number = 1.2345 number is assigned 1.2345

We start with a variable containing a float with 4 decimals (line 1).
• Print The number is 1.23—note only the first two decimals—using the four methods above:

[28]: 1 # (1) string concatenation (1) string concatenation
2 print("The number is " + str(round(number, 2))) print The number is concatenated

with str round number two
3 # (2) variable separation by comma (2) variable separation by comma
4 print("The number is", round(number, 2)) print The number is round number

two
5 # (3) the method .format() (3) the method .format()
6 print("The number is {:.2f}".format(number)) print The number is colon dot two f

dot format number
7 # (4) f-strings (4) f-strings
8 print(f"""The number is {number:.2f}""") print f The number is number colon

dot two f
The number is 1.23
The number is 1.23
The number is 1.23
The number is 1.23

When using string concatenation (line 2) or comma separation (line 4), we can use the built-in function
round(), which takes two arguments: the variable that we want to round (number) and the number
of decimals that we want to keep (2). As we have seen previously, when using concatenation, we need
to transform the numerical variable into a string, whereas we do not when using comma separation.
When using .format(), we add :.2f in the placeholder, where : indicates the start of the formatted
part and .2f specifies that we want to keep 2 floating digits after the dot (line 6). A similar formatting
is present in f-strings, with the addition that before the colon :, we need to indicate the variable to
print—that is, number (line 8).
At this point, you might wonder, Which of these four ways should I use when printing? The an-
swer is the one that you prefer! It is just recommended to use one single way thought your code for
consistency.

In this chapter, we have summarized or introduced several ways of dealing with strings, using opera-

234

Chapter 27. Overview of strings

tions such as concatenation, assignment, or slicing, and methods. Strings have a total of 47 methods,
and we have learned 11 of them so far. We will learn 6 more methods in Chapter 30. For the remaining
methods, you can consult the many resources that you’ll find at the end of this chapter.

Complete the table

In this chapter, you have learned or refreshed 11 string methods. Summarize what they do by
completing the following table (continued on the next page).

String method What it does

.capitalize()

.count()

.find()

.format()

.join()

.lower()

.replace()

.split()

.swapcase()

.title()

.upper()

Recap
• In strings, slicing and the “arithmetic” operations (concatenation and replication) work the same way
as for lists.

• Strings are immutable and thus assignment is not possible.
• Strings have 47 methods. Of these, the 11 methods learned so far are: .capitalize(), .count(),
.find(), .format(), .join(), .lower(), .replace(), .split(), .swapcase(), .title(), and .upper().

• There are at least four ways to combine strings and numerical variables when printing: concatena-
tion, comma separation, method .format(), and f-strings.

• To round a number to a wanted number of decimals, we can use the built-in function round().

235

Part 7. Dictionaries and overview of strings

Escape characters
Escape characters are special characters that can be used when creating strings or when print-
ing. Let’s see some examples:
• \n (newline): It is used to print a new line. All the characters or variables after \nwill be printed
on a new line. For example:

[1]: 1 print("Shopping list:\napples\noranges") Shopping list: apples oranges
Shopping list:
apples
oranges

• \t (horizontal tab): It is used to create a tab, that is, to indent text towards the right. For
example:

[2]: 1 print("Dear friend,") print Dear friend,
2 print("\tI hope you are doing fine. I have

some news...")
print I hope you are doing
fine. I have some news...

Dear friend,
I hope you are doing fine. I have some news...

• \" (double quote): It is usedwhen you need to print double quotes in string delimited by double
quotes. For example:

[3]: 1 print("The wise said: \"To live a happy
life...\"")

print The wise said: "To live
a happy life..."

The wise said: "To live a happy life..."

• \' (single quote or apostrophe): Similarly to above, it is used to print a single quote when the
string is enclosed in between single quotes. For example:

[4]: 1 print('It\'s the best time!') print It's the best time!
It's the best time!

Let’s code!

1. Famous quotes. Given the following string:

quote = "The future belongs to those who believe in the beauty of their dreams -
Eleanor Roosevelt"

Use string methods to:
a. Remove to those who.
b. Replace belongs with until.
c. Add seems impossible after future.
d. Remove The future.
e. Replace believe in the beauty of their dreams with it's done.
f. Replace Eleanor Roosevelt with Nelson Mandela.

236

Chapter 27. Overview of strings

g. Add It always at the beginning of the string.
What quote will you get at the end? Make sure that words are separated by spaces.

2. Commonalities. Given the following strings:

dessert = "lemon meringue pie"

sweet = "honeypot"

a. What characters do the two strings have in common? Save the common characters in a list.
b. Howmany times do the common characters appear in dessert? Save the result in a dictionary
created in two different ways, that is, using (1) a dictionarymethod, and (2) a stringmethod.

3. Palindromes. Palindromes are words that read the same backward as forward, such as anna or
madam. Given the following list of strings:

words = ["noon", "dog", "dad", "elephant", "jungle", "otto", "night", "bright",
"kayak", "yeah", "wow"]

Save palindrome words in a new list of strings. Hint: Consider using string slicing.

237

Part 7. Dictionaries and overview of strings

Appendix: String methods
In the following table, you can find all the 47 string methods available in Python. The methods with an
asterisk are presented in this book—including the ones that will be introduced in Chapter 30.

String method What it does
.capitalize()* Converts the first character to uppercase and all the others to lowercase

E.g.: print("hello".capitalize()) returns: Hello
.casefold() Converts a string into lowercase. Differently from .lower(), it can handlemore complex

cases.
E.g.: print("Straße".casefold()) returns: "strasse".
print("Straße".lower()) returns: "straße" (Straße is street in German)

.center() Returns a string centered within a given number of characters.
E.g.: print("hi".center(6)) returns: " hi "

.count()* Returns the number of times a specified value is present in a string
E.g.: print("singing".count("ing")) returns: 2

.encode() Returns an encoded version of the string using the specified encoding—encodings de-
fine how characters are rendered on a screen.
E.g.: print("hello".encode(encoding='utf-8')) returns: .b'hello'

.endswith() Returns true if the string ends with the specified value.
E.g.: print("hello".endswith('lo')) returns: True

.expandtabs() Make the tabs in the string of the length defined by the arguments.
E.g.: print("h\te\tl\tl\to".expandtabs(3)) returns:h e l l o

.find()* Return the first position of a substring
E.g.: print("singing".find("ing")) returns: 1

.format()* Formats the string using the specified arguments
E.g.: print("Hello, {}".format("how are you?")) returns: Hello, how are you?

.format_map() Formats specified values—defined in a dictionary—in a string
E.g.: print("My dog name is age years old".format_map({"name":"Ninja",
"age":7})) returns: My dog Ninja is 7 years old

.index()* Finds the first substring of a substring
E.g.: print("hello".index("l")) returns: 2

.isalnum()* Checks if all characters in the string are alphanumeric
E.g.: print("123hello".isalnum()) returns: True

.isalpha()* Checks if all characters in the string are alphabetic
E.g.: print("hello".isalpha()) returns: True

.isascii() Checks if all characters in the string are ASCII.
E.g.: print("ë".isascii()) returns: False

.isdecimal() Checks if all characters in the string are decimals
E.g.: print("123".isdecimal()) returns: True

.isdigit()* Checks if all characters in the string are digits
E.g.: print("123".isdecimal()) returns: True

.isidentifier() Checks if the string is a valid identifier, that is, if it only contains alphanumeric letters
(a–z and 0–9) or underscores (_), and it does not start with a number nor contain spaces
E.g.: print("my string".isidentifier()) returns: False

.islower()* Checks if all characters in the string are lowercase
E.g.: print("hello".islower()) returns: True

.isnumeric() Checks if all characters in the string are numeric
E.g.: print("123".isnumeric()) returns: True

.isprintable() Checks if all characters in the string are printable
E.g.: print("\n".isprintable()) returns: False

238

Chapter 27. Overview of strings

.isspace() Checks if all characters in the string are space
E.g.: print(" ".isspace()) returns: True

.istitle()* Checks if the string is title-cased
E.g.: print("Hello, How Are You?".istitle()) returns: True

.isupper()* Checks if all characters in the string are uppercase
E.g.: print("HELLO".isupper()) returns: True

.join()* Joins the strings of a list with the specified separator
E.g.: print(", ".join(["hello", "hi"])) returns: hello, hi

.ljust() Left-justifies the string
E.g.: print("hello".ljust(10, '-')) returns: hello-----

.lower()* Converts the string to lowercase
E.g.: print("HELLO".lower()) returns: hello

.lstrip() Removes characters at the beginning of the string (l is for left)
E.g.: print("hhello".lstrip("h")) returns: ello

.maketrans() Transforms the transformation of the characters of the first argument into the char-
acters of the second argument. To print the outcome, we need to use the method
.translate()
E.g.: transformation = "bake".maketrans("b","c");
print("bake".translate(transformation)) returns: cake

.partition() Partitions the string into tuple elements
E.g.: print("hello, how are you?".partition(" ")) returns: ('hello,', ' ', 'how
are you?')

.removeprefix() Removes the specified prefix from the string
E.g.: print("hello, how are you?".removeprefix("hello, ")) returns: how are
you?

.removesuffix() Removes the specified suffix from the string
E.g.: print("hello, hi".removesuffix(", hi")) returns: hello

.replace()* Replaces substrings in strings
E.g.: print("Hello, how is she?".replace("she", "he")) returns: Hello, how is
he?

.rfind() Finds the last substring of a string (r is for right)
E.g.: print("hello".rfind('l')) returns: 3

.rindex() Finds the last substring of a string
E.g.: print("hello".rindex('ll')) returns: 2

.rjust() Right-justifies the string
E.g.: print("hello".rjust(10, '-')) returns: -----hello

.rpartition() Partitions the string into tuple elements starting from the end
E.g.: print("hello, how are you?".rpartition(" ")) returns: ('hello,', ' ',
'how are you?')

.rsplit() Splits the string from the end
E.g.: print("hello, how are you".rsplit(",")) returns: ['hello', ' how are
you']

.rstrip() Removes characters from the end of the string
E.g.: print("!!!hello!!!".rstrip("!")) returns: !!!hello

.split()* Splits the string into a list
E.g.: print("hello, how are you?".split(",")) returns: ['hello', ' how are
you?']

.splitlines() Splits the string at line breaks
E.g.: print("hello\nhow are you?".splitlines()) returns: ['hello', 'how are
you?']

239

Part 7. Dictionaries and overview of strings

.startswith() Checks if the string starts with the specified prefix
E.g.: print("hello, how are you?".startswith("hello")) returns: True

.strip() Removes characters on the left and on the right
E.g.: print("!!!hello!!!".strip("!")) returns: hello

.swapcase()* Swaps the case of all characters in the string
E.g.: print("Hello, How Are You?".swapcase()) returns: hELLO, hOW aRE yOU?

.title()* Converts the string to title case
E.g.: print("hello, how are you?".title()) returns: Hello, How Are You?

.translate() Maps the character of a string through a given translation table (see .maketrans())
E.g.: transformation = "bake".maketrans("b","c");
print("bake".translate(transformation)) returns: cake

.upper()* Converts the string to uppercase
E.g.: print("hello".upper()) returns: HELLO

.zfill() Adds 0 at the beginning of the string until the string reaches the defined length
E.g.: print("5".zfill(4)) returns: 0005

240

PART 8
FUNCTIONS
In this part, you’ll apply the coding syntax and computational thinking you have
learned so far to build reusable units of code called functions. Let’s dive in!

28. Printing Thank you cards
Function inputs

To this point, we’ve learned Python data types—lists, strings, Booleans, dictionaries, integers, and
floats. We’ve also learned how to combine these data types with operators—assignment, membership,
arithmetic, comparison, and logical—to create commands—that is, statements, if/else conditions,
for loops, and while loops. The next step is to learn how to combine commands into units of code
called functions. We are already somewhat familiar with functions because we have frequently used
Python built-in functions, such as print(), len(), range(), etc. In this Part, wewill learn what’s behind
functions and how to write them. Let’s begin in this chapter by learning the components of a function
and how to provide inputs. Let’s start! Follow along in Notebook 28.

1. Basic Thank you cards
• You recently hosted a party, and you want to send Thank you cards to those who attended. Create
a function that takes a first name as an argument and prints a Thank you message containing an
attendee’s name (e.g., Thank you Maria):

[]: 1 def print_thank_you (first_name): def print thank you first name
2 """Prints a string containing

"Thank you" and a first name
Prints a string containing Thank you and
a first name

3
4 Parameters Parameters
5 ----------
6 first_name : string first name : string
7 First name of a person First name of a person
8 """
9
10 print("Thank you", first_name) print Thank you first name

• Print two Thank you cards:

[]: 1 print_thank_you ("Maria") print thank you Maria

[]: 1 print_thank_you ("Xiao") print thank you Xiao

What can you deduce about functions from this example? Get some hints by completing the following
exercise!

True or false?

1. def is the keyword that introduces a function definition T F
2. first_name is a function input T F
3. Function documentation is enclosed in single double quotes T F
4. print("Thank you", first_name) (line 10) is executed when we run the first cell T F
5. print_thank_you ("Maria") and print_thank_you ("Xiao") are function calls T F

243

Part 8. Functions

Computational thinking and syntax
Let’s start by analyzing how a function works. Let’s run the first cell:

[1]: 1 def print_thank_you (first_name): def print thank you first name
2 """Prints a string containing

"Thank you" and a first name
Prints a string containing Thank you and
a first name

3
4 Parameters Parameters
5 ----------
6 first_name : string first name : string
7 First name of a person First name of a person
8 """
9
10 print("Thank you", first_name) print Thank you first name

What happens? Apparently nothing! Let’s run the two following cells:

[2]: 1 print_thank_you ("Maria") print thank you Maria
Thank you Maria

[3]: 1 print_thank_you ("Xiao") print thank you Xiao
Thank you Xiao

For each cell, a message is printed that says "Thank you" followed by the name of a person—that is,
"Maria" in cell 2 and "Xiao" in cell 3. So, how do functions work?
In cell 1, there is a function definition, which specifies what a function does. When we run cell 1, we
just tell our computer to “memorize” the function. To actually execute the function—that is, to make
it do what we want it to do—we must call the function, which is what we do at cells 2 and 3—each of
them containing a function call. If we do not call a function, then the function will never be executed!
How do we get "Thank you Maria" after running cell 2 and "Thank you Xiao" after running cell 3?
Let’s understand it with the help of Figure 28.1.

Figure 28.1. Path of a function input.

Let’s start with the printed text "Thank you Maria" (left side of Figure 28.1). In cell 2, we provide the
string "Maria" to the function call as an input—i.e., print_thank_you("Maria"). Whenwe run the cell,

244

Chapter 28. Printing Thank you cards

"Maria" passes from the call to the variable first_name located in the function header in cell 1, line 1
(yellow arrow). The variable first_name—which now contains the value "Maria"—is then used in the
command at line 10 (black line), which produces the print "Thank you Maria" (orange arrow). Let’s
now see how we get "Thank you Xiao" (right side of Figure 28.1). Similarly to before, in cell 3, we call
the function print_thank_you() with the string "Xiao" as an input. When we run the cell, the value
"Xiao" is assigned to the variable first_name in the function header (yellow line), then used in the
function command (black line), and finally printed to screen (orange line). In summary, when we call
a function, we pass the variables from a function call (cell 2 or 3) to a function definition (cell 1) as
an input. Then, the variable will be used in the function commands. To be more precise, in Python,
we call the input variable parameter when it is in the function definition—first_name in cell 1 is a
parameter—and argument when it is in the function call—"Maria" in cell 2 is an argument, as well
as "Xiao" in cell 3. Finally, note that the same mechanism applies when we call any Python built-in
function. For example, when we write len("hello"), we pass the argument "hello" to the definition
of len(), which has a syntax similar to the function in cell 1 and contains commands that count the
number of characters.

Let’s now look into function syntax. In cell 1, we define the function print_thank_you(). Any function
definition—which we usually just call a function—is composed of two parts: a header (line 1) and a
body (lines 2–10). The header is made of: (1) keyword def; (2) function name; (3) parameters embedded
in round brackets; and (4) a colon (line 1). Function names follow the same rules as variable names, that
is, they are lowercase and the words that compose them are separated by an underscore.

A function body contains two components: (1) documentation (lines 2–8) and (2) code (line 10), and it
is always indentedwith respect to the header. In Python, the documentation is embedded in between
double quotes repeated three times ("""; lines 2 and 8) and is called docstring, which is a compact
word for “documentation string”. A function documentation can follow various styles, and in this book
we will use the NumPy style, which has the following structure:
• Short summary (line 2): A one line summary about what the function does. It is written next to the
three opening double quotes.

• Parameters (lines 4–7): A description of the parameters—that is, the inputs—of the function. It con-
tains: (1) the title Parameters (line 4); (2) a sequence of minus signs that act as an underline (line 5);
and (3) a list of parameters (lines 6–7)—there is only one parameter in this example; there will bemore
in the coming examples. Each parameter is described on two consecutive lines. In the first line, we
include: (1) a parameter name (first_name); (2) a space; (3) a colon; (4) a space; and (5) a parameter
type (i.e., string) (line 6). In the second line, we write a short description of the parameter. Note
that this line is indented.

• Other specifications that we will see in the next chapter.

Finally, the code component of a function body can contain as many lines of code as needed to execute
the desired task—in this initial example, there is only one command (line 10).
Let’s conclude this first example by providing a formal definition of function:

A function is a block of code that accomplishes a specific task

What about the inputs? Must a function have inputs? No, there can be functions without inputs (see
exercise 4 in the Let’s code session at the end of this chapter). Can a function contain more than one
input? Yes! Let’s look into the next example—the differences with the function in cell 1 are underlined.

245

Part 8. Functions

2. Formal Thank you cards
• After a second thought, you decide that it is more appropriate to print formal Thank you cards.
Modify the previous function to take three arguments—prefix, first name, and last name—and to
print a thank you message containing them (e.g., Thank you Mrs Maria Lopez):

[4]: 1 def print_thank_you (prefix,
first_name, last_name):

def print thank you prefix first name
last name

2 """Prints a string containing
"Thank you" and the inputs

Prints a string containing Thank you and
the inputs

3
4 Parameters Parameters
5 ----------
6 prefix : string prefix : string
7 Usually Ms, Mrs, Mr Usually Ms, Mrs, Mr
8 first_name : string first name : string
9 First name of a person First name of a person
10 last_name : string last name : string
11 Last name of a person Last name of a person
12 """
13
14 print("Thank you", prefix,

first_name, last_name)
print Thank you prefix first name last
name

• Print two formal Thank you cards:

[5]: 1 print_thank_you ("Mrs", "Maria","Lopez") print thank you Mrs Maria Lopez
Thank you Mrs Maria Lopez

[6]: 1 print_thank_you ("Mr", "Xiao","Li") print thank you Mr Xiao Li
Thank you Mr Xiao Li

Computational thinking and syntax
In this function with several inputs (cell 4), we observe three changes with respect to the same func-
tion with one single input (cell 1). First, in the function header, there are now three parameters—
prefix, first_name, and last_name—which are separated by comma. Then, in the docstrings (lines
6–11), we describe each parameter in the same order as in the function header—that is, first prefix,
then first_name, and finally last_name. Note that for each parameter we use the same syntax that we
described above—that is, parameter name and type in the first line, and parameter description in the
second line. Finally, we must use all parameters in the function code. In this example, the parameters
are used in one single line of code to print the desired message (line 14), but in general, parameters can
be used in one or more lines of code.

What about the function calls (cells 5 and 6)? When we call the function, we have to make sure that we
insert the inputs in the same order as in the function header—that is, first prefix, then first_name,
and finally last_name. What happens if one of the arguments ismissing like in the example below?

246

Chapter 28. Printing Thank you cards

[6]: 1 print_thank_you ("Mr", "Xiao")

TypeError Traceback (most recent call last)
Cell In[6], line 1

> 1 print_thank_you("Mr, "Xiao")
TypeError: print_thank_you() missing 1 required positional argument: 'last_name'

We get an error message saying that the function is missing 1 required positional argument:
'last_name'. This means that we did not write the third argument in the call. How can we modify
the function to avoid this error? Let’s have a look at cells 7–9! Like before, the function modifications
are underlined.

3. Last name missing!
• You are very happy with the Thank you cards, but you suddenly realize that some participants did not
provide their last names! Adapt the function so that the last name has an empty string as a default
value:

[7]: 1 def print_thank_you (prefix,
first_name, last_name = ""):

def print thank you prefix first name
last name is assigned empty string

2 """Prints a string containing
"Thank you" and the inputs

Prints a string containing Thank you and
the inputs

3
4 Parameters Parameters
5 ----------
6 prefix : string prefix : string
7 Usually Ms, Mrs, Mr Usually Ms, Mrs, Mr
8 first_name : string first name : string
9 First name of a person First name of a person
10 last_name : string last name : string
11 Last name of a person. The default

value is an empty string
Last name of a person. The default value
is an empty string

12 """
13
14 print("Thank you", prefix,

first_name, last_name)
print Thank you prefix first name last
name

• Print two Thank you cards, one with a last name and one without a last name:

[8]: 1 print_thank_you ("Mrs", "Maria", "Lopez") print thank you Mrs Maria Lopez
Thank you Mrs Maria Lopez

[9]: 1 print_thank_you ("Mr", "Xiao") print thank you Mr Xiao
Thank you Mr Xiao

Computational thinking and syntax
In the function header, we assign a default value to the input that can be missed when calling the
function. In our case, we assign an empty string to the variable last_name (line 1). We call last_name

247

Part 8. Functions

default parameter, and we specify the default value in its description in the docstrings (line 11).
What happens when we call the function? If we provide all three arguments (cell 8), then the function
works exactly like its version in cell 4—that is, "Mrs" is passed to prefix, "Maria" to first_name, and
"Lopez" to last_name. If we provide only prefix and first_name but not last_name (cell 9), the func-
tion prints "Mr" for prefix and "Xiao" for first_name, and the default empty string for last_name—we
do not see it printed! What if the missing parameter when calling the function in cell 4 is not the last
one but, for example, the first one—i.e., prefix? Let’s have a look:

[6]: 1 print_thank_you ("Xiao", "Li")

TypeError Traceback (most recent call last)
Cell In[6], line 1

> 1 print_thank_you("Xiao, "Li")
TypeError: print_thank_you() missing 1 required positional argument: 'last_name'

We skipped the prefix, but the error tells us that we skipped the last name! This is because the function
always assumes that the missing argument is the last one. If we want to skip arguments in other
positions—that is, prefix or first_name—then we have to make a final modification to our function,
as you can see underlined in the code below.

4. Prefix and/or first name missing!
• Finally, you realize that prefix and/or first name are alsomissing for some guests. Modify the function
accordingly:

[10]: 1 def print_thank_you (prefix = "",
first_name = "", last_name = ""):

def print thank you prefix is assigned
empty string first name is assigned
empty string last name is assigned empty
string

2 """Prints each input and a string con-
catenating "Thank you" and the inputs

Prints a string containing Thank you and
the inputs

3
4 Parameters Parameters
5 ----------
6 prefix : string prefix : string
7 Usually Ms, Mrs, Mr. The default

value is an empty string
Usually Ms, Mrs, Mr. The default value
is an empty string

8 first_name : string first name : string
9 First name of a person. The default

value is an empty string
First name of a person. The default
value is an empty string

10 last_name : string last name : string
11 Last name of a person. The default

value is an empty string
Last name of a person. The default value
is an empty string

12 """
13
14 print("Prefix:", prefix) print Prefix: prefix
15 print("First name:", first_name) print First name: first name
16 print("Last name:", last_name) print Last name: last name
17 print("Thank you", prefix,

first_name, last_name)
print Thank you prefix first name last
name

248

Chapter 28. Printing Thank you cards

• Print a Thank you card where the first name is missing:

[11]: 1 print_thank_you (prefix = "Mrs",
last_name = "Lopez")

print thank you prefix is assigned
Mrs last name is assigned Lopez

Prefix: Mrs
First name:
Last Name: Lopez
Thank you Mrs Lopez

• Print a Thank you card where the prefix is missing:

[12]: 1 print_thank_you (first_name = "Xiao",
last_name = "Li")

print thank you first name is
assigned Xiao last name is assigned
Li

Prefix:
First name: Xiao
Last Name: Li
Thank you Xiao Li

Computational thinking and syntax
In the function header, we assign a default value to each parameter—in our case, an empty string (line
1)—and we add this information to the docstrings (lines 7 and 11). In this example, we also print each
parameter to clarify what happens when we call the function (lines 14–16), as you will see in a bit.
What about the function calls? When we call print_thank_you with the arguments prefix="Mrs"
and last_name="Lopez" (cell 11), first_name is automatically assigned its default value, that is, an
empty string—see the print from line 15. Similarly, when we call the function with the arguments
first_name="Xiao" and last_name="Li" (cell 12), prefix is assigned the default empty string—see the
print from line 14. In addition, in the print Thank you Mrs Lopez (from line 17), there are two spaces
between Mrs and Lopez. This occurs because when we print using comma separation, a space is au-
tomatically inserted between variables. Thus, one space separates Mrs and the first name—which is
missing—and one space separates the first name and Lopez. In the same way, in the print Thank you
Xiao Li, there is an extra space due to the absence of a prefix. What if wewant to be precise and ensure
that there is one single space between the variables? We could write an if/elif/else construct like
the following: if prefix == "": print("Thank you", first_name, last_name) elif
first_name=="": print("Thank you", prefix, last_name) else: print("Thank you", prefix, first_name).
Finally, do we always need to provide default values to the parameters in a function? Not necessarily,
especially when there are no appropriate default values or when it’s essential that all arguments are
specified when calling the function.

Why do we create functions?
At this point, you might wonder, why do we need to create functions? Can we not just write the
print() command whenever we need it? The functions in cells 1, 4, and 7 contain only a single line
of code, so writing a function might seem unnecessary. However, consider the function in cell 10. It
has four lines of code, and if we want to reuse them in several cases, we have to keep copying and
pasting. As you might remember, minimizing copy-pasting is crucial not only because it is tedious, but

249

Part 8. Functions

doing so also reduces the risk of errors. Grouping lines of code into a function is a very efficient way
to reuse code across various parts of a project. In addition, functions help us divide and conquer tasks
(see Chapter 16). Each function should contain commands that solve one specific subtask, allowing us
to modularize our code—that is, breaking it into manageable chunks that are easier to read, modify,
and reuse.

Recap
• Functions are blocks of code that accomplish a specific task. They are crucial for code reuse and
modularization.

• A function comprises at least three components:
■ A header, which starts with the keyword def, followed by the name of the function, and round
brackets containing the parameters separated by comma. Parameters can have default values.

■ Docstrings, which describe what the function does and its parameters.
■ Code that solves a task.

• To call a function, we write the function name followed by round brackets containing the arguments
separated by comma.

• Parameters and arguments are function inputs. Technically, we call parameters the variables listed in
the function header, and arguments the variables in the function call.

• Docstrings are fundamental when writing and using functions and can be accessed using the built-in
function help()—see the In more depth session below.

Why is function documentation important?

Writing docstrings is fundamental for both our future selves and for others who may use our
code. When we write a function, there is a good chance that we will need to reuse it months
or even years later. Without function documentation, it could take us hours to recall what the
function does or the types of its inputs—and outputs, as youwill see in the next chapter. Investing
a few minutes in writing clear documentation can save us countless hours in the future!
Similarly, if somebody else needs to use our functions, they need to understand what the func-
tion does and the type and roles of its inputs and outputs. Have you ever tried to use an un-
documented function? It can be incredibly frustrating! Moreover, how do we access function
documentation? Do we always have to look at the function definition? Fortunately no! We can
use the built-in function help()! For example, let’s have a look at the documentation of the
function print_thank_you() that we created earlier in this chapter.

250

Chapter 28. Printing Thank you cards

[1]: 1 help (print_thank_you) help print thank you
Help on function print_thank_you in module __main__:

print_thank_you(prefix='', first_name='', last_name='')
Prints each input and a string containing "Thank you" and the inputs

Parameters

prefix: string

Usually Ms, Mrs, Mr. The default is an empty string
first_name: string

First name of a person. The default is an empty string
last_name: string

Last name of a person. The default is an empty string

As you can see, help() displays the docstrings we wrote in cell 10. Notice that help() requires
only the function name as an argument—without round brackets or parameters. Finally, be aware
that help() can be used for any functions, including Python built-in functions, like you can see
in the following example:

[2]: 1 help (len) help len
Help on built-in function len in module builtins:

len(obj, /)
Return the number of items in a container.

The description is a bit technical, but you can think of containers as data types like lists, strings,
or dictionaries. So, Return the number of items in a container means that len() gives us
the number of elements in a list, or characters in a string, or key/value pairs in a dictionary, etc.
We will learn more about returning in the next chapter.

Let’s code!

1. String cases. Write a function that prints a given string in lower case, upper case, title case, capital-
ized, and with swapped cases. Then, call the function twice. Do so once using a string made of one
word, and once using a string made of at least two words. Finally, call the function for each element
of the following list of strings using a for loop: summer_vacation = ["Hiking trails", "weekEnd
campIng", "enjoying nature", "fishing"].

2. String lengths. Write a function that takes a list of strings and an integer, and prints only the strings
whose length matches the given integer. Call the function using two different word lengths.

3. Multiple numbers. Write a function that takes a list of numbers and an integer, and prints only the
numbers divisible by the integer. If the user does not provide a number, then the function divides
by 2 by default. Call the function using two different divisors. Finally, call the function without a
divisor.

4. Doubling numbers. Write a function that asks a user for a number and prints a dictionary where

251

Part 8. Functions

the keys are numbers up to the input number, and values are the double of each key. Note that
the function does not take any argument. The input() function to ask for the number is inside the
function.
(Example user input: 5
Expected print: {1: 2, 2: 4, 3: 6, 4: 8, 5: 10})

252

29. Login database for an online store
Function outputs and modular design

In the previous chapter, we learned about functions and their inputs. In this chapter, we will dive into
function outputs. In addition, we’ll take a look at designing and organizingmultiple functions in a larger
project. Let’s tackle all this by solving the following task. Follow along with Notebook 29!

• You are the owner of an online store and need to securely store the usernames and passwords of
your customers. Create a database where usernames are composed of the initial of the customer’s
first name followed by their last name (e.g., “jsmith”), and passwords consist of a four-digit code.

First we have to create a database. A database is an organized collection of data that can be easily
accessed andmanaged. Examples of databases include an inventory at a grocery store, a library catalog,
or a phone contact list. In our case, the database will be a collection of customers’ usernames and
passwords. In general, simple databases can be implemented as dictionaries.
How would you create this database, and how would you insert usernames and passwords? What
variables would you use and of what types? Howmany functions would youwrite, andwhat would each
function do? Take some time to think about your solution before proceeding to the next paragraph!

To solve our task, the first thing to do is to “divide and conquer” by definingwhat variables and functions
we need to create. Let’s start with the variables and their data types. For each customer, we need two
strings—one for the username and one for the password. We’ll save them in a dictionary—that is, a
database—where the usernames will be the keys and the passwords will be the values. Let’s now think
about how to modularize the code—that is, how to organize it into functions. We can write three
functions: one to create a username, one to create a password, and one that calls the previous two
functions and adds the created usernames and passwords to a database. Let’s take a closer look at how
to implement this solution!

1. Creating a username
Read the following text and code and try to deduce what the code does.
• Write a function that creates a username composed of the initial of the first name and the last name:

[1]: 1 def create_username (first_name, last_name): def create username first name last
name

2 """Creates a lowercase username made of
initial of first name and full last name

Creates a lowercase username made of
initial of first name and full last
name

3
4 Parameters Parameters
5 ----------
6 first_name : string first name : string
7 First name of a person First name of a person
8 last_name : string last name : string
9 Last name of a person Last name of a person
10

253

Part 8. Functions

11 Returns Returns
12 -------
13 username : string username : string
14 Created username Created username
15 """
16
17 # concatenate initial of first name

and last name
concatenate initial of first name and
last name

18 username = first_name[0] + last_name username is assigned first name in
position 0 concatenated with last name

19 # make sure the username is lowercase make sure the username is lowercase
20 username = username.lower() username is assigned username dot lower
21
22 # return username return username
23 return username return username

• Test the function for two customers:

[2]: 1 username_1 = create_username("Julia", "Smith") username one is assigned create
username Julia Smith

2 print(username_1) print username one
jsmith

[3]: 1 username_2 = create_username("Mohammed", "Seid") username two is assigned create
username Mohammed Seid

2 print(username_2) print username two
mseid

What’s going on in the three cells above? Get some hints by solving the following exercise!

True or false?

1. The function has three parameters T F
2. In docstrings, we must specify the name, type, and description of the output (also

called return), like we do for the parameters
T F

3. The username is composed of first name and last name T F
4. return is the keyword used to return function outputs T F

Computational thinking and syntax
In cell 1, there is a function that creates a username. It takes two parameters—first_name and
last_name (line 1)—which are used to create a username in two consecutive steps. First, we concate-
nate the initial of the first name—that is, first_name in position 0—with the last name, and we assign
the result to the variable username (line 18). Then, we apply the method .lower() to username to en-
sure it is lowercase (line 20). What happens at line 23? We return username, meaning that we “push”
username out of the function. Where does it go? Let’s look into the function calls. In the first line
of cell 2, we call the function create_username() with the arguments "Julia" and "Smith". The two
arguments are automatically passed to the function header (cell 1, line 1). In the function, the first
character of "Julia" and the whole string "Smith" are concatenated into "JSmith" and saved in the

254

Chapter 29. Login database for an online store

variable username (line 18). In the following command, username is modified to lowercase and be-
comes "jsmith" (line 20). At the end of the function, we return username (line 23)—that is, "jsmith" is
sent out of the function—and we assign it to the variable username_1 (cell 2, line 1). Finally, we print
username_1 (cell 2, line 2). Similarly, in the second function call (cell 3, line 1), we pass the arguments
"Mohammed" and "Seid" to the function create_username() (cell 1, line 1), where the username "mseid"
is created (lines 18 and 20). The username is returned (line 23) to be assigned to the variable
username_2 (cell 3, line 1) and then printed (cell 3, line 2). As above, we use return to send a vari-
able from a function body back to the function call. You can see the path of the output variables in
Figure 29.1.

Figure 29.1. Path of a function output.

As is now clear, return is the keyword we use to transfer output variables from the function body
to the function call. But it has another important property: it marks the end of a function. This
means that any line of code written after return will never be executed! You might have realized that
you have already used numerous returned variables throughout our learning journey. For example,
the Python built-in function int(14.45) returns 14, which means that in the function int(), the last
line of code is something similar to return integer_number. Similarly, the method .lower() applied
to the string "JSmith" returns "jsmith" because the last line of code is something similar to return
lower_case_string.
Finally, let’s have a look at the documentation of the function in cell 1. As you can see, we specify the
returned variables (lines 11–14). The syntax is the same as for the Parameters (lines 4–9). First, we write
Returns as a title (line 11), followed by a series of minus signs that act as an underline (line 12). Then, for
each returned variable—in this example, there is only one—we write (1) variable name (e.g., username),
(2) space, (3) colon, (4) space, and (5) type (e.g., string) (line13). On the following line, indented, we
write the definition of the returned variable (line 14).

255

Part 8. Functions

2. Creating a password
We need to implement a function that creates a password composed of four integers. How would you
do it? Try to implement it yourself before looking at the solution below.
• Write a function that creates a password composed of four random integers:

[4]: 1 import random import random
2
3 def create_password (): def create password
4 """Create a password composed of

four random integers
Create a password composed of four
random integers

5
6 Returns Returns
7 -------
8 password : string password : string
9 Created password Created password
10 """
11
12 # create a random number with four digits create a random number with four digits
13 password = str(random.randint(1000,9999)) password is assigned str random dot

randint 1000 9999
14
15 # return password return password
16 return password return password

• Test the function for two customers:

[5]: 1 password_1 = create_password() password one is assigned create password
2 print(password_1) print password one
4883

[6]: 1 password_2 = create_password() password two is assigned create password
2 print(password_2) print password two
5005

To generate a password with four integers, we’ll use a simple trick: we create a random number be-
tween 1000 and 9999, which is the range of all the existing numbers with four digits! Then, we trans-
form the obtained number into a string—using the built-in function str()—and we assign the result
to the variable password (cell 4, line 13). Why are we converting the four-digit integer into a string?
Because a password does not have any numerical meaning—that is, we do not use it in arithmetic
operations such as addition or multiplication. Finally, we return password at line 16. Note that this
function does not have any inputs. Thus, there are no parameters in between the round brackets in
the header (line 3), there is no Parameters session in the documentation (lines 4–10), and we do not
write any arguments in between the round brackets when we call the function (cells 5 and 6, line 1).
The returned variable password (cell 4, line 16) is saved as password_1 and password_2, at line 1 of cells
5 and 6, respectively. Finally, we print the passwords to check for correctness (cells 5 and 6, line 2).

256

Chapter 29. Login database for an online store

3. Creating a database
• Write a function that, given a list of lists of customers, creates and returns a database—i.e., a
dictionary—of usernames and passwords. The function also returns the number of customers in
the database:

[7]: 1 def create_database (customers): def create database customers
2 """Creates a database as a dictionary with

usernames as keys and passwords as values
Creates a database as a dictionary
with usernames as keys and passwords
as values

3
4 Parameters Parameters
5 ----------
6 customers : list of lists customers : list of lists
7 Each sublist contains first name and

last name of a customer
Each sublist contains first name and
last name of a customer

8
9 Returns Returns
10 -------
11 db : dictionary db : dictionary
12 Created database (shorted as db) Created database (shorted as db)
13 n_customers : int n customers : int
14 Number of customers in the database Number of customers in the database
15 """
16
17 # initialize dictionary (i.e. database) initialize dictionary (i.e. database)
18 db = {} db is assigned empty dictionary
19
20 # for each customer for each customer
21 for customer in customers: for customer in customers
22
23 # create username create username
24 username = create_username (

customer[0], customer [1])
username is assigned create username
customer in position zero customer in
position one

25
26 # create password create password
27 password = create_password() password is assigned create password
28
29 # add username and password to db add username and password to db
30 db[username] = password db at key username is assigned password
31
32 # compute number of customers compute number of customers
33 n_customers = len(db) n customers is assigned len db
34
35 # return dictionary and its length return dictionary and its length
36 return db, n_customers return db n customers

Let’s analyze the function before calling it in the cells below. Let’s begin with the input and the out-
puts. The input is a variable called customers, as we can see in the function header (line 1). From the
documentation, we learn that customers is a list of lists where each sublist contains a first name and a
last name (lines 6–7). The outputs are two variables called db and n_customers, as we can see in the last

257

Part 8. Functions

line of the function after the keyword return (line 36). From the documentation, we learn that db is a
dictionary that will contain the database (lines 11–12), whereas n_customers is an integer that will store
the number of customers in the database (lines 13–14). Let’s continue with the analysis of the function
body. We initialize the variable db as an empty dictionary (line 18), which we will fill out within the
function and eventually return. Then, for each customer in the list of lists (line 21), we perform three
actions. First, we create a username by calling the function create_username() that we wrote in cell
1. The inputs are the first name—customer[0]—and the last name—customer[1]—of the current cus-
tomer. We save the output in the variable username (line 24). Then, we create the password by calling
the function create_password() from cell 4, and we save the output in the variable password (line 27).
Finally, we add the username and the password to the database by assigning the variable password as a
value to the corresponding key username in the database db (line 30). Once we complete the creation
of username and password for each customer and exit the loop, we calculate the number of customers,
which corresponds to the length of the dictionary. We use the built-in function len(), and we save the
output in the variable n_customers (line 33). Finally, we return both db and n_customers (line 36). As
you can see, to return multiple variables, we write them after the keyword return and separated by
commas.
It is always very important to test the correctness of a function by calling it. So let’s call the function
and test its behavior!
• Given the following list of customers:

[8]: 1 customers = [["Maria", "Lopez"], ["Julia",
"Smith"], ["Mohammed", "Seid"]]

customers is assigned Maria Lopez
Julia Smith Mohammed Seid

We create a list of lists called customers that contains three sublists (cell 8).
• Create the database using two different syntaxes:

[9]: 1 # create the database - separate returns create the database - separate
returns

2 database, number_customers =
create_database(customers)

database number customers is
assigned create database customers

3
4 # print the outputs print the outputs
5 print("Database:", database) print Database: database
6 print("Number of customers:", number_customers) print Number of customers: number

customers
Database: {'mlopez': '7097', 'jsmith': '6891', 'mseid': '3189'}
Number of customers: 3

When returning multiple outputs, there are two possible syntaxes for a function call. In this first case
(cell 9), we create two output variables separated by a comma (line 2). The first variable—database—
contains the returned variable db from cell 7, line 36. When we print it at line 5, we see the dictionary
containing usernames and passwords for each customer. Similarly, the second variable
—number_customers—contains the returned variable n_customers (cell 7, line 36). When we print
number_customers at line 6, we see the dictionary length, which is 3. Let’s look at the other possi-
ble syntax for the outputs.

258

Chapter 29. Login database for an online store

[10]: 1 # create the database - single return create the database - single
return

2 outputs = create_database(customers) outputs is assigned create
database customers

3 print("Output tuple:", outputs) print Output tuple: outputs
4
5 # get and print the database get and print the database
6 database = outputs [0] database = outputs in position

zero
7 print("Database:", database) print Database: database
8
9 # get and print the number of customers get and print the number of

customers
10 number_customers = outputs [1] number customers is assigned

outputs in position one
11 print("Number of customers:", number_customers) print Number of customers: number

customers
Output tuple: ({'mlopez': '6350', 'jsmith': '7863', 'mseid': '1953'},3)
Database: {'mlopez': '6350', 'jsmith': '7863', 'mseid': '1953'}
Number of customers: 3

In this second case, we assign both returned variables to a single variable called outputs (line 2).
As we can see from the print (line 3), outputs is a tuple that contains the database and the num-
ber of customers. As you might recall from Chapter 22, a tuple is a sequence of elements separated
by commas and contained within round brackets. Tuple elements are immutable, which means that
we cannot overwrite, add, or delete any element. However, we can extract the elements by using
the same slicing principles that we learned for lists and strings. Thus, to get the dictionary, we slice
outputs in position 0 (line 6), and we print it as a check (line 7). Similarly, to get the number of cus-
tomers, we slice outputs in position 1 (line 10) and print it as a check (line 11). Obviously, we could
have directly printed the sliced variable in both cases—that is, print("Database:", outputs [0]) and
print("Number of customers:", outputs [1]).

Main Function

customers

db
n_customers

create_database()

Outputs

Inputs

Function

Outputs

Satellite Functions

Inputs

create_password()create_username()

first_name
last_name

Function

passwordusername

Figure 29.2

Figure 29.2. Modular organization of code: Main and satellite functions.

Before concluding this chapter, let’s briefly analyze how wemodularized our code with the help of Fig-
ure 29.2. We created three functions, each of them with a different role. The function

259

Part 8. Functions

create_database()—on the left side of Figure 29.2—is the main function, because it (1) receives the
input for the task to solve—a list of customer first names and last names; (2) performs the flow of op-
erations needed to solve the task—that is, it creates the database of usernames and passwords; and
(3) provides the final output—that is, it returns the dictionary and the number of customers. In some
coding examples outside this book, you may find that the the main function is actually called main().
The other two functions—create_username() and create_password()—are satellite functions be-
cause each of them performs one specific task. How domain function and satellite functions interact?
Through the flow of inputs and outputs! The main function sends inputs to the satellite functions—in
our case, first_name and last_name are sent to create_username() (orange line in Figure 29.2)—and
receives outputs—username from create_username() and password from create_password() (yellow
lines). The received outputs can then be used to create new variables—such as the dictionary db in
our example—or as inputs for subsequent satellite functions, as you will see in the coding exercise at
the end of the chapter.

We’ll conclude this chapter with an important note about the joy and difficulties of coding. Most likely,
when you read the task at the beginning of this chapter and started drafting your own solution, what
came to your mind was somewhat different from the solution you found. Maybe your idea was more
complicated, maybe less structured, or maybe you got stuck and frustrated. Want to know a secret?
The solution that you learned in this chapter did not come out of my mind the way it looks now. The
initial idea was messy, redundant, and at times I was uncertain about what to do. In some cases, I
started with the lines of code that do the actual job and then wrote a function around them. Other
times, when things were very clear to me, I just wrote a function from top to bottom. It required hours
of tweaking, corrections, and adjustments to get the code to be structured, clean, and simple-looking.
So, don’t worry if it takes you quite some time before coming to a final, clean solution when solving a
task. That’s normal! Do you remember the In more depth session in Chapter 17 entitledWriting code is
like writing an email? We write a draft solution, then we modify it, then we modify it again, and again,
and finally we arrive at a satisfactory result. The most important thing in coding is persistence!

Recap
• The keyword return has two roles:

■ It transfers output variables from the function body to the function call. When multiple variables
are returned, they are separated by commas both in the function body and in the function call. In
the latter, they can also be collected into a tuple.

■ It marks the end of a function. Commands written after return do not get executed.
• Tuples are a data typewhere elements are immutable, meaning they cannot be changed. Tuple slicing
follows the same rules as list (or string) slicing.

• In docstrings, the syntax of returned variables is the same as the syntax of input parameters.
• It is important to test function correctness by calling them with appropriate arguments.
• A project is often composed of a main function and some satellite functions. The main function ex-
ecutes the solution to the whole task, whereas each satellite function executes one specific subtask.

260

Chapter 29. Login database for an online store

What is None?
Have you ever got None as an output when running a function? The keyword None indicates
that the function has no return. In other words, at the end of the function there is no keyword
return followed by one or more variables. Let’s look at the following example, modified from cell
4:

[4]: 1 import random import random
2
3 def create_password (): def create password
4 """Create a password composed of

four random integers
Create a password composed of
four random integers

5
6 Returns Returns
7 -------
8 password : string password : string
9 Created password Created password
10 """
11
12 # create a random number with four digits create a random number with four

digits
13 password = str(random.randint(1000,9999)) password is assigned str random

dot randint 1000 9999
14
15 # print password print password
16 print(password) print password

At line 16, we substitute return password with print(password). Let’s see what changes when
calling the function:

[5]: 1 password_1 = create_password() password one is assigned create
password

2 print(password_1) print password one
4883
None

The first print—4883—comes from the command print(password) in cell 4, line 16. The second
print—None—is from the command print(password_1) in cell 5, line 2. Becausewe did not return
password at the end of the function body (cell 4, line 16), password_1 will contain the keyword
None, which is what we see when printing at line 2.

Let’s code!

1. What does Bill Gates tweet about? Bill Gates is highly active on Twitter (now known as “X”), with 65.7
million followers as of November 2024. But what does he tweet about? To answer this question, in
this exercise, you’ll learn how to extract the most common words from some text using basic tech-
niques from natural language processing (NLP), an interesting and challenging computational field
focused on analyzing human language. In exercises a, b, and c, you will implement some techniques
to preprocess text—that is, to clean text for the main analysis—and in exercise d, you will create the

261

Part 8. Functions

main function to identify the most common words Bill Gates uses.
a. Removing punctuation. When preprocessing text, a common initial step is to remove punctu-
ation. Write a function that, given a string, returns the same string without any punctuation.
Hint: You can use this punctuation string: !"#$%&'+,-./:;<=>?@[]^_`{|}~
(Example input: Hello! How are you?. Expected output: Hello How are you).

b. Converting to lowercase and segmenting into words. The next steps are to standardize all words
to lowercase and to segment the text, that is, to split the text into individual words. Write a
function that, given a string: (1) converts the string to lowercase; (2) segments the text by
splitting it into a list of words; and (3) returns the list of words. Hint: You only need two string
methods!
(Example input: Hello How are you. Expected output: ['hello', 'how', 'are', 'you']).

c. Removing stop words. Another important step in NLP is removing stop words, which are com-
mon words that typically don’t add meaningful information to the text (e.g., prepositions).
Write a function that, given a list of strings, returns the list without stop words. Hint: Use
the following list of stop words: ["all", "how", "to", "what", "are", "the", "a", "of",
"in", "it", "from", "and", "for", "about", "my", "on", "can"].
(Example input: ['hello', 'how', 'are', 'you']. Expected output: ['hello', 'you']).

d. Counting the most commonwords. It’s finally time to answer our question: What does Bill Gates
tweet about? Create a function that calls the previous functions and returns themost common
words in the tweets. More specifically, write a function that, given a list of strings, (1) executes
text preprocessing—that is, removes punctuation, converts to lowercase, segments text into
words, and removes stopwords; (2) creates a dictionary inwhich the keys are each uniqueword
and the values are their corresponding counts; and (3) returns the 10most frequent words from
the dictionary. Hint: To sort dictionary keys based on their values you can use the following
command:
sorted_keys = sorted(my_dictionary, key=my_dictionary.get, reverse=True)
Use the following list of strings as an input:
tweets = ["Meaningful action from business leaders will require the courage to take risks that many
companies aren't used to taking.",
"Thanks to @andersoncooper, @SeaArtsLectures, and everyone who joined our virtual conversation about
climate change. Great to have so much support from my hometown for this important work.",
"Great to see this important step as the United States resumes our global leadership on climate change.
Looking forward to working with @POTUS and Congress on a plan to ensure we reach net zero by 2050.",
"Thanks to @streickercenter for hosting the launch of my virtual book tour. It was great to hear so
many thoughtful questions about what we can all do to help avoid a climate disaster.",
"When I talk to people about climate change, I almost always get asked the same question: What can I do
to help? Here are some actions individuals can take to move us closer to a zero-carbon future",
"Thanks for inviting me on the podcast, @karaswisher.",
"Thank you, AlokSharma_RDG. We have a lot of work ahead of us to reach net-zero emissions by 2050 and
avoid a climate disaster. Your leadership of #COP26 is critical. Thanks also to @howtoacademy,
@penguinlive and @Waterstones for hosting the London stop of my virtual book tour!",
"It was great to talk with @alroker about my new book and the solutions we need to fight climate
change."
"Thanks for another great conversation @Trevornoah!",
"I wrote How to Avoid a Climate Disaster because I see not just the problem of climate change; I also
see an opportunity to solve it. Here’s how: http://gatesnot.es/3dh2kQy",
"I had a great time working with @FortuneMagazine on this special digital issue about climate change.
The entire business community has a role to play—and we need to start now.",
"How to Avoid a Climate Disaster is available now. I hope you'll check out the book, but more
importantly, I hope you'll do what you can to help keep the planet livable for generations to come:
http://b-gat.es/climatebook"]

Need to add these white lines for issues with the spacing of the last item

262

30. Free ticket at the museum
Input validation and output variations

What happens if we provide wrong inputs to a function? Sometimes the function breaks—meaning we
get an error—and some other times we get a meaningless result. In both cases, it might be difficult to
understand what went wrong. In this chapter, we will learn how to make sure that function inputs are
of the right type and value. In addition, we will also learn how to return outputs in specific cases, that
is, based on conditions or directly as values. Let’s tackle all this through the example below. Follow
along with Notebook 30!
• Youwork at amuseum and have to update the online system to buy tickets. The update is that people
who are 65 and older now qualify for a free ticket. Write a function that asks visitors to enter their
prefix, last name, and age; checks the types and values of these inputs; and returns a message telling
the visitor if they are eligible for a free ticket.

[1]: 1 def free_museum_ticket (prefix, last_name, age): def free museum ticket prefix last
name age

2 """Returns a message containing inputs
and free ticket eligibility based on age

Returns a message containing inputs
and free ticket eligibility based
on age

3 E.g. Mrs. Holmes, you are eligible for a
free museum ticket because you are 66

E.g. Mrs. Holmes, you are eligible
for a free museum ticket because
you are 66

4
5 Parameters Parameters
6 ----------
7 prefix : string prefix : string
8 Ms, Mrs, Mr Ms, Mrs, Mr
9 last_name : string last name : string
10 Last name of a visitor Last name of a visitor
11 age : integer age : integer
12 Age of a visitor Age of a visitor
13
14 Returns Returns
15 -------
16 string string
17 Message containing inputs and

eligibility
Message containing inputs and
eligibility

18 """
19
20 # --- checking parameter types --- checking parameter types
21
22 # the type of prefix must be string the type of prefix must be string
23 if not isinstance(prefix, str): if not isinstance prefix str
24 raise TypeError("prefix must be a

string")
raise TypeError prefix must be a
string

25

263

Part 8. Functions

26 # the type of last_name must be string the type of last name must be
string

27 if not isinstance(last_name, str): if not isinstance last name str
28 raise TypeError("last_name must be

a string")
raise TypeError last name must be a
string

29
30 # the type of age must be integer the type of age must be integer
31 if not isinstance(age, int): if not isinstance age int
32 raise TypeError("age must be an integer") raise TypeError age must be an

integer
33
34
35 # --- checking parameter values --- checking parameter values
36
37 # prefix must be Ms, Mrs, or Mr prefix must be Ms, Mrs, or Mr
38 if prefix not in ["Ms", "Mrs", "Mr"]: if prefix not in "Ms" "Mrs" "Mr":
39 raise ValueError("prefix must be Ms, Mrs,

or Mr")
raise ValueError prefix must be Ms,
Mrs, or Mr

40
41 # last_name must contain only characters last name must contain only

characters
42 if not last_name.isalpha(): if not last name dot isalpha
43 raise ValueError("last_name must contain

only letters")
raise ValueError last name must
contain only letters

44
45 # age has to be between 0 and 125 age has to be between 0 and 125
46 if age < 0 or age > 125: if age less than zero or age

greater than 125
47 raise ValueError("age must be between

0 and 125")
raise ValueError age must be
between 0 and 125

48
49
50 # --- returning output --- returning output
51
52 if age >= 65: if age greater than 65
53 return prefix + ". " + last_name +

", you are eligible for a free
museum ticket because you are " + str(age)

return prefix concatenated with dot
space concatenated with last name
concatenated with you are eligible
for a free museum ticket because
you are concatenated with str age

54 else: else
55 return prefix + ". " + last_name +

", you are not eligible for a free museum ticket
ticket because you are " + str(age)

return prefix concatenated with
dot space concatenated with last
name concatenated with you are not
eligible for a free museum ticket
because you are concatenated with
str age

264

Chapter 30. Free ticket at the museum

True or false?

1. In the docstrings, after the description, we can add an example for further clari-
fication

T F

2. The built-in function isinstance() checks a variable type and returns an integer T F
3. raise TypeError() and raise ValueError() stop the function and provide an error

message
T F

4. raise is a function T F
5. int and str are the same as int() and str() T F

Computational thinking and syntax
Let’s begin to analyze the function by taking a look at what it does. In the docstring description, we
see that the aim of free_museum_ticket() is to return a message composed of a concatenation of
the inputs and the eligibility for a free ticket based on age (line 2). The description is followed by a
message example, for further clarification (line 3). Adding an example is good practice to make the
function outcome more quickly and easily understood. Let’s continue by looking at the inputs. The
function has 3 parameters: prefix, last_name, and age (line 1), whose types and values are described
in the documentation (lines 5–12) and further checked in the first 6 blocks of code (lines 20–47). The
blocks have a similar structure, composed of an if condition followed by a raise statement. Let’s have
a closer look. The first three blocks check the parameter types (lines 20–32). In the first block (lines
22–24), we check if the first parameter prefix is a string. To do so, we write an if condition (line 23)
composed of (1) the keyword if, (2) the logical operator not, and (3) the built-in function isinstance(),
which checks if a variable is of a specific type. It takes 2 parameters: the variable to check—prefix—
and the wanted type—that is, str. Other possibilities for type are int, list, dict, etc. Types are not
followed by round brackets and should not be confused with the built-in functions str(), int(), etc.
The function isinstance() returns a Boolean, that is, True if the variable is of the desired type—e.g.,
if prefix is a str—and False otherwise. Why do we use the logical operator not in the if condition? To
make the condition true when we want it to be executed. In Boolean terms, we can say that if prefix is
not a string, then the command if not isinstance() becomes if not False, which is the same as
if True (see Chapter 19), and thus the following statement gets executed. The statement is composed
of (1) the keyword raise, which stops the function, and (2) the built-in exception TypeError(), which
specifies the nature of the error—type—and provides a message indicating what must be done to
avoid the error (line 24). To see the effect of these lines of code, let’s call the function using the wrong
type for prefix and analyze what happens.

265

Part 8. Functions

[2]: 1 # checking prefix type checking prefix type
2 message = free_museum_ticket (1, "Holmes", 66) message is assigned free

museum ticket one Holmes 66
3 print(message) print message

TypeError Traceback (most recent call last)
Cell In[2], line 2

1 # checking prefix type
> 2 message = free_museum_ticket(1, "Holmes", 66)

3 print(message)

Cell In[1], line 24, in free_museum_ticket (prefix, last_name, age)
20 # --- checking parameter types ---
21
22 # the type of prefix must be string
23 if not isinstance(prefix, str):

> 24 raise TypeError ("prefix must be a string")
25
26 # the type of last_name must be string
27 if not isinstance(last_name, str):

TypeError: prefix must be a string

We use 1 for prefix—that is, an integer instead of a string—and correct types for last_name—a string—
and age—an integer—to test one parameter at the time (line 2). We assign the function output to the
variable message, and we print it (line 3). We get an error message. Let’s dig deeper! As usual, we
start from the last line. Here, we read the type of exception—TypeError()—and the string we wrote
as an argument—prefix must be a string. Do you remember seeing type errors before? In the In
more depth sections of Chapter 9, entitled Dealing with TypeError, and Chapter 14, entitled Don’t name
variables with reserved words!, we learned how to read type error messages and how to fix the code
to avoid them. Now, we know what’s behind the scenes, that is, how to create a TypeError message!
We’ve learned quite a lot since then, haven’t we? Let’s complete the analysis of the error message by
looking at the arrows pointing at specific lines of code. The top arrow points at line 2 of cell 2, telling us
where the error happens in the current cell—that is, where we called the function. The second arrow
points at line 24 of cell 1, which is where the error originated, that is, where we raised the TypeError().
Note that since the error happens at cell 2 and thus the code stops, we do not see any print because
the command at line 3 is not executed.

Let’s continue by checking the type of the second parameter last_name (lines 26–28). As for prefix,
last_name must be a string. Thus, we simply reuse the commands at lines 23–24, substituting prefix
with last_name in the if statement (line 27) and in the TypeError() message (line 28). Let’s test
whether the type error works, by calling the function with the wrong type for last_name—starting
from this cell, only the relevant part of the error message is reported from brevity.

266

Chapter 30. Free ticket at the museum

[3]: 1 # checking last_name type checking last name type
2 message = free_museum_ticket ("Mrs", 1.2, 66) message is assigned free

museum ticket Mrs 1.2 66
3 print(message) print message

Cell In[3], line 2
> 2 message = free_museum_ticket("Mrs", 1.2, 66)

Cell In[1], line 28, in free_museum_ticket (prefix, last_name, age)
27 if not isinstance(last_name, str):

> 28 raise TypeError ("last_name must be a string")
TypeError: last_name must be a string

As expected, in the last line of the message, we get TypeError: last_name must be a string, which
is the error that occurred at line 2 of the current cell, and originated at line 28 of cell 1.

Let’s conclude the check of the parameter typeswith age (lines 30–32). In this case, the parametermust
be an integer, not a string. Thus, in the built-in function isinstance(), the two inputs are the variable
age and the type int (line 31). In TypeError(), the message becomes age must be an integer (line
32). Let’s test the correctness of this code with the following function call.

[4]: 1 # checking age type checking age type
2 message = free_museum_ticket ("Mrs", "Holmes", "Hi") message is assigned free

museum ticket Mrs Holmes Hi
3 print(message) print message

Cell In[4], line 2
> 2 message = free_museum_ticket("Mrs", "Holmes", "Hi")

Cell In[1], line 32, in free_museum_ticket (prefix, last_name, age)
31 if not isinstance(age, int):

> 32 raise TypeError ("age must be an integer")
TypeError: age must be an integer

We enter the string "Hi" as the third parameter. As expected, the error occurs at line 2 of cell 4 and
originated at line 32 of cell 1.

The following three blocks of code of free_museum_ticket() check the parameter values (lines 35–47).
Similarly to before, each block contains an if construct composed of an if condition and a statement
raising an exception. In the condition, we assess the parameter values by establishing some criteria
specific to the context of the task. For example, for prefix, we establish that the possible values
are "Ms", "Mrs", or "Mr". Thus, we enclose the three strings into a list, and we check if the value of
prefix is in that list (line 38). If not, we raise a ValueError() in the following statement (line 39).
ValueError() is the exception specific for value errors, and it works the same way as TypeError().
Within the round brackets, we write a message indicating what must be done to avoid the error—in
our case, prefix must be Ms, Mrs, or Mr. Let’s check what happens when raising the value error for
prefix in the following function call.

267

Part 8. Functions

[5]: 1 # checking prefix value checking prefix value
2 message = free_museum_ticket ("Dr", "Holmes", 66) message is assigned free

museum ticket Dr Holmes 66
3 print(message) print message

Cell In[5], line 2
> 2 message = free_museum_ticket("Dr", "Holmes", 66)

Cell In[1], line 39, in free_museum_ticket (prefix, last_name, age)
38 if prefix not in ["Ms", "Mrs", "Mr"]:

> 39 raise ValueError ("prefix must be Ms, Mrs, or Mr")
ValueError: prefix must be Ms, Mrs, or Mr

For prefix, we use "Dr", which is not in the list of possible values, ["Ms", "Mrs", "Mr"]. Thus, we
get a value error, as the message in the last line specifies. The error happens at line 2 of cell 5 and
originated at line 39 of cell 1, as we can see from the two arrows in the pink area.

Let’s continue with checking the possible values for last_name. What condition should we use? Should
we list all the possible last names in the world? What if some are not registered or new? In cases like
this, we can look into the types of characters composing the string. For last names, we can require that
all the characters are letters of the alphabet and, to do so, we can use the stringmethod .isalpha()(line
42)—for simplicity, we’ll consider only last names composed of characters and not containing punctu-
ation, such as O’Connor, or a space, such as García Lopez. In other contexts, we can perform the check
using methods such as .isalpha(), .isdigit(), .isalnum(), .islower(), .isupper(), .istitle()—
see Chapter 27—depending on the characteristics that the stringmust have. If the condition is not met,
then we raise a value error saying that the last name must contain only letters (line 43). Let’s test the
execution of these two lines of code by calling the function with an incorrect value for last_name.

[6]: 1 # checking last_name value checking last name type
2 message = free_museum_ticket ("Mrs", "82", 66) message is assigned free

museum ticket Mrs 82 66
3 print(message) print message

Cell In[6], line 2
> 2 message = free_museum_ticket("Mrs", "82", 66)

Cell In[1], line 43, in free_museum_ticket (prefix, last_name, age)
42 if not last_name.alpha()

> 43 raise ValueError ("last_name must contain only characters")
ValueError: last_name must contain only letters

In the function call (line 2), we use the string "82" for last_name. We get the value error with the
message that we entered at line 43 in cell 1.

Let’s finally check the value of the last parameter age. What constraint should we use this time? One
reasonable option is to raise a value error if age is not within the range of a human lifetime. How do
we define the range? The minimum is obviously 0 years old. What about the maximum? According to
Wikipedia1, the oldest person ever was Jeanne Calment who died when she was 122 years and 164 days
old! So, we can keep a bit of margin and define 125 as the maximum. Therefore, we check if age is less
than 0 or greater than 125 (line 46). If so, we raise the ValueError() with the message suggesting the
proper age range to use (line 47). Let’s test these commands by calling the function with an age out of
range!

1https://en.wikipedia.org/wiki/List_of_the_verified_oldest_people

268

https://en.wikipedia.org/wiki/List_of_the_verified_oldest_people

Chapter 30. Free ticket at the museum

[7]: 1 # checking age value checking age type
2 message = free_museum_ticket ("Mrs", "Holmes", 130) message is assigned free

museum ticket Mrs Holmes 130
3 print(message) print message

Cell In[7], line 2
> 2 message = free_museum_ticket("Mrs", "Holmes", 130)

Cell In[1], line 47, in free_museum_ticket (prefix, last_name, age)
46 if age < 0 or age > 125:

> 47 raise ValueError ("age must be between 0 and 125")
ValueError: age must be between 0 and 125

In the function call (line 2), we provide the integer 130 for the parameter age, and we get the value
error that we created at line 47 of the function, as expected.

At this point, you might ask yourself: do I have to implement the input check in every function I write?
Nope! In Python, we assume that the docstrings clearly indicate expected type and value of the pa-
rameters and that a coder passes valid arguments to a function. So, why did we learn it? Because
a parameter check is useful in main functions or when there are user-provided inputs—for exam-
ple, when using the built-in function input(), as you will see in the coding exercise at the end of this
chapter.

Let’s conclude by analyzing the returns. In free_museum_ticket(), we return different outputs based
on conditions (lines 50–55). To do that, we use an if/else construct where each statement contains
the keyword return. If the age of the visitor is greater than or equal to 65 (lines 52), then we return
the string indicating the eligibility to a free ticket (line 53), otherwise (line 54) we return a string in-
dicating the ineligibility to a free ticket (line 55). As you might remember from the previous chapter,
return not only “pushes” the variable out of a function, but it also stops the function. Thus, any com-
mand following the executed return statement (line 53 or 55) will never be executed. In this function, we
also directly return a value without creating an intermediate variable—this can be done in any func-
tion. In other words, we do not create a variable called message to which we assign the concatena-
tion prefix + ". " + last_name + ", you are eligible for a free museum ticket because
you are " + str(age), and then return it as return message. We directly return the concatenation.
Note that in the docstrings we only indicate the type—string—as there is no variable name (line 16).
Let’s conclude by calling the functions with the correct input types and values to test the correctness
of the two returns.

[8]: 1 # person is eligible person is eligible
2 message = free_museum_ticket ("Mrs", "Holmes", 66) message is assigned free

museum ticket Mrs Holmes 66
3 print(message) print message
Mrs. Holmes, you are eligible for a free museum ticket because you are 66

[9]: 1 # person is not eligible person is not eligible
2 message = free_museum_ticket ("Mrs", "Choi", 38) message is assigned free

museum ticket Mrs Choi 38
3 print(message) print message
Mrs. Choi, you are not eligible for a free museum ticket because you are 38

In both cells, the inputs pass the type and value checks, thus the function executes the code and returns
a message according to age. In the first case (cell 8), the age is 66 (line 2)—which is greater than 65—so

269

Part 8. Functions

the visitor is eligible for a free ticket. In the second case (cell 9), the age is 38 (line 2)—which is less than
65—so the visitor is not eligible for a free ticket.

Match the sentence halves

1. raise is a a. built-in function
2. TypeError() and ValueError() are b. keyword
3. int is a c. built-in function
4. int() is a d. exceptions
5. isinstance() is a e. type

Recap
• We implement parameter checks in main functions or in presence of external inputs. The check is
executed using an if/else construct. In the if condition:
■ When checking a type, we use the logical operator not followed by the built-in function
isinstance(), whose parameters are the variable to check and the wanted type. Possible types
are str, int, list, dict, etc.

■ When checking a value, we have to define constraints. We can use membership to a list, variable
methods—such as .isalpha() for strings—or intervals for numbers.

In the statement, we use raise followed by the exception TypeError() or ValueError()with a mes-
sage indicating how to avoid the error.

• When we want to return different outputs based on conditions, we can use an if/else construct
where the statements contain the keyword return followed by the wanted output.

• It is possible to return values instead of variables. In this case, in the docstrings we indicate only the
type.

• In docstrings, it is possible to write an example after the function definition to enhance clarity.

How can I avoid interrupting the flow?

As you learned in this chapter, raise TypeError() and raise ValueError() stop the func-
tion and provide an error message. But what if we do not want to interrupt the flow of
our code? Imagine that free_museum_ticket() is a satellite function called by the main
function within a larger project. Every time the type or value of an input is not correct,
free_museum_ticket() stops, displays the “pink” error, and the flow of the whole project is in-
terrupted, creating inconvenience. What can we do to avoid that? One possibility is to make the
satellite function provide a Boolean as a return. For example, line 24 of the first block of code of
free_museum_ticket() could be modified as following:

[1]: 22 # the type of prefix must be string the type of prefix must be string
23 if not isinstance(prefix, str): if not isinstance prefix str
24 return prefix, False return prefix False

270

Chapter 30. Free ticket at the museum

The main function—which calls free_museum_ticket()—would receive both prefix and False,
indicating that there is something wrong about prefix. Then, the following code in the main
function could handle the situation by asking the user to reenter a correct prefix. The coding
exercise at the end of this chapter—especially point c—contains a more complete example of this
concept. So, let’s start coding!

Let’s code!

1. Let’s play hangman! Everybody knows hangman! It is a game where the aim is to guess a hidden
word by suggesting letters. You have all the knowledge to implement hangman by yourself! Think
about the task you have to implement (divide!) and go for it (conquer!). You can then compare your
implementation with the one suggested in the following exercises. The first three exercises will
invite you to implement satellite functions, each of them representing a sub-task. The last function
will suggest how to write the main function.
a. Pick a random word. Create a satellite function that given a list of words, returns a randomly
selected word in lowercase.
(Example input: ["spoon", "Fork", "KNIFE"]. Example output: "fork").

b. Show the guessed letters. Create a satellite function that given a word and a guessed letter,
shows the word with the guessed letter revealed in its correct positions, whereas the remain-
ing, unguessed letters are shown as underscores.
(Example input: ("l", "hello"). Example output: _ _ l l _).

c. Check the user input. Create a satellite function that takes a string as an argument and re-
turns the same string in lowercase and a Boolean, which is True if the string is a letter, and
False otherwise. In addition, the function prints specific messages depending on the input
string. If the string:
• Is composed of multiple letters, print: Please, enter a single letter;
• Is composed of one or more numbers, print: Please, enter a letter not a number;
• Is composed of a combination of letters and numbers, print: Please, enter a letter, not a
combination of letters and numbers;

• Contains a symbol, print: Please, enter a letter, not a symbol.
(Example input: e1. Example output: e1, False). Hint: Which strings methods will you use?
See the table in the appendix of Chapter 27.

d. Assemble the hangman game. Create a main function that given a list of words:
• Randomly chooses a word from the list;
• Displays the word with missing letters;
• Asks the player for a character. If the character is a valid letter, then the game continues;
otherwise, the player is prompted until they enter a valid letter;

• Checks for repeated guesses. If the player had already guessed that letter, print the message
You already guessed this letter. Choose again!;

• Checks if the letter is in the word, and updates the word accordingly. Make sure to update
also when letters are double (e.g., double "l" in "hello");

• Keeps asking for a new letter until the word is complete;

271

Part 8. Functions

• At the end, congratulates the player and asks them if they want to play again. If so, the game
restarts with a new word, otherwise the game stops.

(Example input: ["garden", "cave", "quilt", "bubble", "secretary", "light"])

272

31. Factorials
Recursive functions

In this chapter, you will learn a particular type of function called recursive functions. They can be
challenging to understand and implement, but they are very useful in certain situations, as you will
see. To better understand how recursive functions work, let’s compute factorials. Have you ever heard
of them? A factorial is the product of all positive integers that are less than or equal to a given positive
integer. For example, the factorial of 4 is 24, calculated as 1x2x3x4—or 4x3x2x1. How would you write
a function that calculates the factorial of an integer? Write your own function before looking at the
proposed solution below. You will find the code for this chapter in Notebook 31.
• Write a function that calculates the factorial of a given integer using a for loop:

[1]: 1 def factorial_for (n): def factorial for n
2 """Calculates the factorial of a given

integer using a for loop
Calculates the factorial of a given
integer using a for loop

3
4 Parameters Parameters
5 ----------
6 n : integer n : integer
7 The input integer The input integer
8
9 Returns Returns
10 -------
11 factorial : integer factorial : integer
12 The factorial of the input integer The factorial of the input integer
13 """
14
15 # initialize the result to one initialize the result to one
16 factorial = 1 factorial is assigned one
17
18 # for each integer between 2 and

the input integer
for each integer between two and the
input integer

19 for i in range(2, n+1): for i in range two n plus one
20 # multiply the current result

by the current integer
multiply the current result by the
current integer

21 factorial *= i factorial multiply by and reassign i
22
23 # return the result return the result
24 return factorial return factorial
25
26 # call the function call the function
27 fact = factorial_for(4) fact is assigned factorial for four
28 print(fact) print fact
24

Does your implementation look similar to the one above?

273

Part 8. Functions

• Compare the previous iterative function with the following recursive function:

[2]: 1 def factorial_rec (n): def factorial rec n
2 """Calculates the factorial of a given

integer using recursion
Calculates the factorial of a given
integer using recursion

3
4 Parameters Parameters
5 ----------
6 n : integer n : integer
7 The input integer The input integer
8
9 Returns Returns
10 -------
11 integer integer
12 The factorial of the input integer The factorial of the input integer
13 """
14
15 # if integer is greater than 1 if integer is greater than 1
16 if n > 1: if n is greater than 1
17 # execute the recursion execute the recursion
18 return factorial_rec(n-1) * n return factorial rec n minus one times n
19 # otherwise otherwise
20 else: else
21 # return 1 return one
22 return 1 return one
23
24 # call the function call the function
25 fact = factorial_rec(4) fact is assigned factorial rec four
26 print(fact) print fact
24

What similarities and differences do you notice between the two functions? Get some hints while
solving the following exercise!

True or false?

1. Both functions have one parameter and one return T F
2. Both function contain a for loop T F
3. In the recursive function, there is only one return statement in the if/elif con-

struct
T F

4. We can call a function in the same cell where we write the function T F

Computational thinking and syntax
Let’s start by analyzing the function factorial_for() in cell 1. In the docstrings, we see that the input
is an integer called n—as in number—(lines 4–7) and the output is another integer called factorial
(lines 9–12). In the function body, we first initialize the output factorial to 1 (line 16). Then, we create
a for loop where the index i will be assigned all the consecutive numbers from 2 to the input number
n plus 1 (line 19)—do you remember the plus one rule for the stop in range() from Chapter 8? Within

274

Chapter 31. Factorials

the loop, we calculate the product between the current value of factorial and the current value of i,
and we reassign the result to factorial (line 21). Let’s quickly go through the three iterations for more
clarity:
• In the first iteration, factorial is 1 and i is 2, so the result of factorial*i—that is, 1*2—is 2, which
is reassigned to factorial.

• In the second iteration, factorial is 2 and i is 3, so the result of factorial*i—that is, 2*3—is 6,
which is reassigned to factorial.

• In the third iteration, factorial is 6 and i is 4, so the result of factorial*i—that is, 6*4—is 24, which
is reassigned to factorial—and is the final value.

We conclude the function by returning factorial (line 24). To test the function, we call it with the
number 4 as an input, and we assign the returned value to the variable fact (line 27), which we print in
the following command (line 28). Note that a function code and call can be in the same cell for conve-
nience. In general, we call functions like factorial_for() iterative functions because they contain a
loop to repeat some parts of their code.

Let’s now move to the recursive function factorial_rec() (cell 2) and identify similarities and differ-
ences with factorial_for() (cell 1). From the docstrings, we see that the function takes an integer
n as an input (lines 4–7)—similarly to factorial_for()—and returns a value as an output (lines 9–12)—
differently from factorial_for(), which returns the variable factorial. The main difference is in the
function body, where factorial_for() contains a for loop, whereas factorial_rec() contains an
if/else construct (lines 15–22). In this construct, if n is greater than 1 (line 16), we return the output of
factorial_rec() calculated for the consecutive smaller integer—that is, n-1—multiplied by n (line 18),
otherwise (line 20), we return 1 (line 22). Noticed anything unusual? In the first statement (line 18), we
call factorial_rec() itself! This is because a recursive function is a function that calls itself several
times, until it reaches a base case. In other words, recursive functions create a cascade of function
openings and executions until a certain point where the path is reversed to return the outputs and
close the functions. Let’s understand this mechanism better with the help of Figure 31.1.

fact = factorial_rec(4)

4

4

43 3

3

32 2

2

21 1

21 *=2

32 *=6

1

46 *=24

Way down – calling the function

Way up – returning the output

(a)

(b)

(c)

(d)

Figure 31.1

Figure 31.1. The mechanism of a recursive function.

Figure 31.1 contains four major components. First, there is the initial function call
fact = factorial_rec(4) (corresponding to line 25 in cell 2)—see the top left of Figure 31.1. Sec-

275

Part 8. Functions

ond, there are four simplified representations of factorial_rec() in cascade, each of them contained
in a gray rectangle and indicated as (a), (b), (c), and (d), respectively. Third, there are orange ar-
rows and numerical squares representing the “way down”, that is, the consecutive openings of several
fact = factorial_rec() with their current inputs. And fourth, there are black arrows and numeri-
cal squares constituting the “way up”, that is, the return of the outputs and the closure of the functions.
Now, let’s see how these components interact with each other. When we call
fact = factorial_rec(4), we begin the “way down”—as indicated by the first, straight orange arrow—
and open a cascade of functions as follows:
• In (a), n is 4—that is, the initial input—thus the header of the function is def factorial_rec(4). The
if condition is if 4>1, which is true, so we move to the following statement containing the call
factorial_rec(3)—3 is calculated from n-1, that is, 4-1. From here, we follow the orange arrow and
move to (b), leaving the function open in (a) and temporarily disregarding all its remaining code.

• In (b), n is 3, so the header is def factorial_rec(3). The if condition is now if 3>1, which is
True again, so wemove to the following statement where we call factorial_rec(2). Thus, we follow
the orange arrow and move to (c), leaving the function open in (b) and temporarily disregarding all
its remaining code.

• In (c), n is 2, thus the header is def factorial_rec(2). The if condition is if 2>1, which is True once
more, so we move to the following statement where we call factorial_rec(1). Again, we follow the
orange arrow and move to (d), leaving the function open in (c) and temporarily disregarding all its
remaining code.

• In (d), n is 1, thus the header is def factorial_rec(1). The if condition is if 1>1, which is false!
Therefore, we skip the statement under the if and we directly go to the statement under the else,
which says return 1.

We have reached the so-called base case. At this point, we start the “way up”. Let’s go through the black
numerical squares and arrows to collect the returned values and close the functions:
• In (d), the return is 1 and we pass it to the function call in (c), as indicated by the black arrow. The
function in (d) is terminated.

• In (c), we complete the return statement under the if conditions—that is,
return factorial_rec(1)*2. Thus, we multiply the output of factorial_rec(1),—which is 1 from
(d)—by 2, obtaining 2, which we pass to the function call in (b), as indicated by the black arrow. The
function in (c) is terminated.

• In (b), we complete again the return statement under the if conditions. Thus, wemultiply the output
of factorial_rec(2),—which is 2 from (c)—by 3 and we obtain 6, which we pass to the function call
in (a), as indicated by the black arrow. The function in (b) is terminated.

• Finally, in (a), we complete the return statement under the if condition for the last time. Wemultiply
the output of factorial_rec(3),—which is 6 from (b)—by 4, obtaining 24, whichwe pass to the output
variable fact in the initial call, as indicated by the last black arrow. The function in (a) is terminated,
as well as the whole recursion.

Now that the functioning mechanism is clear, let’s briefly formalize the syntax of recursive functions.
They typically contain an if/else construct where statements return or print a value. One of the two
statements is called base case because it ensures that the recursion will stop—in our example, return
1 (line 22). The other statement is called recursive case because it contains a call to the function
itself—in our example, return factorial_rec(n-1)*n (line 18).

Let’s conclude with some advantages and disadvantages of recursive functions. On the one hand,
recursive functions contain compact code and are appropriate when solving intrinsically recursive

276

Chapter 31. Factorials

problems—see the Inmore depth session at the end of this chapter. On the other hand, they are compu-
tationally expensive because each call occupies space in memory, which is released only when closing
the functions during the “way up”. Finally, recursive functions can be challenging to debug.

Recap
• Iterative functions contain a loop to repeat some code.
• Recursive functions call themselves to repeat some code.
• Recursive functions typically contain an if/else construct, where one statement is the base case,
and the other is the recursive case.

• Recursive functions contain compact code and are appropriate for intrinsically recursive problems.
However, they use a large amount of computational memory and can be harder to debug.

When do we use recursive functions?
Recursive functions are helpful to solve intrinsically recursive problems, that is, when repeated
patterns are present. Examples include the calculation of factorials—as you learned in this
chapter; computations of Fibonacci numbers—see the coding exercise below; and algorithms to
search characters in a string—behindmethods like .find() there are usually recursive functions.
Another common recursive problem is traversing decision trees, which are sort of flowcharts
used to make consecutive decisions among defined alternatives. Nowadays, they are very
popular as they are one of the most valid algorithms in machine learning. As an example, let’s
have a look at Figure 31.2. In this decision tree (top left), we have to decide where to go this week-
end, and we must choose among three options: Park, Movie Theater, or Stay Home. After this

Where do I go this
weekend?

Park Movie
Theater

Stay
Home

Walk Picnic Notting
Hill

Spider-
Man Cooking Gardening Where do I go this

weekend?

ParkMovie
Theater

Stay
Home

WalkPicnicNotting
Hill

Spider-
ManCookingGardening

Figure 31.2?

Figure 31.2. Example of decision tree (top left); upside-down version of the decision tree to illustrate
the similarity to a natural tree (top right); and simplified code to traverse the decision tree (bottom).

277

Part 8. Functions

first choice—for example, Park—we must make another more detailed choice—that is, between
Walk and Picnic. At each step of the tree, we repeat the same recursive action—that is, taking a
choice—that can be conveniently represented by a recursive function—see a simplified example
in Figure 31.2 (bottom). Why are decision trees called as such? Because if we turn them upside
down, the starting point is like the roots of a tree, the paths through intermediate options are
like branches, and the final options are like leaves—see Figure 31.2 (top right).

Let’s code!

1. Fibonacci numbers. You might remember that the Fibonacci sequence is an infinite sequence of
numbers where each number is the sum of the two previous numbers.
a. Modify the code you implemented in Exercise 6 of Chapter 14 into an iterative function that,
given a positive integer, returns the Fibonacci number in that position—and not the whole
sequence! Make sure to check the input type.
(Example input: 15. Example output: 610).

b. Re-implement the function above into a recursive function. Hint: this implementation has 2
base cases!

278

32. How can I reuse functions?
Working with Jupyter Notebooks and Python Modules

In Part 8, we have learned how to write functions, organize them in projects, handle their inputs and
outputs, and implement recursion. We also mentioned that functions are a useful way to reuse code
because by calling them we avoid copy/pasting long sequences of commands multiple times. But what
if we need the same function in more than one notebook? We obviously don’t want to copy/paste it
across notebooks! The solution is to use Python modules. In this chapter, you will learn how to create
a module, how to import it into a notebook and use its functions, and how to modify it. In other words,
you will learn a new way of working! As an example, we will reuse the functions to create username,
password, and a database that we implemented in Chapter 29. Follow along with Notebook 32! On the
website, you will also find the whole module that we will build in this chapter.

1. Creating a module
Do you remember what a module is? In Chapter 15, while learning about random, we defined a module
as a unit containing functions for a specific task. Let’s now refine this definition to be more precise,
as follows:

Amodule is a file containing functions for a specific task and whose extension is .py

Let’s jump right in and create a module! The first thing to do is to open an integrated development
environment (IDE)1. As wementioned in the Introduction of this book, there are several IDEs, all equally
valid. Out of convenience, wewill use Spyder because it is part of the suite of tools offered by Anaconda.
Open Anaconda and double click on the Launch button in the Spyder tile—box 1 in Figure 32.1. Spyder
will open, and you should see something very similar to the graphical user interface (GUI) represented
in Figure 32.1 (right). On the left side of the GUI, there is a panel to browse and edit modules (box 2). In
this case, there’s only one open module, named the default untitled0.py (box 3). When using modules,
we can perform standard file actions using mouse clicks or keyboard shortcuts, such as:
• Close a module: Click on the x on the left side of the file name (box 3); or click on File (box 4), and
then Close.

• Create a new module: Click on the New file icon (box 5); or click on File (box 4), and then New file; or
press command if you are on Mac—control if you are on Windows—and the letter N simultaneously
on the keyboard.

• Save a module: Click on the Save file icon (box 6); or click on File (box 4), and then Save; or press
command if you are on Mac—control if you are on Windows—and the letter S simultaneously on the
keyboard.

Try to open, create, and save one or more modules to get familiar with them.
1Modules can also be opened in JupyterLab by clicking on File, New, and Python File. However, IDEs are usually preferred

when working with modules

279

Part 8. Functions

1

23

4

5 6

Figure 32.1

Figure 32.1. Spyder launcher in Anaconda (left) and Spyder graphical user interface (right).

Now, let’s create a module for the setup of a database of usernames and passwords. Create a new
module file—using mouse clicks or keyboard presses, as you have just learned. Save the module as
setup_database.py in the same folder as Notebook 32. The rules for module naming are the same as
for variable naming—lowercase and word separation by underscore. You should get something similar
to what is shown in box 1 in Figure 32.2.

1

3
2

6

5

4

Figure 32.2

Figure 32.2. Function call from a module in Spyder.

The module starts with two default comments containing information for our computer (lines 1 and
2)—you can keep or delete them, as you wish. Then, there are the docstrings containing the mod-

280

Chapter 32. How can I reuse functions?

ule documentation (lines 3–9). Like for functions, module docstrings are enclosed in double quotes
repeated three times. Spyder automatically creates docstrings, and you can edit them as you wish.
In their default version, they contain the date of the file creation (line 4) and the name of the author
(line 6). We add a simple description of the module content for completeness (line 8). Paste the func-
tion create_username() from Chapter 29 below the docstrings (lines 11-33). Congratulations, you have
just created your first module!

Can we execute create_username() directly in Spyder? Yes! First, we need to click the Run file but-
ton (box 2)—this is one of several convenient methods. By doing so, the folder where the file is saved
(box 3) and theworking folder—that is, where the code is executed—(box 4) become the same, making
the content of the module available. Then, we move to the IPython console (box 5)—or simply con-
sole. There, we call the function by typing username = create_username("Chris", "Sailor") and
we press enter on the keyboard to execute the code—differently from Jupyter Notebook where we
press shift enter. In the following line, we type print(username), press enter, and see the username
csailor printed to screen. As you might have noticed, each coding line starts with In []:, where
In stands for input and the square brackets [] contain the order of execution of the current command,
as if it was a Jupyter Notebook cell. This is because IPython is a precursor of Jupyter Notebook—and
is still its basic engine. Obviously, in the console you can write any Python command as you would in
a Jupyter Notebook! Finally, in Spyder, we can keep control of the created variables in the Variable
Explorer (box 6). In our case, we have only one variable whose name is username, type is str, size is
7—that is, it is composed of seven characters—and value is csailor. Try creating new variables in the
console and then take a look at how they are represented in the Variable Explorer!

2. Importing a module and running a function
Let’s go back to our notebook and call create_username() from there! We need to (1) import the
module and (2) call the function. There are four ways to do it. Let’s go through them!
• Import the module as is, then call the function:

[1]: 1 import setup_database import setup database
2
3 username = setup_database.create_username (

"John", "Gelb")
username is assigned setup database dot
create username John Gelb

4 print(username) print username
jgelb

We import the module using (1) the keyword import followed by (2) the module name without the
extension .py (line 1). By doing this, we essentially instruct Python to locate the file setup_database.py
and make its content available in the current notebook. Now, we can call the function. The syntax is (1)
module name, (2) dot, and (3) function name —as in setup_database.create_username() (line 3). We
complete the function call by adding its arguments—"John" and "Gelb"—and we assign the output to
the variable username, which we print to check for correctness (line 4). Does this syntax remind you of
anything? These are the rules that we learned for the module random (Chapter 15), which—now, you
know!—is simply a file called random.py hosted in a folder somewhere on your computer. To import
the random module, we write import random, and to call its functions we type random.randint() or
random.choice(), as we do for any other module. As you can see, we are unveiling more and more
secrets of Python!

281

Part 8. Functions

• Import a module and create an alias, then call the function:

[2]: 1 import setup_database as sdb import setup database as sdb
2
3 username = sdb.create_username ("John", "Gelb") username is assigned sdb dot create

username John Gelb
4 print(username) print username
jgelb

When the module name is long, it can be tedious to retype it every time we call a function. To over-
come this, we can use an alias—usually an an abbreviation. In our example, we import the module
setup_database and we rename it as sdb (line 1). The syntax is (1) keyword import, (2) module name, (3)
keyword as, and (4) alias. Then, we call the function (line 3) using (1) alias—instead of the full name—(2)
dot, and (3) function name—that is, sdb.create_username(). Like before, we add the arguments—
"John" and "Gelb"—and we assign the output to username, which we print to check for correctness
(line 4). Note that the use of aliases is especially commonwhen using Python packages—youmight have
seen import pandas as pd or import numpy as np. Packages are just collections of modules—that is,
of files ending in .py—and whose imports and function calls work the same way as for modules.

• Import one single function from a module, then call the function:

[3]: 1 from setup_database import create_username from setup database import create
username

2
3 username = create_username ("John", "Gelb") username is assigned create username

John Gelb
4 print(username) print username
jgelb

We consider the case where we need only one function from a module that contains several
functions—we will see how to create such modules in a bit. Importing the entire module could oc-
cupy excessive space in memory that instead we want to use for computations. Thus, we import only
one single function by writing (1) keyword from, (2) module name, (3) keyword import, and (4) function
name without round brackets (line 1). To call the function, we directly use the function name without
the module name (line 3). Finally, we print to check the function output (line 4).

• Import the function from a module and create an alias, then call the function:

[4]: 1 from setup_database import create_username as cu from setup database import create
username as cu

2
3 username = cu ("John", "Gelb") username is assigned cu John Gelb
4 print(username) print username
jgelb

In this last case, we import one single function whose name is very long, and thus, we want to rename
it with an alias. To import the function, the syntax is (1) keyword from, (2) module name, (3) keyword
import, (4) function name, (5) keyword as, and (6) alias (line 1). To call the function, we directly use
the alias—that is, cu—(line 3). Finally, we print the output (line 4). Note that this solution is rarely ideal
because it can compromise code readability.
Let’s conclude this section with two important remarks about imports. First, in a notebook, imports
should be grouped in the veryfirst cell, before any computation—here, they are spread across different

282

Chapter 32. How can I reuse functions?

cells for sake of explanation. Second, we can import modules into other modules. For example, we
can import the module random in setup_database, if needed. Like in notebooks, all the imports should
be grouped at the very beginning of the file to favor code readability.

3. Importing a module from a different folder
What if wewant to use amodule that is in a different folder than the notebook? As you can guess, we do
notwant to have multiple copies of the same module! As an example, the module setup_database is in
the folder "/Users/serenabonaretti/lpwj/notebooks" on my computer (box 3 in Figure 32.2.). Let’s
say that I need to move it to "/Users/serenabonaretti/lpwj/code". How can Python knowwhere the
module is now? We tell Python where to find a module using the following commands.
• Restart the kernel, then add the module folder and import the module:

[1]: 1 import sys import sys
2 sys.path.append("/Users/serenabonaretti/lpwj/code") sys dot path dot append Users

serenabonaretti lpwj code
3 import setup_database import setup database

We restart the kernel to clear the previous imports andmake sure thatwe are correctly testing the code
in this section. Then, we import a built-in module called sys (line 1), which manages file
locations—among other things. From sys, we call the command sys.path.append() (line 2), which
takes a string containing the module path—that is, its location—as an argument—in this example,
"/Users/serenabonaretti/lpwj/code". Note that we have to insert the whole module path, which
starts with /Users in MacOs, and with C:\—or another letter of the alphabet—in Windows. Now that
Python knows where setup_database is, we can import it (line 3). Let’s call the function
create_username() using the same commands as in cell 1 of section 2.
• Call the function:

[2]: 1 username = setup_database.create_username ("John",
"Gelb")

username is assigned setup
database dot create username
John Gelb

2 print(username) print username
jgelb

Why don’t you test these commands? Move your module setup_database to another folder, then add
the new file location to sys.path.append(""). Go back to your notebook, import the module, and call
the function!

For the next section, let’s bring the module back to the same folder as the notebook for convenience.

4. Changing a function in a module and calling it in a notebook
What if we need to make a change to the function that we call in the notebook? Let’s call
create_username() before and after a change and see what happens!
• Restart the kernel, then call the function before the change:

283

Part 8. Functions

[1]: 1 import setup_database import setup database
2
3 username = setup_database.create_username ("John",

"Gelb")
username is assigned setup
database dot create username
John Gelb

4 print(username) print username
jgelb

We restart the kernel to clear all previous imports and variables from memory. Then, we use the same
code as we used in cell 1 to import the module (line 1), call the function (line 3), and print the output
(line 4).

Figure 32.3. Module function modified at line 28.

Now, let’s go to the module in Spyder and make
a simple change to the function. For example,
let’s add print(first_name, last_name) at the
beginning of the function body (line 28 in Fig-
ure 32.3). After a change, always remember to
save the file! Tip: when the module is not saved,
you will see an asterisk in the name tab in the
module panel. The asterisk will disappear after
you save the file (see Figure 32.4).

Figure 32.4. Module tab before saving (left) and after saving (right).

Time to call the function again!
• Call the function after the change:

[2]: 1 username = setup_database.create_username ("John",
"Gelb")

username is assigned setup
database dot create username
John Gelb

2 print(username) print username
jgelb

We call create_username() (line 1) and print the output (line 2). We get only one print, that is, the
username from line 2, although we expected to see also first name and last name from line 28 of the
module. Why does this happen? Because the module and the notebook are not automatically syn-
chronized! When we import a module, the notebook memorizes it as is and does not automatically
detect any change that we make afterwards. To synchronize notebook and module, we need to use
autoreload, an IPython extension that automatically re-imports all modules every time we execute
a cell—as you will see in a bit. What is an IPython extension? It is amodule that adds extra function-
alities to IPython—the core of Jupyter Notebook. Extension commands often start with a percentage

284

Chapter 32. How can I reuse functions?

symbol—they are calledmagic commands!—and can be used only in Jupyter Notebooks—not in Python.
Let’s see autoreload in action!
• Restart the kernel, then run autoreload:

[1]: 1 %load_ext autoreload percentage load ext autoreload
2 %autoreload 2 percentage autoreload 2

Similarly to above, we restart the kernel to have a clear memory. Then, we load autoreload (line 1),
and we run autoreload with the parameter 2, which indicates that we will reload all the imported
modules every time we run a cell (line 2). Note that these two lines of code must always be located in
the very first cell of the notebook—that is, even before the imports—to be effective. Now, let’s call the
function before—comment out line 28 in the module!—and after the change to test autoreload.
• Call the function before the change:

[2]: 2 import setup_database import setup database
2
3 username = setup_database.create_username ("John",

"Gelb")
username is assigned setup
database dot create username
John Gelb

4 print(username) print username
jgelb

As expected, we get the print jgelb from line 4. Now, let’s make the change in the module again by
re-adding print(first_name, last_name) at line 28 of the module. Don’t forget to save the file! It is
a common mistake not to see the changes reflected in the output because we forgot to save the file!
Let’s call the function once more, and finally see the effect of autoreload.
• Call the function after the change:

[3]: 1 username = setup_database.create_username ("John",
"Gelb")

username is assigned setup
database dot create username
John Gelb

2 print(username) print username
John Gelb
jgelb

Finally, we get the print from line 28 of the module—John Gelb. This is because autoreload
automatically—and secretly!—imported the latest version of setup_database before executing the
Python commands.

5. Adding functions to a module
As you can imagine, we can add as many functions as we want to a module. However, we should
add only the functions that jointly solve a specific problem or serve a specific task. For exam-
ple, in the module setup_database, it’s meaningful to add create_password() and the main function
create_database() from Chapter 29—see Figure 32.5 It would be inappropriate to add a function that
implements—let’s say—a calculator because it would be off topic—for that, we would create a separate
module. When adding a new function, it is always important to remember three aspects: first, to up-
date the description of the module content—see line 8 in Figure 32.5; second, add all the imports at
the very beginning of the module—see import random at line 11 in Figure 32.5; and third, position the
functions in a logically meaningful place within the file—in our example, first the satellite functions

285

Part 8. Functions

create_username() (lines 13—35) and create_password() (lines 38—51), and then the main function
create_database() (lines 55-90).

Figure 32.5. The module setup_database.

286

Chapter 32. How can I reuse functions?

Copy create_password() and create_database() from Chapter 29 to the module setup_database.
Then, let’s move to the notebook and call each function to check that they correctly work.
• Call create_password():

[4]: 1 password = setup_database.create_password() password is assigned setup database
dot create password

2 print(password) print password
4056

• Call create_database():

[5]: 1 customers = [["Maria", "Lopez"], ["Julia",
"Smith"], ["Mohammed", "Seid"]]

customers is assigned Maria Lopez
Julia Smith Mohammed Seid

2 db, n = setup_database.create_database(customers) db n is assigned setup database
dot create database customers

3 print("Database", db) print Database db
4 print("Number of customers:", n) print Number of customers n
Database: 'mlopez': '4476', 'jsmith': '5092', 'mseid': '3543'
Number of customers: 3

As you might have guessed, the call of any function from amodule follows the syntax that we learned—
that is, (1) module name, (2) dot, and (3) function name (line 1 in cell 4, and line 2 in cell 5). Note that
we did not need to restart the kernel because we previously ran autoreload, and thus the addition of
create_password() and create_database() are automatically detected.

In this chapter, we learned a new way of working that allows us to reuse functions across various
projects. In general, we use Jupyter Notebooks to draft code, test it quickly, and integrate narra-
tive for context—and to learn Python! On the other side, we use Python modules to store functions
that can be called in various execution environments, including Spyder, Jupyter Notebook, and the
terminal—as you will see in the In more depth session at the end of this chapter. Play around with these
tools and find your most comfortable way of coding!

Insert into the right column

Group the new syntax and concepts from this chapter in the following table for a structured
overview.

from, Spyder, random, autoreload, Terminal, import, as, Jupyter Notebook, sys

Python
keywords

Python built-in
modules

Jupyter Notebook
extension

Execution
environments

287

Part 8. Functions

Recap
• A module is a file containing functions for a specific task and whose extension is .py.
• In Spyder, we can create and manage modules, and call their functions.
• To import a module we can use four different syntaxes resulting from the combinations of the key-
words import, from, and as.

• A package is a collection of modules whose imports and function calls works the same way as for
modules.

• To import a module from a separate folder, we use the module sys and its command
sys.path.append().

• An IPython extension is a module that adds extra functionalities to IPython, which is the core of
Jupyter Notebook. Extension commands often start with a percentage symbol and are called magic
commands.

• To synchronize a module and a notebook, we use the IPython extension autoreload.
• A module can contain as many functions as needed to solve a task. It is good practice to structure a
module with (1) documentation, (2) imports, and (3) functions in a logically meaningful order.

• Jupyter Notebook, Spyder, and the terminal are complementary tools to write code.

What is: if __name__ == “__main__”?
In this chapter, we learned to call functions from a module. However, modules can also be ex-
ecuted directly, that is, without manually running cells or calling specific functions. Have you
ever seen the command: if __name__ == "__main__"? That’s what we need! Let’s go back to
the module setup_database that we created in this chapter and add some extra lines of code
at the end of the file (Figure 32.6 (top)). First, we write the predefined condition if __name__
== "__main__", which tells the computer something like “if you run this file as a module, exe-
cute the following commands” (line 93). Then, we write the code to execute. In our case, we
create the variable customers containing a list of strings with customer names (line 96), call
create_database() (line 99), and print its outputs (lines 102–103).

32.focus

Figure 32.6. Code to execute a module (top) and to call it in a terminal (bottom).

288

Chapter 32. How can I reuse functions?

Modules can be run in Spyder by simply pressing the Run command (box 2 in Figure 32.2). How-
ever, the most common way is to use a terminal, which is usually preferred for larger projects
because it runs code in a fast and automated way (Figure 32.6 (bottom)). To open a termi-
nal, go to JupyterLab, and click on File, New, and Terminal. Note that in a terminal, we can
use only specific command lines—not Python! To execute a module, we need two commands.
First, we tell the terminal where the module is. To do so, we type cd—abbreviation of change
directory—followed by the whole path of the folder containing the module—in this example,
/Users/serenabonaretti/lpwj/notebooks. We press enter to execute the command. Then, we
execute the module by typing (1) the command python3 (or simply python in some terminals),
and (2) module name with the extension .py. We press enter to execute the command. When
the functions are executed, the prints from lines 102 and 103 of the module appear on the ter-
minal, as indicated by the orange arrows in Figure 32.6. Go back to setup_database, add the if
__name__ == "__main__" construct, and run it from Spyder and from terminal. Which way do
you prefer?

Let’s code!

1. A module for Bill Gates! Create a module containing the main and satellite functions you wrote
for the coding exercise 1 in Chapter 29 What does Bill Gates tweet about? Import the module in a
notebook and call the main function. Then, execute the module in a terminal.

2. A module for hangman! Do the same as in the previous exercise for the functions of the coding
exercise 1 in Chapter 30 Let’s play hangman!

289

PART 9
LAST BITS OF BASIC
PYTHON
In this part, you will learn how to read and write files and some final types,
keywords, built-in functions, and modules. Enjoy it!

33. Birthday presents
Reading and writing .txt files

One important aspect in coding is to know how to read and write files. Let’s learn the basics in this
chapter! Below is the task we want to solve—follow along with Notebook 33!
• Three of your friends celebrated their birthday this month, and you bought them presents online.
Now, it’s time to perform a purchase analysis and save it in your records. The purchase amounts are
in the file 33_purchases.txt.

How are we going to solve this task? Outline the steps you would take before jumping into the solution
below.

To solve the task, we will divide (and conquer!) the problem in three steps. First, we will read the .txt
file and store its content into a list. Second, we will analyze the purchases by calculating the minimum,
maximum, and total of the amounts in the list. And third, we will save the analysis into a new .txt file.
Let’s start!

1. Reading a .txt file
Before we start writing the code, it’s important to see what the input file looks like. Download and
save 33_purchases.txt in the same folder as the notebook and open it by double clicking on it either
in the File Browser—i.e., the left panel—in Jupyter Lab or in the folder where it is located. You will see
something similar to Figure 33.1.

20.00
15.74
19.10

Figure 33.1. Input file.

The file contains three numbers, each on a separate row, representing purchase amounts. Let’s read
the file and store the three numbers into a list.
• Write a function that reads a .txt file containing one number per row and stores the numbers into a
list:

[1]: 1 def read_txt (file_name_in): def read txt file name in
2 """Reads a .txt file with one number

per row and returns them as a list
Reads a .txt file with one number
per row and returns them as a list

3
4 Parameters Parameters
5 ----------
6 file_name_in : string file name in : string
7 Name of the file to read Name of the file to read

293

Part 9. Last bits of basic Python

8
9 Returns Returns
10 -------
11 numbers : list numbers : list
12 File content in a list of numbers File content in a list of numbers
13 """
14
15 # initialize output initialize output
16 numbers = [] numbers is assigned empty list
17
18 # open the file to read open the file to read
19 with open(file_name_in, "r") as file: with open file name in r as file
20
21 # read the file read the file
22 for line in file: for line in file
23 print("line as read:", line) print line as read line
24
25 # remove "\n" from line remove "\n" from line
26 line = line.rstrip("\n") line is assigned line dot rstrip

backslash n
27 print("line after stripping:", line) print line after stripping line
28 print("-----") print -----
29
30 # get only the non-empty lines get only the non-empty lines
31 if line != "": if line is not equal to empty

string
32
33 # transform the number to float transform the number to float
34 number = float(line) number is assigned float line
35
36 # add to the output list add to the output list
37 numbers.append(number) numbers dot append number
38
39 # return the output return the output
40 return numbers return numbers
41
42 # call the function and print the output call the function and print the

output
43 purchases = read_txt ("33_purchases.txt") purchases is assigned read txt 33

purchases dot txt
44 print("purchases:", purchases) print purchases purchases

(a) line as read: 20.00
(b)
(c) line after stripping: 20.00
(d) -----
(e) line as read: 15.74
(f)
(g) line after stripping: 15.74
(h) -----
(i) line as read: 19.10
(j)
(k) line after stripping: 19.10

294

Chapter 33. Birthday presents

(l) -----
(m) line as read:
(n)
(o) line after stripping:
(p) -----
(q) purchases: [20.0, 15.74, 9.1]

What happens in the function? Get some hints by completing the following exercise!

True or false?

1. The variable file_name_in is a string T F
2. with and open() are a built-in function and a keyword, respectively T F
3. In the for loop, we read the file content one line at the time T F
4. A file cannot contain empty rows T F

Computational thinking and syntax
The function read_txt() reads a text file containing one number per row and returns the numbers as
a list (line 2). The input is the string file_name_in—that is, the name of the file to read (lines 4—7)—and
the output is the list numbers (lines 9—12). In the function body, first we initialize the output numbers to
an empty list (line 16). Then, we open the file and store its content into a variable by using a standard
command composed of four elements (line 19): (1) the keyword with, which supports proper file open-
ing and automatic closing; (2) the built-in function open(), which opens and reads the file by taking
two arguments—the file name and the string "r" for reading—and returns the file content; (3) the key-
word as to rename the file with its content; and (4) a variable commonly named file—or file_object,
or its abbreviation fo—representing the file with its content—if we print file, we get something like
<_io.TextIOWrapper name='33_purchases.txt' mode='r' encoding='UTF-8'>. To extract the con-
tent, we write an indented for loop through values that, at each iteration, stores the current file row
into the variable line (line 22). When we print line for a check (line 23), we get paired prints: (a) and
(b), (e) and (f), (i) and (j), and (m), and (n). Why does this happen?

20.00
15.74
19.10

20.00\n
15.74spacespacespace\n
19.10\n
\n

Figure 33.2. How we see a file content (left) vs. how a computer sees a file content (right).

When we humans read the file 33_purchases.txt, we see three numbers, each of them in a separate
row (Figure 33.2, left). When a computer reads the file, it sees four strings, each containing some
digits and some hidden characters, such as \n or space (Figure 33.2, right). Thus, at the first itera-
tion of the for loop, the variable line contains the string 20.00\n (line 22). As a consequence, the

295

Part 9. Last bits of basic Python

print is 20.00 (print (a)) followed by the empty line due to \n (print (b)). At the second iteration,
line contains the string 15.74spacespacespace\n, and thus the prints are 15.74 followed by three
spaces (print (e))—which we humans do not see!—and an empty line (print (f)). Similarly, at the third
iteration, line contains the string 19.10\n, and thus the prints are 19.10 (print (i)) followed by empty
line (print (j)). Why is there a fourth iteration? Most likely, who created the file accidentally added a
new line before saving the file! Thus, we see no content (print (m)) followed by an empty line (print (n)).
Now that we know how a computer reads the file, we have to do some cleaning to obtain the list of
numbers! First, we remove the empty lines by using the string method .rstrip(), which removes its
argument—"\n"—on the right side of each string line (line 26). To test for correctness, we print line
after stripping (line 27), followed by five dashes to ease visualization (line 28). This time, we obtain the
line content—prints (c), (g), (k), (o)—without subsequent empty lines. Then, to remove the empty line
at the end of the file—whose presence was revealed by the print (n)—we create an if condition that
excludes empty lines from further processing (line 31). Finally, we transform the number in line into a
float using the built-in function float(), which automatically ignores spaceswhile converting a string
into a number (line 34)—like in the case of 15.74spacespacespace\n. As the last step, we assign the
obtained number to the list numbers (line 37) and we return it (line 40). Finally, to execute the function,
we call it with the file name "33_purchases.txt" as an input (line 43)—if the file is not in the same
folder as the notebook, enter thewhole file path! The output is assigned to the variable purchases (line
43), which we print to check for correctness (line 44).

Now that we are aware of the details to consider when reading a file, can we write a more compact
code? Yes! The whole function body (lines 15–40) can be shortened in the following three lines!

15 # open the file open the file
16 with open(file_name_in, "r") as file: with open file_name_in r as file
17
18 # read the numbers and transform them

into floats
read the numbers and transform them
into floats

19 numbers = [float(number) for number
in file.read().split()]

numbers is assigned float number
for number in file dot read dot
split

20
21 # return the output return the output
22 return numbers return numbers

We open the file (line 16) using the same command that we learned above (cell 1, line 19). Then, we
read the file, clean its content, and create the output list in one single command containing a list com-
prehension (line 19). To untangle it, let’s read the command starting from the for loop: for numbers
in file.read().split() assign float(number) to numbers. The method .read() of the variable file
transforms the file content into a long string—that is, '20.00\n15.74 \n19.10\n\n'. Then, the
string method .split() divides the obtained string at white spaces or new lines and transform it into
a list of strings—that is, ['20.00', '15.74', '19.10']. Finally, at each loop iteration, each list ele-
ment is transformed into a float using float(number) and automatically added to the list numbers. Note
that since we are using list comprehension, we do not need to initialize the outcome variable numbers.
At the end of the function, we return the output numbers (line 22)—as we did in cell 1, line 40.

Now that the three numbers are in the numerical list, let’s do some simple analysis on them!

296

Chapter 33. Birthday presents

2. Analyzing the numbers
• Write a function that takes a list of numbers as an input and returns the minimum, maximum, and
sum as separate variables.

[2]: 1 def calculate_stats (numbers): def calculate stats numbers
2 """Returning minimum, maximum, and sum

of a list of numbers
Returning minimum, maximum, and sum of a
list of numbers

3
4 Parameters Parameters
5 ----------
6 numbers : list numbers : list
7 Contains numbers Contains numbers
8
9 Returns Returns
10 -------
11 minimum : float minimum : float
12 Minimum of the list Minimum of the list
13 maximum : float maximum : float
14 Maximum of the list Maximum of the list
15 total : float total : float
16 Sum of the list numbers Sum of the list numbers
17 """
18
19 # calculate the minimum calculate the minimum
20 minimum = min(numbers) minimum is assigned min numbers
21
22 # calculate the maximum calculate the maximum
23 maximum = max(numbers) maximum is assigned max numbers
24
25 # calculate the sum calculate the sum
26 total = sum(numbers) total is assigned sum numbers
27
28 # return the stats return the stats
29 return minimum, maximum, total return minimum maximum total
30
31 # call the function call the function
32 mn, mx, tot = calculate_stats(purchases) mn mx tot is assigned calculate stats

purchases
33 print("minimum:", mn) print minimum mn
34 print("maximum:", mx) print maximum mx
35 print("total:", tot) print total tot
minimum: 15.74
maximum: 20.0
total: 54.84

Computational thinking and syntax
The function calculate_stats() takes a list of numbers as an input (lines 4—7) and returns three vari-
ables containing minimum, maximum, and total sum of the list numbers, respectively (lines 9–16). To

297

Part 9. Last bits of basic Python

calculate the minimum, we use the built-in function min(), which takes a list as an input and returns
the minimum number of the list (line 20). Similarly, to calculate the maximum, we use the built-in
function max(), which given a list as an input, returns the maximum number of the list (line 23). Fi-
nally, to calculate the total amount, we use the built-in function sum() that, given a list as an input,
returns the sum of the numbers in the list (line 26). We store the three outputs into the variables
minimum, maximum, and total making sure that we do not use the function names—see the In more
depth section Don’t name variables with reserved words! in Chapter 14. At the end of the function, we
return the three variables separately (line 29). Finally, we call the function (line 32) and print the three
variables mn, mx, and tot to test for correctness (lines 33–35).

As the last step of our task, let’s save the results of the analysis into a new text file!

3. Saving the analysis
• Create a function that given the minimum, maximum, and total, writes them to a file on three con-
secutive lines, specifying what they represent:

[3]: 1 def write_txt (file_name_out, minimum,
maximum, total):

def write txt file name out minimum
maximum total

2 """Writing minimum, maximum, and sum
to a file

Writing minimum, maximum, and sum to a
file

3
4 Parameters Parameters
5 ----------
6 file_name_out : string file name out : string
7 Name of the file to write Name of the file to write
8 minimum : float minimum : float
9 Minimum of the list Minimum of the list
10 maximum : float maximum : float
11 Maximum of the list Maximum of the list
12 total : float total : float
13 Sum of the numbers in the list Sum of the numbers in the list
14 """
15
16 # open the file to write open the file to write
17 with open(file_name_out, "w") as file: with open file name out w as file
18
19 # write the file content write the file content
20 file.write ("minimum: " + str(minimum)

+ "\n")
file dot write minimum: concatenated
with str minimum concatenated with
backslash n

21 file.write ("maximum: " + str(maximum)
+ "\n")

file dot write maximum: concatenated
with str maximum concatenated with
backslash n

22 file.write ("total: " + str(total)) fo dot write total: concatenated with
str total

23
24 # call the function call the function
25 write_txt ("33_purchases_stats.txt", mn, mx,

tot)
write txt 33 purchase stats dot txt mn
mx tot

298

Chapter 33. Birthday presents

What’s new in this function? Discover it by completing the following exercise.

True or false?

1. The argument "w" in open() defines that we want to close a file T F
2. .write() is a method of the variable file T F
3. When writing a file content, we use string concatenation T F

Computational thinking and syntax
The function write_txt() takes four inputs, that is, the name of the file to write and the calculated
minimum, maximum, and total (lines 4—13), and it has no return. We begin the function body with a
command that simultaneously creates and opens a new file (line 17) and has the same components as
the command we used to open and read a file (cell 1, line 22). The difference is the inputs of open(),
which now are the name of the file to write and the string "w" for writing—instead of "r" for reading.
Then, indented with respect to the previous line of code, we add the commands to write the file con-
tent. Each command is composed of the variable file followed by its method .write(), which takes
the string to be written into the file as an argument. Thus, to write the minimum, the argument is
"minimum: " concatenated with the minimum converted into a string—str(minimum)—and the special
character "\n" to send the following content to a new row (line 20). Similarly, to write the maximum,
the argument is "maximum: " concatenated with str(maximum) and the special character "\n" (line 21).
Finally, to write the total, the argument is "total: " concatenated with the string of total. In this last
case, we do not add "\n" because we do not want to add an empty line at the end of the file (line 22).
To conclude, we call the function (line 25), and we obtain the new file 33_purchases_stats.txt. Check
the file by opening it in the File Browser in Jupyter Lab or in the folder. You will see something similar
to Figure 33.3.

20.00
15.74
19.10

Figure 33.3. Output file.

In this chapter, we learned how to read a file, analyze its content, and write a new file. Did you also no-
tice how the various functions interact among each other? We organized read_txt(),
calculate_stats() and write_txt() into a pipelinewhere the output of each function is the input of
the following function (see Figure 33.4). In general, pipelines are a convenient way to solve problems
with linear solutions and are an alternative to the organization in main and satellite functions—which
we learned in Chapter 29. Depending on the nature of the solution, we can use different function
configurations to divide and conquer our computational problem!

299

Part 9. Last bits of basic Python

Figure 33.4

read_txt()

numbers

file_name_in

calculate_stats()

minimum
maximum
total

numbers

write_txt()

file_name_out
minimum
maximum
total

Figure 33.4. Pipeline of functions, where the output of a function (yellow rectangle)
is the input of the following function (orange rectangle).

Recap
• To open–and–read or create–and–save a file, we use the command with open() as file, where:

■ with is a keyword that supports opening and closing a file;
■ open() is a built-in function whose arguments are the name of the file to read or write and the
strings "r" when reading or "w" when writing the file;

■ as is a keyword to rename the variable representing the file;
■ file (or file_object or fo) is a conventional file name for the variable representing the file.

• To read a file content, we use either a for loop that goes through each line of the file content, or the
method .read() that returns the file content as a long string. To clean the file content, we use string
methods such as .rstrip() or .split().

• To write content to a file, we use the method .write(), which takes a string (or a concatenation of
strings) as an argument.

• To calculate minimum, maximum, and sum of a list, we use the built-in functions min(), max(), and
sum().

• To solve problems with linear solutions, we organize functions in pipelines where the output of the
previous function is the input of the following function.

How do I organize folders and files?

When coding, we deal with several kinds of files, including modules, notebooks, and data. As
projects become larger and more complex, it is important to organize folders and files properly
to avoid confusion. A common way is to have a hierarchical structure that start with a project
folder enclosing the whole project and containing sub-folders for the sub-projects. Within each
sub-folder, it is common to have one folder for code—which can contain two sub-folders, one for

300

Chapter 33. Birthday presents

notebooks and one formodules—one folder for data—with one or more datasets—, and one folder
for documentation—such as a website, a readme file, or any other document (Figure 33.5, left).
This general structure can be adapted to the material of a specific project. For this book, we can
create a project folder called learn_python_with_jupyter, containing sub-folders named after
the book chapters and structured based on their specific material. As an example, the folder
32_modules contains only the subfolder code with the module setup_database.py and the note-
book 32_modules_.ipynb. The folder 33_read_write_file contains two folders, that is, code with
the notebook 33_rw_txt_file.ipynb, and datawith the input file 33_purchases.txt and the output
file 33_purchases_stats.txt. Finally in the project directory, there is the folder documentation
containing the .pdf of the book (Figure 33.5, right). Every time we approach a new project, let’s
start by organizing folders and files in a structured way. It is the first step to divide and conquer
with clarity!

sub_project_1

code

documentation

modules

notebooks

module_1.py

notebook_1.ipynb

data

module_2.py

notebook_2.ipynb

dataset_1
dataset_2

website
readme.txt

project learn_python_with_jupyter

data

33_read_write_file

code

33_rw_txt_file.ipynb

33_purchases.txt
33_purchases_stats.txt

32_modules

code

setup_database.py
32_modules.ipynb

documentation

learn_python_with_jupyter.pdf

Figure 33.5

Figure 33.5. Schematics of a common folder and file structure for computational projects (left)
and example for the material of Chapters 32 and 33 of this book (right).

Let’s code!

1. Login database for Hollywood actors. You work at a famous Hollywood agency and need to create
usernames and passwords for the actors’ accounts.
a. Reading input file. Create a function that reads the file actors.txt—download it from the
website—and returns a list of lists where each sub-list contains first name and last name of
an actor. Hint: What string method can you use to separate first names and last names?

b. Creating usernames and passwords. Write a function that reads a list of lists where each sub-
list contains first name and last name of an actor, then computes username and password for
each actor, and finally returns a list of lists where each sub-list contains a username and a

301

Part 9. Last bits of basic Python

password. Call the functions from the module setup_database (Chapter 32).
c. Writing usernames and passwords to file. Create a function that, given a list of lists where
each sub-list contains a username and a password, writes the list to a .txt file where each row
contains username and password of an actor. Make sure not to create an empty line at the
bottom of the file!

302

34. What’s more in Python?
Additional types, keywords, built-in functions, modules

We are getting to the end of our journey in developing computational thinking while learning Python.
Before getting to the last part of this book, where we will learn object oriented programming, let’s
take a moment to analyze a few more data types, keywords, built-in functions, and modules that are
very useful when coding in Python. For the remaining ones, you will be referred to reliable webpages.
Follow along with Notebook 34!

1. Data types
We extensively learned about strings, lists, integers and floats, Booleans, and dictionaries. Let’s now
have a look at the main characteristics of tuples and sets.

1.1 Tuples

We previously learned about tuples as the data type of the output of the built-in function enumerate()
(Chapter 22), of the dictionary method .item() (Chapter 24), and of any function returning more than
one variable (Chapter 29). As you might remember, tuples are a sequence of elements enclosed in be-
tween round brackets and separated by commas. They are immutable—that is, their elements cannot
be replaced, added, or removed—thus, they are the ideal data type for variables that do not change
throughout the code. In addition, tuples have only two methods, that is, .count(), which returns the
number of times an element is present in a tuple, and .index(), which returns the position of an
element in a tuple. Let’s have a look at a simple example of a tuple and its two methods.
• Given the following tuple:

[1]: 1 image_size = (256, 256, 3) image size is assigned 256 256 3
2 print(image_size) print image size
(256, 256, 3)

The tuple image_size contains the dimensions of an RGB image (line 1), where the first element 256
corresponds the number of rows, the second element 256 to the number of columns, and 3 to the color
channels—that is, red, green, and blue, as you might remember from the In more depth section Lists of
lists and images in Chapter 23. In the following line, we print the tuple to check for correctness (line 2).
• Calculate how many times 256 is present:

[2]: 1 print(image_size.count(256)) print image size dot count 256
2

We use the method .count() that takes the number whose presence we want to count—that is, 256—
as an argument and returns the number of times that number is present—that is, 2—which we directly
print (line 1).
• Compute the position of 3:

[3]: 1 print(image_size.index(3)) print image size dot index three
2

303

Part 9. Last bits of basic Python

We use the method .index() that takes the number whose position we want to know—that is, 3—as an
input and returns its position—that is, 2—which we directly print (line 1).

1.2 Sets

A set is a data type whose elements are enclosed in between curly brackets and separated by comma.
Sets have three main characteristics: (1) they are immutable—like tuples; (2) they are unordered, that
is, their elements do not have a fixed position—thus, sets cannot be sliced; and (3) they contain unique
elements, therefore no duplicates are allowed. Let’s have a look at a set.
• Given the following set, print it:

[4]: 1 cities = {"Buenos Aires", "Prague", "Delhi", "Delhi"} cities is assigned Buenos
Aires Prague Delhi Delhi

2 print(cities) print cities
3 print("The number of elements is:", len(cities)) print The number of elements

is: len cities
{'Delhi', 'Buenos Aires', 'Prague'}
The number of elements is: 3

We create a set called cities containing 4 elements that are strings (line 1) and we print it (line 2).
From the print, we can see that the resulting set is different from what we defined at line 1. Because
sets are unordered—characteristic (2) above—the elements are internally organized differently than in
their definition, and theymight be printed in a different order every time. Second, because sets contain
only unique elements—characteristic (3) above—"Delhi" is present only once. Thus, cities actually
contains only 3 elements, as we can see when printing its length (line 3).

Given their characteristics, sets are very convenient intermediates for list operations. We can use set
properties to remove duplicates from a list and two set methods—.union() and .intersection()—to
respectively merge two lists and find their common elements—sets have 15 more methods, which you
can easily explore on the internet1. Let’s look at some examples.
• Given the following list:

[5]: 1 cities = ["San Francisco", "Melbourne",
"San Francisco", "Milan"]

cities is assigned San Francisco
Melbourne San Francisco Milan

We start with the list cities containing four strings, two of which are the same—
"San Francisco" is both in positions 0 and 2.
• Remove the duplicates:

[6]: 1 cities = list(set(cities)) cities is assigned list set cities
2 print(cities) print cities
['Milan', 'Melbourne', 'San Francisco']

We use the built-in function set() to transform the list into a set, and thus automatically remove
duplicate elements. Then, we use the built-in function list() to transform the obtained set back to a
list (line 1). From the print, we see that "San Francisco" is now present only once. Note that the order
of the list elements is now different from the original list (cell 5) because sets are unordered. Thus, this
trick is useful only when the element order is not important! Let’s look into the next examples.

1Example: https://www.w3schools.com/python/python_ref_set.asp

304

https://www.w3schools.com/python/python_ref_set.asp

Chapter 34. What’s more in Python?

• Given the following lists:

[7]: 1 cities_1 = ["Santiago", "Bangkok",
"Cairo", "Santiago"]

cities one is assigned Santiago Bangkok
Cairo Santiago

1 cities_2 = ["Cairo", "Cape Town"] cities two is assigned Cairo Cape Town

We start with two lists called cities_1 and cities_2 containing 4 and 2 strings respectively.
• Create a new list that contains unique elements from both lists:

[8]: 1 all_cities = list(set(cities_1).union(
set(cities_2)))

all cities is assigned list set cities
one dot union set cities two

2 print(all_cities) print all cities
['Bangkok', 'Cape Town', 'Santiago', 'Cairo']

Let’s understand the nested code at line 1 with the help of Figure 34.1. We transform the two lists
cities_1 and cities_2—represented by the orange and yellow rectangles at the top of the figure—
to the corresponding sets—orange and yellow ellipses—using the built-in function set(). Then, we
apply the method .union() to set(cities_1) with set(cities_2) as an argument to merge the el-
ements that are present in both sets—we could have also applied .union() to set(cities_2) with
set(cities_1) as an argument. To the output set, we directly apply the built-in function list() and
obtain all_cities—green rectangle at the bottom of the figure—that is, a list containing the four
unique elements of the two initial lists. At line 2 of the code, we print all_cities to test for cor-
rectness.

Figure 34.1

"Santiago"
"Bangkok" "Cape Town""Cairo"

cities_1 = "Santiago" "Santiago""Bangkok" "Cairo" cities_2 = "Cairo" "Cape Town"
Lists

Sets

Lists
all_cities = "Bangkok" "Cairo""Cape Town" "Santiago" common_cities = "Cairo"

set()

list(.union()) list(.intersection())

set()

Figure 34.1. Using the sets methods .union() and .intersection()
to merge two lists or find their common elements.

• Create a new list that contains the elements common to both lists:

[9]: 1 common_cities = list(set(cities_1).
intersection(set(cities_2)))

common cities is assigned list set cities
one dot intersection set cities two

2 print(common_cities) print common cities
['Cape Town']

We perform the same steps as above but we use the set method .intersection() to extract the com-
mon elements in the sets. We obtain the list common_cities—gray rectangle in Figure 34.1—containing
only the common element "Cape Town". Finally, we print to check for correctness (line 2).

305

Part 9. Last bits of basic Python

2. Keywords
You already know many Python keywords—including for, del, def, if, etc. You can find the complete
list of keywords on several webpages2. In this section, we will focus on lambda.

2.1 lambda

The keyword lambda is used to create one line functions containing one single operation. These
compact functions are called anonymous functions—because they do not have a name!—or lambda
functions—after the keyword. To understand how they work, let’s compare a simple regular function
that calculates the double of a number with its corresponding lambda function.
• Here is the regular function:

[10]: 1 def double_number (number): def double number number
2 """Returns the double of a number Returns the double of a number
3
4 Parameters Parameters
5 ----------
6 number : float number : float
7 The input number The input number
8
9 Returns Returns
10 -------
11 float float
12 The double of the input number The double of the input number
13 """
14
15 return number * 2 return number times two
16
17 print(double_number(5)) print double number five
10

In the function double_number, the input is a float (lines 1 and 4–7) and the output is the calculated
double (lines 9-12 and 15). We call the function for the number 5 and directly print the output (line 17).
• Here is the corresponding lambda function:

[11]: 1 double_number = lambda number: number * 2 double number is assigned lambda number
number times two

2 print(double_number(5)) print double number five
10

The typical syntax of a lambda function is represented at line 1 after the assignment symbol. It in-
cludes: (1) the keyword lambda; (2) the function input—that is, number; (3) colon; and (4) the operation
that computes the output—that is, number * 2. It is common to assign a lambda function to a vari-
able—in our case, double_number—to call it. To better understand the syntax of a lambda function,
let’s compare it with the syntax of the corresponding regular function, with the help of Figure 34.2.
The input number (orange rectangle) is in between round brackets in the header of a regular function
(line (a)), whereas it is positioned right after the keyword lambda in a lambda function (line (c)). The
operation that computes the output number * 2 (yellow rectangle) is after the keyword return in a

2Example: https://www.w3schools.com/python/python_ref_keywords.asp

306

https://www.w3schools.com/python/python_ref_keywords.asp

Chapter 34. What’s more in Python?

regular function (line (b)), whereas it is after the colon in a lambda function (line (c)). Finally, the regu-
lar function has a name—e.g., double_number (gray rectangle at line (a))—whereas a lambda function is
often assigned to a variable (gray rectangle at line (c)).

Figure 34.2

(b)

(c)

(a)

Figure 34.2. Regular function (a–b) and
corresponding anonymous function (c).

To call a lambda function, we write the name of the function variable followed by the input in round
brackets (cell 11, line 2). For convenience, we directly print the output to check for correctness. Lambda
functions are particularly convenient when we want to apply simple operations to list elements. To do
so, we use the built-in function map(), as you will learn in the coming section.

3. Built-in functions
In the past chapters, you learned several Python built-in functions, including print(), input(), len(),
sum(), etc. Python has a total of 71 built-in functions, which you can discover in the official Python
documentation3. In this chapter, we briefly explore map().

3.1 map()

The built-in function map() is commonly used to apply a lambda function to each element of a list. It
somehow acts like a for loop that extracts one list element at the time and applies a wanted function
to it. Let’s see how map() works with the following example.
• Double each list element using a lambda function:

[12]: 1 numbers = [3, 5, 7] numbers is assigned three five seven
2 doubles = list(map(double_number, numbers)) doubles is assigned list map double

number numbers
3 print(doubles) print doubles
10

We create a list containing three integers and we name it numbers (line 1). Then, we use map() with
two inputs: the lambda function double_number—from cell 11—and the list we want to apply the lambda
function to, that is, numbers from line 1—note that it’s also common to write the lambda function di-
rectly into the map() command: map(lambda number: number * 2, numbers). Because map() returns
its own type, we transform the output to a list using the built-in function list() (line 2). Finally, we
print the output to check for correctness (line 3).

4. Modules
Python provides numerous built-in modules that can be found on the official website4. In this section,
we will learn one more function of the module random and introduce the module time.

3docs.python.org/3/library/functions.html
4docs.python.org/3/library/

307

docs.python.org/3/library/functions.html
docs.python.org/3/library/

Part 9. Last bits of basic Python

4.1 random

We already know two functions of themodule random, that is, .randint() to generate randomnumbers
within a range and .choice() to randomly pick an element from a list. When using these functions, it
can be hard to debug code or verify the correctness of results because the generated random output
is different at each execution. For example, when we generate a random number twice, we obtain two
different results, as we can see in the example below.
• Generate a random integer between 1 and 10 twice:

[13]: 1 import random import random
2
3 n = random.randint(1, 10) n is assigned random dot randint one ten
4 print("n:", n) print n n
5 n = random.randint(1, 10) n is assigned random dot randint one ten
6 print("n:", n) print n n
n: 7
n: 9

We begin by importing the module random (line 1). We use the command .randint() to generate a
random integer between 1 and 10 (line 3), and we print it (line 4). The generated number is 7. Then, we
rewrite the same commands as above (lines 3–4) to generate another random integer between 1 and
10 (lines 5–6). This time, we obtain 9. As expected, the two generated numbers are different. But
how are these numbers created? When we call .randint(), we execute a process similar to the one
shown in Figure 34.3. The core is an algorithm consisting of a set of complicated but deterministic—
that is, well defined—operations that transform an input number into an output number. The input
number is called seed number and is usually determined from the combination of the current time and
date on our computer—and thus it is unique because time always progresses. The output number is
a pseudorandom number—not completely random!—because it looks random but is actually generated
by a deterministic process.

Figure 34.3

seed
number

pseudorandom
number

- +

^

/ %

+

-
^

/ %

- +

^ + / %

- +

^ + / %

- +

^
+

/

%

- +
^

+

/

%
+

^

/ -

+

^ %
^

+

^ %

- +
^

/

% % ^

deterministic algorithm

Figure 34.3. Scheme of a pseudorandom number generator.

Canwe generate the same random number—or better, pseudorandom number—every time we run the
code? Yes, when we specify the seed number! Let’s see how it works in the following example.

308

Chapter 34. What’s more in Python?

• Generate a random integer between 1 and 10 twice, using a seed number:

[14]: 1 random.seed(18) n is assigned random dot seed 18
2 n = random.randint(1, 10) n is assigned random dot randint one ten
3 print("n:", n) print n n
4
5 random.seed(18) n is assigned random dot seed 18
6 n = random.randint(1, 10) n is assigned random dot randint one ten
7 print("n:", n) print n n
n: 3
n: 3

From the module random, we call the function .seed(), which takes a seed number as an input (line
1)—in this example, 18. We generate a random number between 1 and 10 using the same commands as
above—that is, lines 2—3 are the same as lines 3–4 from cell 13. We obtain the number 3. Then, we reuse
the same commands to provide the same seed number and generate a new random number (lines 5–7).
As expected, we obtain 3 again. Thus, when using a seed number, the generation of a random number
is reproducible and we can debug code and verify results much easier. Finally, what number should
we pick as a seed number? Any number we want! Our choice of a seed number is the only real random
factor when generating random numbers!

4.2 time

Knowing the computational time—that is, how long a computation takes—is very important, especially
when running large projects. In Python, we can use the module time. Let’s see how it works with the
following example.
• Compare the time it takes to create a list with ten, a hundred, and a thousand zeros, using a for loop
vs. list replication. What do you think the time difference will be?

[15]: 1 import time import time
2
3 # lists lengths lists lengths
4 n_of_elements = [10, 100, 1000] n of elements is assigned 10 100

1000
5
6 # for each length for each length
7 for n in n_of_elements: for n in n of elements
8
9 print("N. of zeros:", len(numbers)) print N. of zeros: len numbers
10
11 # create the list using the for loop create the list using the for loop
12 start = time.time() start = time dot time
13 numbers = [] numbers is assigned empty list
14 for _ in range(n): for underscore in range n
15 numbers.append(0) numbers dot append zero
16 end = time.time() end is assigned time dot time
17 print("For loop: :.6f sec".format(end-start)) print For loop: :.6f sec dot format

end minus start
18

309

Part 9. Last bits of basic Python

19 # create the list using list replication create the list using list
replication

20 start = time.time() start is assigned time dot time
21 numbers = [0]*n numbers is assigned zero list

replication n
22 end = time.time() end is assigned time dot time
23 print("List repl: :.6f sec".format(end-start)) print List repl: :.6f sec dot

format end minus start
N. of zeros: 10
For loop: 0.004142 sec
List repl 0.000001 sec

N. of zeros: 100
For loop: 0.000024 sec
List repl 0.000002 sec

N. of zeros: 1000
For loop: 0.000147 sec
List repl 0.000004 sec

Let’s start by analyzing the code to create the lists. We begin with the list n_of_elements, which con-
tains the lengths of the lists that we are going to create (line 4). Then, we write a for loop that spans
the list lengths (line 7). For each length, first, we print the number of zeros that will be contained in
the list (line 9). Then, we create a list using a for loop (lines 11–17), that is, we initialize the empty
list (line 13), create a for loop through indices that goes from 0 (omitted) to the current length (line
14), and we append 0 to the list numbers at each iteration (line 15). Finally, we create a list using list
replication (line 19–23), where we replicate the list [0] by the number of zeros n (line 21). How do we
calculate the time of these computations? First, we import the module time (line 1). Then, before each
list creation, we call the function .time() from the module time and we assign the output to the vari-
able start (lines 12 and 20). This command corresponds to pressing start on a stopwatch. After each
list creation, we call again the function .time() from time, and we assign it to the variable stop (lines
16 and 22)—like we pressed stop on a stopwatch. Finally, we print the difference between stop and
start to know the computational time in seconds (lines 17 and 23). To obtain a clear print, we use
the string method .format() with six digits. As you can see, creating a list with a for loop is much
slower than with list replication, especially for long lists! Finally, the computational time depends on
the amount of processes—for example, emails, opened documents, etc.—that are currently running on
the computer and the characteristics of the computer, thus, it can be different at different times or
across computers.

5. Swapping variables
Let’s conclude with a nice trick in Python—not available in many other programming languages!—that
is, is the ability to swap variables in a single line. Let’s see how it works in the example below:

310

Chapter 34. What’s more in Python?

[16]: 1 v_1 = "a" v one is assigned a
2 v_2 = "b" v two is assigned b
3 print("v_1:", v_1) print v one v one
4 print("v_2:", v_2, "\n------") print v two v two backslash n dashes
5
6 v_1, v_2 = v_2, v_1 v one v two is assigned v two v one
7
8 print("v_1:", v_1) print v one v one
9 print("v_2:", v_2) print v two v two
v_1: a
v_2: b

v_1: b
v_2: a

We create two variables, that is, v_1 to which we assign the string "a" (line 1) and v_2 to which we
assign the string "b" (line 2). We print them for a check (lines 3 and 4). The, we swap the variables
by writing: (1) the two variables separated by a comma, (2) the assignment symbol, and (3) the two
variables separated by a comma in inverted order (line 6). When we reprint the variables (lines 8 and
9), we can see that the values are swapped because v_1 now contains "b" and v_2 now contains "a"!

Recap
• Tuples are a data type containing immutable elements and have two methods: .count() and
.index().

• Sets are a data type whose elements are immutable, unordered, and unique. They have 17 methods,
including .union() and .intersection(). Sets can be useful intermediators for list operations such
as duplicate removal, merging two lists, or find the common elements in two lists.

• The keyword lambda allows the creation of anonymous functions, which are compact functions com-
posed of (1) lambda, (2) input, (3) colon, and (4) operation generating the output.

• The built-in function map() is useful when applying a lambda function to each element of a list.
• The function .seed() from the module random allows us to create reproducible random—or more
technically, pseudorandom—numbers.

• To calculate computational time, we use the module time. Its function .time() acts like the start or
stop of a stopwatch.

311

Part 9. Last bits of basic Python

What is pip install?
Have you ever seen the command pip install? It is a terminal command to install Python
packages. A package is simply a collection of modules—that is, .py files containing functions
for a specific task, as you might recall from Chapter 32. Some of the most popular packages
include NumPy for numerical computing, Pandas for data manipulation and analysis, Matplotlib
and Seaborn for data visualization, Scikit-learn for machine learning and Tensorflow and Pytorch
for deep learning. To share a package with others, developers upload it to PyPi (Python Package
Index;)www.pypi.org, a repository hosting hundreds of thousands of Python packages. When
we want to use a package in our code (e.g. Pandas), we typically follow 2 simple steps:
1. Install the package. To do that, we open the terminal and we write pip install and the
name of the package—e.g., pip install pandas. This command downloads the package
from PyPi and installs it on our computer

2. Import the package in our Python code. We import packages exactly like we import mod-
ules, that is by writing the command import followed by the name of the package—e.g.,
import pandas

How to create a package is beyond the scope of this book; however, you can find a detailed guide
in the official documentation at packaging.python.org.

Let’s code!

1. How long does it take to square numbers? Create a regular function that given a number returns its
square. Then, write the corresponding lambda function. Finally, apply both functions to a list of 10
numbers. How long do all these operations take?

2. How long does it take to concatenate lists? Create two lists, one containing integers from 0 to 10000,
and another containing integers from 10001 to 20000. Hint: use range()—see Chapter 8. Then,
merge the two lists once by adding one element at the time from the second list to the first, and
once by using list concatenation. Which method is faster? By how much?

312

www.pypi.org
packaging.python.org

PART 10
OBJECT-ORIENTED
PROGRAMMING
In this last part, you will learn how to code using classes and objects, with
their attributes and methods. Ready to expand your horizon?

35. Let’s build an online store!
Classes and objects, attributes and methods

Up to this point, we’ve learned Python’s grammar, including data types, operators, loops, and func-
tions. We’ve also learned how to code following the principles of procedural programming, that is,
creating step-by-step instructions that are executed sequentially to get to the solution of a task. In
this last part of the book, we will switch gears and learn the basics of object-oriented programming—
commonly abbreviated asOOP. It is a differentway of thinking about code, based on the representation
of the world in classes and objects, with their attributes and methods. Let’s get familiar with these
new concepts while solving the following task. Follow along with Notebook 35!

• You are building a new online store where you will sell various types of products. Each product will
have a similar webpage containing characteristics such as name, original price, and discount. In
addition, there will also be two possible actions: apply coupon (to add the value of a coupon to the
discount) and calculate price (to calculate an item price).

1. Create a template for the webpage and then customize it for a T-shirt and a lamp with the fol-
lowing characteristics:
■ T-shirt: name: Feel good, original price: 30 coins, launch discount: 4 coins;
■ Lamp: name: Lux, original price: 40 coins, no launch discount.

2. Then, execute these actions for each product:
■ Calculate the price after the discount;
■ Calculate the price after adding the coupon SAVE4 worth 4 coins to the T-shirt and the coupon
SUMMER10 worth 10 coins to the lamp.

Object lamp

Lux
Original price: 40 coins
Discount: 0 coins

Calculate priceApply coupon

Feel good
Original price: 30 coins
Discount: 4 coins

Calculate priceApply coupon

Object t_shirt

Figure 35.1

Icons from https://www.freepik.com/

self.name
Original price: self.price
Discount: self.discount

Class Product

Calculate priceApply coupon

Figure 35.1. Representation of the class Product (left) and its objects t_shirt and lamp (right).

315

Part 10. Object oriented programming

How do we solve this task? We will create a class (in grey in Figure 35.1) for the webpage template
and two objects, one for the T-shirt, and one for the lamp (in orange). For the product characteris-
tics—name, price, and discount—we will define attributes, whereas for the actions—apply coupon and
calculate price—we will implement methods. For now, just focus on understanding the syntax of the
code and its functionality. By the end of the chapter, concepts and definitions will become clear. In the
next pages, the code will be presented without pronunciation guides, and functions will have reduced
documentation because of the large number of commands. However, it is always recommended to
read code carefully and write complete function documentation for better understanding and reuse.
Enough talk, let’s jump into the code!

1. Class, objects, and attributes
Let’s start from the first point of the task. Here we have a class representing the webpage template and
an object representing the T-shirt—we will create the object representing the lamp at the end of this
first section. Read the code below and try to understand its syntax and functionality.
• Here is the class representing a product and its attributes:

[1]: 1 class Product:
2 """Class representing a product"""
3
4 # --- CONSTRUCTOR -------------------
5 def __init__(self, name):
6 """Constructor"""
7 self.name = name
8 self.price = 0
9 self.discount = 0

• Here is the object t_shirt with its attributes at instantiation and after customization:

[2]: 1 t_shirt = Product("Feel good")
2
3 print("-> Attributes of the object t_shirt at instantiation:")
4 print("Name:", t_shirt.name)
5 print("Price:", t_shirt.price, "coins")
6 print("Discount:", t_shirt.discount, "coins")
7
8 print("-> Attributes of the object t_shirt after customization:")
9 t_shirt.price = 30
10 print("Price:", t_shirt.price, "coins")
11 t_shirt.discount = 4
12 print("Discount:", t_shirt.discount, "coins")

(a) -> Attributes of the object t_shirt at instantiation:
(b) Name: Feel good
(c) Price: 0 coins
(d) Discount: 0 coins
(e) -> Attributes of the object t_shirt after customization:
(f) Price: 30 coins
(g) Discount: 4 coins

What happens in the code above? Get some hints by solving the following exercise.

316

Chapter 35. Let’s build an online store!

True or false?

1. To create a class we use the keyword class T F
2. Product is an object and t_shirt is a class T F
3. A class contains a constructor T F
4. We use the variable self both in classes and objects T F
5. An attribute is a variable whose value can change T F

Computational thinking and syntax
In cell 1, we create a class bywriting: (1) the keyword class, (2) the class name, and (3) colon (line 1). Un-
like variable names, class names are capitalized, and if they consist ofmultiple words, eachword begins
with a capital letter—such as in CustomerOrder, for example. In our code, the class name is Product.
All the code that follows this first line is indented. We write a one-line documentation describing the
purpose of the class (line 2). Then, there is the constructor (lines 4–9), which is a method—that is, a
class function, as we will see in the next section—that is always present in a class and is used to create
an object, as we will learn in a bit. The constructor has the predefined name __init__() and one
or more parameters in between round brackets (line 5). The first parameter is a variable commonly
called self. For now, just consider self as part of the syntax. We will clarify its meaning in the In
more depth section in the next chapter. The second parameter is name. Below the header, there is a
one-line documentation specifying that this is the constructor (line 6). In the body, there are three
variables, which we call attributes (lines 7–9). Each is composed of (1) self, (2) dot, (3) attribute name,
(4) assignment symbol, and (5) a variable or an initializing value. In our example, the first attribute is
self.name (line 7), and it is assigned the variable name—that is, the second parameter of the constructor
(line 5). The second attribute is self.price and is initializedwith 0 (line 6). Similarly, the third attribute
is self.discount and is initialized with 0 (line 7). Note that an input variable and the corresponding
attribute often have the same name—such as name and self.name—to improve readability and indicate
their connection. Also, it is common to align the assignment symbols vertically for a clearer readability
of the attributes. Finally, all the attributes are in blue in Jupyter Notebook. When we run a cell con-
taining a class, the class is saved in memory but no code is executed—similarly to when we run a cell
containing a function without its call. To “execute” the code of a class, we need an object.

To instantiate—that is, create—an object, we write: (1) object name, (2) assignment symbol, (3) class
name, and (4) arguments—excluding self!—in between round brackets. In our example, we instantiate
t_shirt as an object of the class Product with the argument "Feel good" (cell 2, line 1). What hap-
pens behind the scenes when we instantiate an object? We call the constructor of the class! In our
case, we call __init__() in Product and we pass the argument "Feel good" to the variable name (or-
ange arrow in Figure 35.2). There, the value in name—that is, "Feel good"—is assigned to the attribute
self.name (line 7 in cell 1, and grey arrow in Figure 35.2, left). At this point, the object t_shirt is
created and it has all the attributes specified in the class (black arrows in Figure 35.2). The syn-
tax for an attribute in an object is: (1) object name, (2) dot, and (3) attribute name. Thus, the at-
tribute self.name in the class Product is t_shirt.name in the object t_shirt. Similarly, the attribute
self.price in Product is t_shirt.price in t_shirt, and self.discount is t_shirt.discount.

317

Part 10. Object oriented programming

Figure 35.2

Object t_shirtClass Product

Figure 35.2. Class Product (left) and its object t_shirt (right). At instantiation, "Feel good" is passed to the
parameter name and t_shirt gets the attributes of Product.

What are the initial values of an object’s attributes? At instantiation, the object’s attributes have the
values defined in the constructor—remember, the class is a template! Thus, when we print
t_shirt.name, we obtain Feel good (line 4; print (b)), that is, the value in name, as defined in the class
(cell 1, line 7). When we print t_shirt.price, we obtain 0 (line 5; print (c)), as defined in the class (cell 1,
line 8). And similarly, when we print t_shirt.discount, we obtain 0 (line 6; print (d)), as defined in the
class (cell 1, line 9). How can we customize the values of an object’s attribute? Simply, by assignment.
Thus, to set the original price of the T-shirt to 30 coins, we write t_shirt.price = 30 (line 9), and
from the print we see that the attribute t_shirt.price now has value 30 (line 10; print (f)). Similarly, to
customize the launch discount, we assign the value 4 to t_shirt.discount (line 11), and when we print
it, we see that the value is now 4 coins (line 12, print (g)).

Let’s create the object lamp, as requested by the first point of the task. Howwould you do it? Instantiate
lamp and play with its attributes before looking at the solution below.

• Here is the object lamp with its attributes:

[3]: 1 lamp = Product("Lux")
2 lamp.price = 40
3 print("Name:", lamp.name)
4 print("Price:", lamp.price, "coins")
5 print("Discount:", lamp.discount, "coins")

(a) Name: Lux
(b) Price: 40 coins
(c) Discount: 0 coins

We instantiate lamp as an object of the class Product with the value "Lux" as the argument (line 1).
Then, we change the lamp price from the default 0—in the class, self.price is initialized to 0 (cell 1,
line 8)—to 40 with an assignment (line 2). Because the lamp has no discount, lamp.discount has the
default value 0 (cell 1, line 9), and thus we do not need to write any assignment command. When we
print the attributes, we see that lamp.name is now "Lux" (line 3, print (a)), lamp.price is 40 (line 4; print
(b)), and lamp.discount is 0 (line 5; print (c)).

2. Methods
Let’s tackle the second point of the task! We need to implement two actions, that is, applying a coupon
and calculating an item price. To do so, we copy the class Product and we add two methods called
apply_coupon() and calculate_price() (cell 4, lines 12–27)—in the code below you will find also the

318

Chapter 35. Let’s build an online store!

built-in method __str__() (lines 31–33) that we will discuss at the end of the chapter. Because the
class is changed, we need to re-instantiate the object t_shirt to add the new functionalities (cell 5).
Read the following code and try to understand what it does!
• Here is the complete class with its attributes and methods:

[4]: 1 class Product:
2 """Class representing a product"""
3
4 # --- CONSTRUCTOR -------------------
5 def __init__(self, name):
6 """Constructor"""
7 self.name = name
8 self.price = 0
9 self.discount = 0
10
11
12 # --- METHODS -----------------------
13 def apply_coupon(self, coupon): # added
14 """Updates discount based on a coupon"""
15 if coupon == "SAVE4":
16 self.discount = self.discount + 4
17 print("Coupon SAVE4 applied!")
18 elif coupon == "SUMMER10":
19 self.discount = self.discount + 10
20 print("Coupon SUMMER10 applied!")
21 else:
22 print("Your coupon is not valid")
23
24 def calculate_price(self): # added
25 """Calculates price after discount"""
26 updated_price = self.price - self.discount
27 return updated_price
28
29
30 # --- BUILT-IN METHOD --------------
31 def __str__(self): # added
32 """Prints the object characteristics"""
33 return "Name: " + self.name

• Instantiate the object t_shirt with its attributes. Then, calculate the price after discount, and the
price after discount and coupon:

[5]: 1 # instantiating the object with its attributes
2 t_shirt = Product("Feel good")
3 t_shirt.price = 30
4 t_shirt.discount = 4
5 print("Name:", t_shirt.name, "| original price:", t_shirt.price,

"coins | launch discount:", t_shirt.discount, "coins")
6

319

Part 10. Object oriented programming

7 # calculating the price after launch discount
8 print("-> Price after launch discount")
9 t_shirt_price = t_shirt.calculate_price()
10 print("Price:", t_shirt_price, "coins")
11
12 # applying the coupon
13 print("-> Applying the coupon")
14 t_shirt.apply_coupon("SAVE4")
15 print("Discount:", t_shirt.discount, "coins")
16
17 # calculating the price after launch discount and coupon
18 print("-> Price after launch discount and coupon")
19 t_shirt_price = t_shirt.calculate_price()
20 print("Price:", t_shirt_price, "coins")

(a) Name: Feel good | original price: 30 coins | launch discount: 4 coins
(b) -> Price after launch discount
(c) Price: 26 coins
(d) -> Applying the coupon
(e) Coupon SAVE4 applied!
(f) Discount: 8 coins
(g) -> Price after launch discount and coupon
(h) Price: 22 coins

What are methods and how do they work? Get some hints by solving the following exercise!

True or false?

1. Methods are functions in a class T F
2. An object cannot call a class method T F
3. The method apply_coupon() modifies the attribute t_shirt.discount T F
4. The method calculate_price() adds the discount to the original price T F

Computational thinking and syntax
Methods are simply functions in a class. Their first parameter is usually self, as we can see in the
headers of apply_coupon() (cell 4, line 13) and calculate_price() (line 24). In case of additional param-
eters, they are placed after self—such as coupon, which is in second position in the apply_coupon()
header (line 13). Because self is a parameter, attributes can be accessed and modified directly within
methods. Wewill explainwhy in the Inmore depth session in the next chapter. Thus, in apply_coupon()
we can modify self.discount without passing it as parameters (lines 16 and 19). Similarly, in
calculate_price() we can directly use self.price and self.discount (line 26). What do
apply_coupon() and calculate_price() do? The method apply_coupon() contains an if/elif/else
construct specifying the update of self.discount based on a coupon. If coupon is "SAVE4" (line 15),
we add 4 coins to self.discount (line 16) and we print a message accordingly (line 17); otherwise if
coupon is "SUMMER10" (line 18), we add 10 coins to self.discount (line 19) and we print a message
accordingly (line 20); otherwise (line 21), we print that the coupon is not valid (line 22). The method
calculate_price() calculates and returns the updated price as the difference between the value of
self.price and the value of self.discount (lines 24–25). In general, methods can be defined in any

320

Chapter 35. Let’s build an online store!

order in the class and they can be called in any order and multiple times by an object. Let’s see how.
The syntax to call a method from an object is: (1) object name, (2) dot, (3)method name, and (4) argu-
ments—if any—in between round brackets, excluding self. The method’s output can be assigned to a
variable, of course. In our example, first, we re-instantiate the object customizing its attributes, and
we print them for a check (cell 5, lines 2–5; print (a)). Then, we calculate the price after launch discount
by writing t_shirt.calculate_price() (line 9), and we assign the output to t_shirt_price, which we
print to obtain 26 (line 10; print (c)). What happens exactly when we call the method? As you can see
in Figure 35.3, t_shirt calls calculate_price() in the class (orange arrow), which is executed using
the values of the object’s attributes. Thus, self.price - self.discount is 30 - 4 (line 26). The re-
sulting value 26 is assigned to updated_price, which is returned (line 27) and passed to the variable
t_shirt_price (gray arrow) (cell 5, line 9). Finally, the price is printed for a check (line 10; print (c)).

Figure 35.3

Object t_shirtClass Product

Figure 35.3. Method calculate_price() defined in the class Product (left)
and called by the object t_shirt (right).

Let’s apply the coupon and calculate the final price. The object t_shirt calls the method
apply_coupon() with the argument "SAVE4" (line 14). Similarly to above, apply_coupon() is executed
using the values of the object attributes. Because the if condition in the method is true (cell 4, line
15), we execute self.discount + 4—that is, 4 + 4—and we update self.discount with the new value
8 (line 16). Then, we print the message that the coupon has been applied (line 17; print (e)). To check for
correctness, we print the object’s attribute t_shirt.discount, and we see the updated value 8 (cell 5,
line 15; print (f)). Finally, we calculate the T-shirt price with the updated discount that includes launch
discount and coupon. To do so, we simply recall the method calculate_price() (line 19). Within the
method, we subtract 8—value in self.discount— from 30—value in self.price— to obtain 22 (cell 4,
line 26), which is returned (line 27) to the variable t_shirt_price (cell 5, line 19) and eventually printed
(line 20; print (h)).

How would you calculate the price of the object lamp before and after applying the coupon
"SUMMER10"? Give it a try before looking into the solution below.
• Instantiate the object lamp with its attributes and calculate its price before and after applying the
coupon SUMMER10:

[6]: 1 # instantiating the product lamp with its attributes
2 lamp = Product("Lux")
3 lamp.price = 40
4
5 # calculating the original price
6 print("-> Original price")
7 lamp_price = lamp.calculate_price()
8 print("Price:", lamp_price, "coins")

321

Part 10. Object oriented programming

9
10 # calculating the price after coupon
11 print("-> Price after coupon")
12 lamp.apply_coupon("SUMMER10")
13 lamp_price = lamp.calculate_price()
14 print("Price:", lamp_price, "coins")

(a) -> Original price
(b) Price: 40 coins
(c) -> Price after launch discount and coupon
(d) Coupon SUMMER10 applied!
(e) Price: 30 coins

Similarly to cell 3, we instantiate lamp as an object of the class Product with the argument "Lux" (line
2), and we customize its price to 40 coins (line 3). Because the lamp has no launch discount, we
do not need to modify its attribute lamp.discount, which has the default value of 0 coins. We cal-
culate the original price by calling lamp.calculate_price() (line 7). In the method, self.price -
self.discount is 40 - 0 (cell 5, line 26), that is 40, which is returned (line 27) to the variable
lamp_price (cell 6, line 7) and printed (line 8, print (b)). Then, we apply the coupon "SUMMER10" using
the method apply_coupon() (line 9). This time, the true condition is elif coupon == "SUMMER10" (cell
4, line 18). Thus the discount is updated from the original value 0 to the new value 10 (line 19). More-
over, the feedback message stating that the coupon was applied is printed (line 20; print (d)). Finally,
we recalculate the price using the method calculate_price() (cell 6, line 13). In the corresponding
method, self.price - self.discount is 40 - 10 (cell 5, line 26), that is 30, which is returned (line 27)
to the variable lamp_price (cell 6, line 13), and eventually printed (line 14, print (e)).

As we mentioned at the beginning of this section, classes can also have built-in methods—that is,
predefined methods—whose names start and end with double underscore. Also for built-in methods,
the first argument is commonly self (cell 5, lines 5 and 31). The most common built-in method is
the constructor __init__() (line 5 in cells 1 and 4), which is mandatory in a class to allow for object
instantiation. Another commonly used built-in method is __str__(), which defines the print of an ob-
ject. In our example (cell 5, lines 31–33), we return the string "Name: " concatenated with the attribute
self.name. Let’s see what happens when we print the two objects we created in this chapter.
• Print the two objects:

[10]: 1 print(t_shirt)
2 print(lamp)
Name: Feel good
Name: Lux

When we print the object t_shirt (line 1), we obtain Name: Feel good. Similarly, when we print lamp
(line 2), we obtain Name: Lux. With the built-in method __str__()we somehow overwrote the built-in
function print(). Without __str__(), we would get something like <__main__.Product object at
0x102d8cbb0> when executing print(t_shirt) or print(lamp). In the following chapters, we will not
focus further on built-in methods; however, you can find a complete list of built-in methods in the
official Python documentation1.

At this point, you might ask: When do I use object-oriented programming instead of procedural pro-
gramming? Usually object-oriented programming is used in projects that involve objects with similar

1https://docs.python.org/3/library/operator.html

322

https://docs.python.org/3/library/operator.html

Chapter 35. Let’s build an online store!

characteristics and behaviors. For example, on a social media platform, every person is an object with
attributes such as name, posts, number of likes, and is able to perform actions such as follow some-
body, like a post, and send a message. Similarly, in a school registry, each student has a name, an age,
a curriculum, and can change a course, receive a grade, or participate in a school event. In a customer
registry, each customer has a name, an email address, a phone number, and can send an email, sched-
ule a meeting, generate an invoice. As you can see, a lot of software that we use in everyday life is based
on object-oriented programming. You will also have the opportunity to explore more examples in the
coding exercises at the end of these last few chapters.

Let’s conclude this chapter with formal definitions of the concepts we learned:

A class is a template containing properties and actions
An object is an instance of a class

An attribute is a variable that represents a property of an object
Amethod is a function that represents an action that an object can perform

Before moving to the next chapters where we will expand the online store example and discover new
interesting properties of object-oriented programming, complete the exercise below to summarize
and memorize the concepts we have discussed so far.

Insert into the right column

Summarize the difference between classes and objects by completing the table with the following
phrases:
object_name.attribute_name, present, capitalized with no spaces, object_name.method_name(),

a template, absent, self.attribute_name, an instantiation of a class,
lowercase separated by underscore, def method_name()

Class Object

What it is

Name style

self

Attribute syntax

Method syntax
(creation in class /
call in object)

Recap
• In object-oriented programming, we represent the world in classes and objects with attributes and
methods.

• A class is a template and is introduced by the keyword class.
• An object is an instance of a class.

323

Part 10. Object oriented programming

• Attributes are variables representing an object’s properties.
• Methods are functions in a class representing actions that an object can perform. Their first param-
eter is usually self.

• Classes can have built-in methods, such as the constructor __init__() and __str__(), which de-
fines an object’s print.

Python data types are classes!

Since the beginning of our journey, we have usedmethods for lists—e.g., .append(), .remove()—
for strings—e.g., .lower(), .upper()— for dictionaries—e.g. .keys(), .values()— and for other
data types, including tuples and sets. Does this ring any bell? In Python, data types are classes
and the variables we create are objects! And we are familiar with many of their methods! Let’s
look into this simple code:

[1]: 1 greeting = "hello" greeting is assigned hello
2 print(greeting.upper()) print greeting dot upper
3 print(type(greeting)) print type greeting
HELLO
<class 'str'>

At line 1, we create the object greeting. To be consistent with the syntax, we should write
greeting = str("hello"), but Python provides us a shortcut—that is, the quotes—to simplify
the instantiation. Then, we call the method .upper() to change its content to uppercase and we
print it (line 2). You can imagine the class defining a string as containing 47 methods, including
.upper(), .lower(), etc., exactly like calculate_price() or apply_coupon() in this chapter. Fi-
nally, when we print the type of greeting (line 3), we see that it is of class str—that is, string.
Similarly, let’s have a quick look into a list:

[2]: 1 numbers = [1, 3, 5] numbers is assigned one three five
2 print(numbers.index(3)) print numbers dot index three
3 print(type(numbers)) print type numbers
1
<class 'list'>

We instantiate the object numbers from the class List using a provided shortcut—that is, the
square brackets—(line 1). Then, we call the method .index() with argument 3 and we directly
print the output 1 (line 2). As for strings, we can imagine the code defining the list class as
containing a sequence of 11 methods—the ones we summarized in Chapter 21. Finally, when
printing the type, we see that it is of class list (line 3).

Let’s code!

1. More items in the online store! Create two more objects from the class Product with the following
characteristics:
a. A beach ball called Giant ball, original price: 10 coins, launch discount: 0.50 coins. Calculate
its price before and after applying the coupon SAVE4.

324

Chapter 35. Let’s build an online store!

b. A diary called My adventures, costing 15 coins, launch discount: 3 coins. Calculate its price
before and after applying the coupon SPRINGSALES30.

What do you get when you print each object?

2. Sportswear testimonials. You work for a famous sportswear company who hires champions for
advertising.
a. Create a class named Athlete that represents sports champions. The class contains 4 at-
tributes: first name and last name (which are also the parameters of the constructor), sports
type, and earnings. Then, create an object for each of the following athletes:
• Yannick Sinner, tennis, 10000 coins;
• Christiano Ronaldo, soccer, 20000 coins;
• Serena Williams, tennis, 15000 coins.
Make sure that when you print an object, you print first and last name.

b. Last year, soccer clothing sales had a small increase, so you give Ronaldo an earning increase.
To do so, modify the class by adding a method called increase_earning(), which increases
the earnings by a given percentage. Then, call the method increase_earning() for Ronaldo
with a 1% bonus increase. How much is Ronaldo earning now?

c. Similarly, tennis clothing sales in the past year had a relevant increase, so you decide to give a
5% earning increase to the athletes playing tennis. To do so, create a list called athleteswhose
elements are the created objects. Add a 5% raise to the athletes playing tennis using a for loop
and an if condition. How much are they earning now?

325

36. Securing the online store
Encapsulation

In this chapter, we will build on the online store example to learn encapsulation, that is, how to define
the access to attributes and methods by making them public or private. To learn what it means, have
a look at the task and the implementation of its solution below. You already know most of the code.
Search for the differences between this implementation and the one in the previous chapter, and try
to understand what they imply. Follow along with Notebook 36!

• While filling out the online store, you realize that youwant tominimize errors that could compromise
revenue. Thus, you make the attributes representing price and discount private and create get and
set methods to access them. In addition, you realize that you need to include the tax amount in
the calculation of the final price. Therefore, you implement a private method that calculates the tax
amount and modify calculate_price() accordingly:

[1]: 1 class Product:
2 """Class representing a product"""
3
4 # --- CONSTRUCTOR -------------------
5 def __init__(self, name):
6 """Constructor"""
7 self.name = name
8 self.__price = 0 # modified
9 self.__discount = 0 # modified
10 self.__tax_rate = 0.02 # added
11
12
13 # --- GET/SET METHODS ---------------
14 def get_price(self): # added
15 """Gets the price value"""
16 return self.__price
17
18 def set_price(self, price): # added
19 """Sets the price value"""
20 if isinstance(price, (int, float)) and price > 0:
21 self.__price = price
22 else:
23 raise ValueError("Price must be a number greater than 0")
24
25 def get_discount(self): # added
26 """Gets the discount value"""
27 return self.__discount
28
29 def set_discount(self, discount): # added
30 """Sets the discount value"""
31 if isinstance(discount, (int, float)) and 0 < discount < self.__price:
32 self.__discount = discount

326

Chapter 36. Securing the online store

33 else:
34 raise ValueError("Discount must be a number greater than 0 and less than

the product's price")
35
36
37 # --- METHODS -----------------------
38 def apply_coupon(self, coupon):
39 """Updates discount based on a coupon"""
40 if coupon == "SAVE4":
41 self.__discount = self.__discount + 4 # modified
42 print("Coupon SAVE4 applied!")
43 elif coupon == "SUMMER10":
44 self.__discount = self.__discount + 10 # modified
45 print("Coupon SUMMER10 applied!")
46 else:
47 print("Your coupon is not valid")
48
49 def __calculate_tax(self, price): # added
50 """Calculates tax on price"""
51 tax = round(price * self.__tax_rate, 2)
52 print("Tax amount on", price, "coins:", tax, "coins")
53 return tax
54
55 def calculate_price(self):
56 """Calculates price after discount and tax"""
57 # calculate the discounted price
58 discounted_price = self.__price - self.__discount # modified
59 # calculate tax on the discounted price
60 tax = self.__calculate_tax(discounted_price) # added
61 # add tax to the discounted price
62 taxed_price = discounted_price + tax # added
63 return taxed_price
64
65
66 # --- BUILT-IN METHODS --------------
67 def __str__(self):
68 """Prints the object characteristics"""
69 return "Product: " + self.name

• To test the new code, you fill out again the T-shirt with its details, that is, name: Feel good; original
price: 30 coins; and launch discount: 4 coins. Then, you calculate the T-shirt price before and after
applying the coupon SAVE4:

[2]: 1 # creating the object
2 t_shirt = Product("Feel good")
3 print("t_shirt name:", t_shirt.name)
4
5 # providing and retrieving the original price
6 print("-> Original price")
7 t_shirt.set_price(30)
8 print("Price:", t_shirt.get_price(), "coins")
9

327

Part 10. Object oriented programming

10 # providing and retrieving the discount
11 print("-> Launch discount")
12 t_shirt.set_discount(4)
13 print("Launch discount:", t_shirt.get_discount(), "coins")
14
15 # calculating the price after launch discount and tax
16 print("-> Price after launch discount and tax")
17 t_shirt_price = t_shirt.calculate_price()
18 print("Price:", t_shirt_price, "coins")
19
20 # applying the coupon and calculating the price
21 print("-> Price after launch discount, coupon, and tax")
22 t_shirt.apply_coupon("SAVE4")
23 t_shirt_price = t_shirt.calculate_price()
24 print("Price:", t_shirt_price, "coins")

(a) Name: Feel good
(b) -> Original price
(c) Price: 30 coins
(d) -> Launch discount
(e) Launch discount: 4 coins
(f) -> Price after launch discount and tax
(g) Tax amount on 26 coins: 0.52 coins
(h) Price: 26.52 coins
(i) -> Price after launch discount, coupon, and tax
(j) Coupon SAVE4 applied!
(k) Total discount: 8 coins
(l) Tax amount on 22 coins: 0.44 coins
(m) Price: 22.44 coins

What are the novelties in the code above and what are their effects? Get some hints by solving the
following exercise.

True or false?

1. To make an attribute or a method private, we add one underscore at the beginning
of its name

T F

2. self.__price, self.__discount, and self.__tax_rate are private attributes T F
3. An object can set the value of a private attribute by a set method and get its

value by a get method
T F

4. An object can directly call a private method T F
5. The final price is calculated by subtracting the discount from the original price

and adding the tax
T F

Computational thinking and syntax
Let’s start by analyzing the attributes in the constructor (cell 1, lines 7–10). The attribute self.name
(line 7) is the same as in Chapter 35 (cell 5, line 7). We call this kind of attributes public—you are already
familiar with them. On the other side, the attributes self.__price and self.__discount (lines 8 and
9) are now private. To make an attribute private, we add a double underscore at the beginning of

328

Chapter 36. Securing the online store

their names. Also the new attribute self.__tax_rate (line 10) is private because its name starts with a
double underscore—we will use self.__tax_rate in the method __calculate_tax() (line 51). What is
the main difference between public and private attributes? It’s about the way we access them, that is,
how we assign a value to an attribute or retrieve the value from an attribute. Let’s first refresh how
to access public attributes.

Public attributes can be directly accessed both within a class and by an object.

As you already know, within a class, we access a public attribute by using the syntax
self.attribute_name. For example, within the class Product, we directly access the public attribute
self.name in the built-in method __str__() (cell 1, line 69). Similarly, from an object, we access a pub-
lic attribute by using object_name.attribute_name. For example, from t_shirt—which we instantiate
in cell 2, line 2—we directly access the public attribute t_shirt.name (line 3) to print it (print (a)). What
about private attributes?

Private attributes can be directly accessed only within a class;
they can be accessed by an object only through get/set methods.

In a class, we access a private attribute by using the syntax self.__attribute_name, similarly to what
we would do for a public attribute. For example, in calculate_price() we directly access the private
attributes by writing self.__price and self.__discount (line 58). On the other side, if an object tries
to directly access a private attribute, we get an AttributeError saying that the attribute does not exist:

1 print("t_shirt price:", t_shirt.__price, "coins")

AttributeError Traceback (most recent call last)
Cell In[3], line 1

> 1 print("t_shirt price:", t_shirt.__price, "coins")

AttributeError: 'Product' object has no attribute '__price'

To avoid this error, we use an attribute’s get and set methods (lines 14–34), which have a typical struc-
ture:
• A get method—also called getter—returns a private attribute. For example, get_price() returns
self.__price (line 16), and get_discount() returns self.__discount (line 27). The name of a getter
is usually composed of get followed by underscore and the name of the attribute—without a double
underscore—and the input is usually self.

• A set method—also called setter—assigns the value of a parameter to a private attribute. For ex-
ample, in set_price(), we assign the input price to the private attribute self.__price (line 21), and
in set_discount(), we assign the input discount to the private attribute self.__discount (line 32).
The assignment is often conditional on a check of the parameter type and value. We commonly
check the type using isinstance()—in our case with a tuple as a second parameter containing the
possible numerical types—and the value as a numerical range, as we learned in Chapter 30. In our
example, the parameters price and discount must be an integer or a float greater than 0 (lines 20
and 31), and discountmust also be less than the product price (line 31). If the conditions are not met
(lines 22 and 33), we raise a ValueError (lines 23 and 34), with amessage containing the requirements

329

Part 10. Object oriented programming

for both type and value, for convenience—it is also possible to raise ValueError and TypeError sep-
arately. The name of a setter is usually composed of set followed by underscore and the name of the
attribute—without a double underscore. Similarly, the name of the parameter is usually the same
as the name of the attribute—without a double underscore—to show the correspondence. Finally,
setters usually take two inputs—that is, self and the parameter that will be assigned to the private
attribute—and have no returns.

How does an object use get and set methods? By calling them with the usual syntax
object_name.method_name. Let’s have a look at t_shirt (cell 2). We provide the price of 30 coins
by calling the setter with the command t_shirt.set_price() (line 7). When executing the code, the
argument 30 goes through the set_price() method in the class (cell 1, lines 18–23). Because 30 sat-
isfies the type and value checks—it is an integer greater than 0—it will be assigned to the attribute
self.__price (line 21). We can retrieve the price amount by calling the getter with the command
t_shirt.get_price(), which returns the value of the attribute self.__price (cell 1, line 16), that is,
20 coins, which we print (cell 2, line 8; print (c)). Similarly, we provide the discount of 4 coins by calling
the setter with the command t_shirt.set_discount() (cell 2, line 12). In the setter (cell 1, lines 29–34),
the value of discount satisfies the type and value conditions—it is an integer between 0 and 30—(line
31) and thus is assigned to the attribute self.__discount (line 32). Finally, we can retrieve and print
the discount amount by calling the getter with the command t_shirt.get_discount() (cell 2, line 13;
print (e)).

Now that syntax and functionality are clear, you might wonder: why and when should I make an
attribute public or private? It’s a matter of protection of the integrity code and the judgment of-
ten depends on the context and the coder’s interpretation of the whole project. In general, we make
an attribute public when it can be freely accessed without risks of unintended changes or bugs. In
our example, the attribute self.name is public to allow easy change of the product name, because it
would not cause any economic damage to the online store. On the other side, we make an attribute
private when we want some control on how it is used and modified. In our code, self.__price and
self.__discount are private because we want to check their types and values before assignments to
avoid compromising revenues. What about self.__tax_rate (cell 1, line 10)? Why doesn’t it have a get-
ter and a setter? Since the tax rate is constant for all items, we do not want to introduce any possibility
for the object to change it, so as to avoid potential damage.

Let’s now look into encapsulation formethods. It works as follows:

Public methods can be directly accessed both within a class and by an object.
Private methods can be accessed only within a class—not by an object.

Let’s analyze the three methods in the Product class (cell 1, lines 38–63). The first method is
apply_coupon() (lines 38–47), which is public, that is, its accessibility works the same way as in Chap-
ter 35. However, in the method’s code the attribute self.__discount is now private (lines 41 and
44). The second method is the newly added __calculate_tax() (lines 49–53), which is private. Sim-
ilarly to attributes, we make a method private by adding a double underscore at the beginning of
its name. Within __calculate_tax(), we calculate the tax amount as the product of the input price
and the tax rate—defined by the private attribute self.__tax_rate—and we round it to the first two
decimals for convenience (line 51). Then, we print the tax amount (line 52), and we return it (line
53). Finally, the third method is calculate_price() (lines 55–63), which remains public. However,

330

Chapter 36. Securing the online store

its code is modified with respect to Chapter 35. We calculate the discounted price by subtracting
self.__discount from self.__price—both of them are now private attributes—and we store the re-
sult in discounted_price (line 58). Then, we calculate the tax amount by calling the private method
__calculate_tax() (line 60). To call a public or private method within a class, we use the syntax
self.method_name(). The method __calculate_tax() takes discounted_price as an input and re-
turns the tax amount as an output. Finally, the tax amount is summed to the discounted price and
stored in taxed_price (line 62), which is finally returned (line 63).
How are the methods used by an object? As defined above, objects can call only public methods
using the syntax object_name.method_name(), as we learned in the previous chapter. They can not
call private methods. In our example, we call the methods in the same sequence as in the previous
chapter, that is, first calculate_price() to calculate the price, then apply_coupon() to apply a coupon,
and finally calculate_price() again to recalculate the price (Chapter 35, cell 5, lines 7–20; this chapter,
cell 2, lines 15–24). However, the outcome is different because the price calculation now includes a tax.
Let’s briefly go through the code. First, we calculate the price with launch discount and tax by using
the public method calculate_price() (cell 2, line 17). Within the method, we subtract the discount of
4 coins from the original price of 30 coins to obtain the discounted price of 26 coins (cell 1, line 58). Then,
we calculate the tax by calling the private method __calculate_tax() (line 60), which receives the
discounted price of 26 coins as an input, multiplies it by the tax rate 0.02 (defined at line 10) and rounds
the result to two digits (line 51). The obtained amount of 0.52 coins is printed (line 52; print (g)) and
returned (line 53) to the variable tax in calculate_price() (line 60). Finally, the value of tax is summed
to the value of discounted_price to obtain 26.52 coins (line 62). This value is returned (line 63) and
assigned to the variable t_shirt_price (cell 2, line 17), which is then printed (line 18; print (h)). Second,
we apply the coupon SAVE4. We call the public method apply_coupon() (line 22), which adds 4 coins to
the private attribute self.__discount (cell 1, line 41) and prints a message (line 42; print (j)). Finally, we
recalculate the T-shirt price after launch discount, coupon, and tax. We call calculate_price() (cell
2, line 23), which executes the same steps as above. Because the total discount is now 8 coins, the tax
amount is calculated on 22 coins, resulting in 0.44 coins (print (l)). The final amount of 22.44 coins is
returned and assigned to the variable t_shirt_price (line 23), which is finally printed (line 24; print
(m)).

What happens if an object tries to call a private method? Similarly to attributes, we get an error:

1 t_shirt.__calculate_tax(price)

AttributeError Traceback (most recent call last)
Cell In[4], line 1

> 1 t_shirt.__calculate_tax(price)

AttributeError: 'Product' object has no attribute 'calculate_tax'

Even if we tried to access a private method, we obtain an AttributeError, as we can see in the last line
of the message. This can be deceiving. However, the presence of the round brackets after the method
name in the line indicated by the arrow will help us detect that we are dealing with a method, and not
an attribute.

Once more, you might ask: when do we make a method public or private? Similarly to attributes, we
make a method public when it can be used by an object without compromising the code, whereas we
make a method private when we do not want the object to access it or when it supports some other

331

Part 10. Object oriented programming

methods, like __calculate_tax().

To conclude, find a summary of the syntax of accessibility to public and private attributes andmethods
within the same class and by an object in Table 36.1. It is important to mention that in the majority of
programming languages, encapsulation also includes a third category of attributes and methods called
protected. However, this goes beyond the scope of exploring the basics of object-oriented program-
ming of this book.

Class attributes and methods Accessibility within the class Accessibility by an object

Public Attribute
.name

Direct
self.name

Direct
t_shirt.name

Private Attribute
.__price

Direct
self.__price

Using getters and setters
t_shirt.get_price()
t_shirt.set_price()

Public Method
calculate_price()

Direct
self.calculate_price()

Direct
t_shirt.calculate_price()

Private Method
__calculate_tax()

Direct
self.__calculate_tax()

Not possible

Table 36.1. Accessibility to the public and private attributes and methods of a class (left column), within the same
class (central column), and by an object instantiated from the class (right column).

Recap
• In encapsulation, we define public or private access to attributes and methods.
• The name of a private attribute or a method starts with a double underscore.
• A public attribute or method can be accessed both within the class and by the object, whereas a
private attribute or method can be accessed only within the class.

• An object can call a get method—or getter—to retrieve the value of a private attribute and a set
method—or setter—to assign a value to a private attribute.

The self is a little crab!
In the past two chapters, we used self extensively within the class, considering it as a syntax
particle for convenience. But what is self? A fun way is to think of it like a little crab whose left
legs represent the attributes and right legs represent the methods (Figure 36.1, left). Because
self is the first input parameter of the methods of a class—including the constructor!—every
method has access to all the legs of the crab, that is, all the attributes and methods. For example,
the getter get_price() (cell 1, lines 14–16) receives self—the whole crab!—as an input and re-
turns self.__price—the second left leg! The method calculate_price() (lines 55–63) receives
self as an input and uses not only the attributes self.__price and self.__discount—the sec-
ond and third left legs—(line 58), but also themethod __calculate_tax()—the second right leg—
(line 60) (Figure 36.1, right). The role of self is to tie together all the attributes and methods and
make them accessible to the other attributes and methods. This accessibility is made possible

332

Chapter 36. Securing the online store

using dot notation, that is, using the syntax: (1) self, (2) dot, and (3) name of attribute or method.
When operating with an object, self represents that object within the class, because it carries
the attribute values of that object. For example, when calling calculate_price() for the object
t_shirt, the operation self.__price-self.__discount is 30-4. In summary:

self represent the current instance of the class and
is used to access its attributes and methods within the class.

Figure 36.1

Product

Pro
duc

t

Figure 36.1. Illustration of self as a crab, where the left legs represent the attributes and the right legs represent the
methods (left) and its role in a class method (right).

Finally, the name self is a convention. self is not a reserved word in Python, and it is colored
black in Jupyter Notebook, like any other variable. However, it is recommended to use the name
self to ensure code readability.

Let’s code!

1. Let’s add more items to the online store! From the updated class Product, instantiate the following
objects from the previous chapter:

• A lamp called Lux, original price: 40 coins, no launch discount. Calculate its price before and
after applying the coupon SUMMER10.

• A beach ball called Giant ball, original price: 10 coins, launch discount: 0.50 coins. Calculate its
price before and after applying the coupon SAVE4.

• A diary calledMy adventures, costing 15 coins, launch discount: 3 coins. Calculate its price before
and after applying the coupon SPRINGSALES30.

2. Running a used car garage. You run a used car garage and have just received a new vehicle that needs
to be added to the garage database. The car is a grayWJ from the LP brand. From the current report,
you see that it traveled 30000 km in 2024 and 50000 km in 2025. It also has a dent on the front left
door.
a. Create a class representing a car similar to the one above. What attributes will you create
and of what types? Which attributes will be public and which ones private? For the private

333

Part 10. Object oriented programming

attributes, write getters and setters.
b. Now you go for the inspection. You notice that the car has a another dent on the left back door.
How do you modify the class to add this new information?

c. Finally, you want to print a report on the car’s status. The report must contain all the car char-
acteristics, the amount of km the car traveled each year and their average, and the number of
dents and their locations. Add at least two methods to perform this final task. Which methods
will be public and which methods will be private?

334

37. How can I add a book sample?
Inheritance

So far, we have learned the basics of object-oriented programming. That is, we’ve learned the concepts
of classes and objects, with their public and private attributes. In this chapter, we will extend the
capabilities of classes and objects by using inheritance. Here, you will get familiar with the concepts
of parent and children classes and their properties. Ready? Let’s enhance the online store with some
new features! Follow along with Notebook 37.

• It’s time to add books to the online store. For their webpages, you need to add a Read Sample button
so that customers can preview the books before buying. However, you have to make sure that this
button does not appear on the pages of other products, such as clothing or furniture. How can you
do it?

Have a look at Figure 37.1. Any ideas? Everything will be clearer in a bit!

Object coding_book

Let’s code!
Original price: 20 coins
Discount: 2 coins

Calculate priceApply coupon

Read sample

Figure 37.1

Icons from https://www.freepik.com/

self.name
Original price: self.price
Discount: self.discount

Parent class Product

Calculate priceApply coupon

self.name
Original price: self.price
Discount: self.discount

Child class Book

Calculate priceApply coupon

Read sample

Figure 37.1. The parent class Product (left), the child class Book with the additional
functionality Read sample (middle), and the object coding_book (right).

Let’s continue with the code!
• You keep the class Product as it is—see Chapter 36, cell 1 and Notebook 37, cell 1. That will be the
parent class.

• You create a child class representing books that inherits all attributes andmethods from the Product
class. Then, you add a private attribute representing the book sample—with its get and set
methods—and create a public method that prints the sample:

[2]: 1 class Book(Product):
2 """Child class representing a book"""
3
4 # --- CONSTRUCTOR -------------------
5 def __init__(self, name):
6 """Constructor"""
7 super().__init__(name)
8 self.__book_sample = ""
9
10

335

Part 10. Object oriented programming

11 # --- GET/SET METHODS ---------------
12 def get_book_sample(self):
13 """Gets the book sample"""
14 return self.__book_sample
15
16 def set_book_sample(self, book_sample):
17 """Sets the book sample"""
18 if isinstance(book_sample, str):
19 self.__book_sample = book_sample
20 else:
21 raise TypeError("book_sample must be a string")
22
23
24 # --- METHODS -----------------------
25 def read_sample(self):
26 """Prints the book sample"""
27 if self.__book_sample != "":
28 print(self.__book_sample, "[...] - Enjoying the book? Buy it!")
29 else:
30 print("Book sample not available")

• To test the new code, you instantiate an object representing a coding book called Let’s code, original
price 20 coins, and launch discount 2 coins. Then, you print the book’s characteristics, its price after
applying the coupon SUMMER10, and its sample:

[3]: 1 # creating the object and setting the attributes
2 coding_book = Book("Let's code!")
3 coding_book.set_price(20)
4 coding_book.set_discount(2)
5
6 # printing the characteristics
7 print("Book name:", coding_book.name,

"| original price:", coding_book.get_price(),
"coins | launch discount:", coding_book.get_discount(), "coins")

8
9 # printing the price
10 print("-> Price after launch discount, coupon, and tax")
11 coding_book.apply_coupon("SUMMER10")
12 print("Price: ", coding_book.calculate_price(), "coins")
13
14 # reading the book sample
15 print("-> Reading book sample")
16 coding_book.set_book_sample("Coding is a lot about telling a computer what to do")
17 coding_book.read_sample()

(a) Book name: Let's code! | original price: 20 coins | launch discount: 2 coins
(b) -> Price after launch discount, coupon, and tax
(c) Coupon SUMMER10 applied!
(d) Tax amount on 8 coins: 0.16 coins
(e) Price: 8.16 coins
(f) -> Reading book sample
(g) Coding is a lot about telling a computer what to do [...] - Enjoying the book? Buy it!

336

Chapter 37. How can I add a book sample?

Get a few more hints about inheritance by solving the following exercise before reading the next sec-
tion!

True or false?

1. Product is the child class and Book is the parent class T F
2. A child class can use attributes and methods of the parent class T F
3. A child class cannot add its own attributes and methods T F
4. The method read_sample() prints the value of self.__book_sample T F

Computational thinking and syntax
Did you get an idea ofwhat inheritance is in object-oriented programming? Consider the facial features
of a child. Let’s say a boy inherited many characteristics from his parents, such as his eye and hair
color. But he has also some features that are unique to him, such as his smile. In object-oriented
programming, inheritance is similar. A child class—or subclass—inherits its attributes and methods
from its parent class—or superclass—and can add new ones that are unique to itself. In other words:

Inheritance is a mechanism that enables a child class to
derive and extend the attributes and methods of a parent class.

Let’s see how inheritance works by analyzing the code of the online store. Let’s start with the syntax,
and then we will look into the functionality. The class Book (cell 2) is the child class of the parent class
Product (Chapter 36, cell 1). To create a child class, we write: (1) keyword class, (2) class name, and
(3) name of the parent class in between round brackets (cell 2, line 1). With this line, we pass all the
attributes and methods of the parent class to the child class—as if they were the eyes and hair color
from the parents to their child. Right below, we write a one-line documentation describing the class
(line 2). Then, we write the constructor (lines 5–8), which is needed only when new attributes are
added with respect to the parent class—you will see an example of a child class without a constructor
in the next chapter. In our example, the constructor takes self and name as parameters (line 5), like
in the parent class (Chapter 36, cell 1, line 5). Within the constructor, we must call the parent class’s
constructor by using a typical command composed of: (1) built-in function super(), which further
gives the child class access to all the parent class’s attributes and methods, (2) a dot, and (3) call to
the constructor of the parent class. Then, we add a new private attribute called self.__book_sample,
which we initialize as an empty string (line 8). This addition and the ones below are unique to the child
class—as if they were the child’s smile in the example above. The parent class will not have access
to the new attribute—as parents cannot inherit their child’s smile. Because self.__book_sample is
private, we write a getter (lines 12–14) to return its value, and a setter (lines 16–21) to assign a value.
In the setter, the assignment is conditional on the input being a string (line 18). Finally, we add a new
method that prints the book sample (lines 25–30). Within the method, if the book sample is not an
empty string (line 27), we print the value of self.__book_sample (line 28). Otherwise (line 29), we print
that the book sample is not available (line 30).

What happens on the object side? Let’s look into cell 3. We instantiate the object coding_book from the
child class Book (line 2). Then, we set the price by using the setter set_price() inherited from the par-

337

Part 10. Object oriented programming

ent class Product (line 3). Similarly, we set the discount by using set_discount()
from Product (line 4). Then, we print the book characteristics by directly accessing the attribute
coding_book.name and using the getters get_price() and get_discount(), which are once more in-
herited from the parent class Product (line 7, print (a)). Similarly, we calculate the price after the initial
discount, coupon, and tax by using the methods apply_coupon() (line 11; print (c)) and
calculate_price() (line 12, prints (d) and (e)), inherited from Product. Finally, we use the new meth-
ods added in the child class Book. First, we set the book sample by using the setter set_book_sample()
(line 16). Because the argument is a string, it gets assigned to self.sample within the class (cell 1, lines
18–19). Finally, we call the method read_sample() to print the sample (cell 2, line 17; print (g)).

In this chapter, we learned the concepts of parent class and child class and their properties. Can we
create more than one child class from the same parent class? Yes! You will see an example in the
next chapter. And can we still instantiate objects from the parent class? Yes, as you will see in the first
coding exercise below. Before moving to the next sessions, take some time to refresh the accessibility
to public and private attributes and methods of the parent class by a child class and a child object with
the help of Table 37.1.

Parent class attributes and methods Accessibility by a child class Accessibility by a child object

Public Attribute
.name

Direct
self.name

Direct
coding_book.name

Private Attribute
.__price

Using getters and setters
self.get_price()
self.set_price()

Using getters and setters
coding_book.get_price()
coding_book.set_price()

Public Method
calculate_price()

Direct
self.calculate_price()

Direct
coding_book.calculate_price()

Private Method
__calculate_tax()

Not possible Not possible

Table 37.1. Accessibility to the public and private attributes of a parent class (left column) by the child class
(central column) and an object instantiated from the child class (right column).

Recap
• Inheritance consists in creating one or more child classes (or subclasses) from a parent class (or
superclass).

• The child class inherits attributes and methods from the parent class and can add new ones.
• To create a child class, we use the keyword class followed by the child class name and the parent
class name in between round brackets.

• A child class needs a constructor only when it adds new attributes. In this case, the first line of the
constructor is composed of the built-in function super() followed by dot and the constructor of the
parent class.

338

Chapter 37. How can I add a book sample?

Attributes and methods and round brackets
When using an attribute or calling a method, it can happen to mistakenly add or remove the
round brackets at the end of their name. Here is how to recognize these errors and correct
them. When we mistakenly add round brackets after an attribute, we obtain the following error:

[4]: 1 print(coding_book.name()) print coding book dot name

IndexError Traceback (most recent call last)
Cell In[4], line 1

> 1 print(coding_book.name())
TypeError: 'str' object is not callable

It is a TypeError saying that a string is not callable, which—as you might remember—means that
we cannot call a string as if it were a function. To correct the error, we simply remove the round
brackets. On the other side, when we forget the round brackets after a method—this might
happen especially if the method does not have any inputs—we do not obtain an error message,
but a print similar to the following:

[5]: 1 print(coding_book.calculate_price) print coding book dot calculate price
<bound method Product.calculate_price of <__main__.Book object at 0x10783d850>>

It says that we are looking at—and not calling!—the method calculate_price() of the class
Product—Product.calculate_price—called by the object Book—Book object. To avoid this
print, we call the method by adding round brackets—along with any arguments—after its name.

Let’s code!

1. Testing the parent class. Instantiate an object t_shirt from the parent class Product having the
same characteristics as in the previous chapter, that is, name: Feel good, initial price: 30 coins,
launch discount: 4 coins, coupon SAVE4. Try to set a book sample and call the method
read_sample(). What happens and why?

2. Buying an electric car. You want to buy a new electric car, and these are the cars you like:

• Model E-Nature, energy consumption: 15 kWh per 100 km, battery capacity: 75 kWh;
• Model E-Green, energy consumption: 18 kWh per 100 km, battery capacity: 40 kWh.

You want to calculate whether the battery capacity of these cars is sufficient for a trip of 300 km.
To do so, you create:

• A parent class called Vehicle. Its constructor contains the attributes representingmodel and en-
ergy consumption. Themethod calculates the energy needed as the energy consumption divided
by 100 and multiplied by the distance to drive.

• A child class called ElectricCar. It adds an attribute representing the battery capacity and a
method that prints whether the trip can be completed with the calculated energy.

Which car will you buy?

3. School management system. You have to develop a software program for a school that calculates
the total number of hours each teacher works per week and the average grade of each student. The

339

Part 10. Object oriented programming

characteristics that teachers and students have in common are first name and last name. In addition
to these, each teacher has a number of working hours per day and a number of working days per
week, whereas each student has grades in math, history, and music. How would you represent this
situation using object-oriented programming? Test your solution for the following two teachers:
Tom Kind who works 5 hours a day, 4 days a week; and Ani Heart who works 3 hours a day, 5 days
a week. Then, for the following three students: Amber Brown has 8 in math, 9 in history, and 5 in
music; Mark Fox has 5 in math, 8 in history, and 7 in music; and Sophia Baker has 9 in math, 7 in
history, and 8 in music

340

38. Customizing the coupon for electronics
Polymorphism

In this final chapter, you will learn about polymorphism, which literally means many forms in Ancient
Greek. It is the property of a child class that allows us to overwrite one or more methods of the parent
class. As a result, objects from the parent class and its child classes can use a method with the same
name but perform different actions. Let’s see what this means in practice by performing the last
addition to the online store. Follow along with Notebook 38!

• To complete the online store, you add electronic products. When purchasing them, customers can
only use the coupon TECH100, worth 100 coins, instead of the SAVE4 and SUMMER10 coupons, which
can be used for other products. Howwould you change the apply coupon functionality to satisfy this
new requirement?

The solution to our task is depicted in Figure 38.1. We will create a child class called Electronics that
appears similar to its parent class Products. However, the method apply_coupon() will contain dif-
ferent code to allow the use of the TECH100 coupon. We will test our code with a new object called
laptop.

Figure 38.1

Icons from https://www.freepik.com/

Object laptop

E-notebook
Original price: 1000 c
Discount: 50 coins

Calculate priceApply coupon

self.name

Parent class Product

Calculate priceApply coupon

Original price: self.price
Discount: self.discount

self.name

Child class Electronics

Calculate priceApply coupon

Original price: self.price
Discount: self.discount

Figure 38.1. The parent class Product (left), the child class Electronics (middle), and
the object laptop (right). Despite the similarity between parent and child class,

the method apply_coupon() performs different functionalities.

Let’s have a look at the code!
• You keep the same parent class Product as in Chapter 36, cell 1—find it also in Notebook 38, cell 1.

341

Part 10. Object oriented programming

• You create the new child class Electronics that inherits from Product and overwrites its method
apply_coupon():

[2]: 1 class Electronics(Product):
2 """Child class representing an electronic product"""
3
4 # --- METHODS -----------------------
5 def apply_coupon(self, coupon):
6 """Updates discount based on a coupon - overwrites parent method"""
7 if coupon == "TECH100":
8 self.set_discount(self.get_discount() + 100)
9 print("Coupon TECH100 applied!")
10 else:
11 print("Your coupon is not valid")

• To check the correctness of the code, you create a new object laptop named E-notebook, with the
original price of 1000 coins, and launch discount of 50 coins. Then, you calculate the price before
and after applying the coupon TECH100:

[3]: 1 # instantiating the object
2 laptop = Electronics("E-notebook")
3 laptop.set_price(1000)
4 laptop.set_discount(50)
5
6 # calculating price after launch discount
7 print("-> Price after launch discount")
8 laptop_price = laptop.calculate_price()
9 print("Price:", laptop_price, "coins")
10
11 # calculating price after coupon
12 print("-> Price after coupon")
13 laptop_price.apply_coupon("TECH100")
14 laptop_price = laptop.calculate_price()
15 print("Price:", laptop_price, "coins")

(a) -> Price after launch discount
(b) Tax amount on 950 coins: 19.0 coins
(c) Price: 969.0 coins
(d) -> Price after coupon
(e) Coupon TECH100 applied!
(f) Tax amount on 850 coins: 17.0 coins
(g) Price: 867.0 coins

True or false?

1. The child class Electronics inherits attributes and methods from the parent class
Product

T F

2. The child class Electronics does not overwrite the method apply_coupon() of the
parent class Product

T F

3. The objects of the child class Electronics can use only the coupon TECH100 T F

342

Chapter 38. Customizing the coupon for electronics

Computational thinking and syntax
Let’s start by analyzing the class (cell 2). We create Electronics, a child class that inherits attributes
and methods from the parent class Product (line 1). Because Electronics does not add new attributes
beyond those of the parent class, we omit the constructor (see Chapter 37). The only changewemake is
to overwrite the method apply_coupon() (lines 5–11) from the parent class (Chapter 36, cell 1, lines 38–
47). Overwriting methods is the core of polymorphism. Let’s recall what we learned at the beginning
of the chapter:

Polymorphism is a mechanism that enables a child class to
overwrite a method of the parent class while keeping the same method name.

In other words, in the child class we write a method with the same name as in the parent class but
containing different commands. In our example, we want to allow customers to exclusively use the
TECH100 coupon when buying electronics. Thus, in the method apply_coupon() of Electronics we
implement an if/else construct, where if the coupon is TECH100 (line 7), we add 100 coins to the
discount (line 8) and we print that the coupon was successfully applied (line 9). Otherwise (line 10), we
print that the coupon is not valid (line 11). As you might remember from the previous chapter, because
self.__discount is a private variable in the parent class, we cannot access it directly from the child
class, thus we use the get and set methods (see Table 37.1).

Let’s now look at the object (cell 3). We instantiate laptop with the name E-notebook (line 2), and
we call the setters set_price() with argument 1000 coins (line 3) and set_discount() with argu-
ment 50 coins (line 4). Then, we calculate the price by calling the method calculate_price() (line
8)—which includes the calculation of the tax amount (print (b))—and we print the price after tax (line
9; print (c)). Afterwards, we call the newly implemented apply_coupon() (line 13), and we get the mes-
sage that the coupon was successfully applied (print (e)). Finally, we recalculate the price by calling
calculate_price() once more (line 14)—obtaining the print of the tax amount (print (f))—and we print
the final price (line 15; print (g)). As you can see, laptop called apply_coupon() from
Electronics—not from Product!—and calculate_price() from Product because in Electronics we
do not overwrite calculate_price().
What happens if we apply a coupon that is valid for the parent class? Let’s try with SAVE4:

1 laptop.apply_coupon("SAVE4")
Your coupon is not valid

The output message tells us that the coupon is not valid. This is because laptop is an instantiation
of the child class Electronics, and thus it uses the method apply_coupon() in Electronics, not in
Product, as we mentioned previously.
What if we use the coupons SAVE4 and TECH100 for the objects t_shirt of class Product?

1 t_shirt = Product("Feel good")
2 t_shirt.apply_coupon("SAVE4")
3 t_shirt.apply_coupon("TECH100")

(a) Coupon SAVE4 applied!
(b) Your coupon is not valid

Because it is of the class Product, t_shirt calls the implementation of apply_coupon() from the parent
class (Chapter 36, cell 1, lines 38–47). There, the coupon SAVE4 satisfies the if conditions (line 40), thus

343

Part 10. Object oriented programming

it can be applied (line 2 above; print (a)). On the other side, the coupon TECH100 does not satisfy either
the if (line 40) or the elif (line 43) conditions; therefore, it is not considered valid (line 3 above; print
(b)).

Similarly, what happens when we use the coupons SAVE4 and TECH100 for coding_book of class Book?

1 coding_book = Book("Let's code!")
2 coding_book.apply_coupon("SAVE4")
3 coding_book.apply_coupon("TECH100")

(a) Coupon SAVE4 applied!
(b) Your coupon is not valid

Because the child class Book does not overwrite the method apply_coupon() of Product, the object
coding_book uses the method apply_coupon() from Product. Therefore, similarly to the outcomes for
t_shirt, the coupon SAVE4 is applicable (line 2 above; print (a)), whereas the coupon TECH100 is not
(line 3 above; print (b)).

In summary, for laptop, t_shirt, and coding_book, we called the function apply_coupon() using
the same syntax object_name.method_name() but we obtained different results—TECH100 is valid for
laptop but not for t_shirt and coding_book, whereas SAVE4 is valid for t_shirt and coding_book but
not for laptop. This is the strength of polymorphism: when we instantiate an object from a class, the
appropriate method is automatically selected based on the object’s class, without requiring specific
intervention.

In the last four chapters, we learned the basics of object-oriented programming, away to code based on
the representation of the world with classes and objects, characterized by attributes—
representing their properties—and methods—representing their actions. As an example, we imple-
mented a simplified version of an online store (see Figure 38.2). From the parent class Product, we
instantiated the object t_shirt—and the object lamp, not represented here for simplicity—(Chapter 35)

Feel good
Original price: 30 coins
Discount: 4 coins

Calculate priceApply coupon

Object t_shirt

Figure 38.2

Icons from https://www.freepik.com/

self.name
Original price: self.price
Discount: self.discount

Child class Book

Calculate priceApply coupon

Read sample

Object laptop

E-notebook
Original price: 1000 c
Discount: 50 coins

Calculate priceApply coupon

self.name

Child class Electronics

Calculate priceApply coupon

Original price: self.price
Discount: self.discount

self.name

Parent class Product

Calculate priceApply coupon

Original price: self.price
Discount: self.discount

Object coding_book

Let’s code!
Original price: 20 coins
Discount: 2 coins

Calculate priceApply coupon

Read sample

Figure 38.2. Graphical summary of the representation of an online store in object-oriented programming.

344

Chapter 38. Customizing the coupon for electronics

and we created two child classes, Book and Electronics. Book inherits all attributes and methods
from Product and adds the private attribute self.__book_sample—with its getter get_book_sample()
and setter set_book_sample()—and the public method read_sample() (Chapter 37). Electronics in-
herits all attributes and methods without adding any of its own, but overwrites the method
apply_coupon(), leveraging on polymorphism (Chapter 38). We can imagine the online store expand-
ing with other child classes to represent beauty products, food, or games. In addition, child classes can
have their own child classes too. Electronics can have child classes representing smartphones—with
their specific features, such as screen size and camera quality—and speakers—with features such as
maximumoutput power and connectivity technology. Thanks to object-oriented programming, we can
represent the real world through a hierarchy of parent and child classes, with code that is modular,
reusable, and easily extensible.

Recap
• Polymorphism enables child classes to overwrite parent class methods while keeping the same
method name.

• When it is called, the correct method is automatically selected based on the object’s class.

How do I use ChatGPT when coding?
In the last year, large language models have emerged as a support in coding. Among the most
common are ChatGPT by OpenAI, Copilot by Microsoft, and Claude by Anthropic. How do we
use them when coding? These models are a fantastic resource when creating functions, writing
code documentation, and brainstorming when encountering obstacles. However, we have to be
aware of a few limitations. First, these models are mainly created from data from the internet,
and they often provide outputs that are average, rather than original. Thus, whenever we need
to code something common, their support is useful; but when we need to code something spe-
cific, we might still have to do the hard work. Second, the outputs that these models give are
not reproducible, which means that if we prompt the same requirements at different times, we
obtain different answers. Therefore, we always have to check and validate the model outputs
because they might vary. Last, these models tend to be verbose, proposing code that is over-
complicated or adding commands that are not needed to solve the task. Therefore, we always
need to read the code carefully and select the commands that do what we require. The human
judgment of the output of a language models is still fundamental, and my hope is that with this
book I could provide you the tools to better understand the elements of coding and develop
computational thinking to reason out how to solve a given task. Thank you for learning with
me!

Let’s code!

1. Polygons. Create a parent class representing a regular polygon. The class has two attributes, the
number of sides and side length; and twomethods, one to calculate the perimeter and one to calcu-

345

Part 10. Object oriented programming

late the area. Then, create a child class representing an equilateral triangle. The area of a triangle is
calculated as

√
3
4 · s2, where s is the side. In addition, implement a child class representing a square

whose area is calculated as the square of the side. Finally, instantiate two objects, a triangle and a
square of side 4, and calculate their perimeter and area

2. Online food ordering. You have to create a new software program for online food ordering. The
client requested a basic ordering system with two customized options, one for pizza and one for
burgers. The base order has an initial price of 10 coins. For pizza, the price increases by 20% if
the size is medium, and by 50% if the size is large. For burgers, the price increases by 1.5 coins if
the customer adds cheese and by 1 coin if they add onions. To test your code, create four orders:
a small pizza, a medium pizza, and a large pizza, as well as a burger with both extra cheese and
onions. What is the total cost?

346

References and sources
• The cover is inspired by the cover of the book “Working in Public: The Making and Maintenance of
Open Source Software” by Nadia Eghbal. Stripe Press. 2020

• A few examples and exercises in the book were inspired from online material, ChatGPT, and the book
“Coding for Kids: Python: Learn to Code with 50 Awesome Games and Activities” by Adrienne Tacke.
Rockridge Press. 2019

• Figure 1.1 is modified from the original by Cy21 and downloaded from https://commons.wikimedia.
org/wiki/File:QWERTY-home-keys-position.svg

• Figure 16.1 is by the U.S. Naval Historical Center Online Library Photograph and downloaded from
https://en.wikipedia.org/wiki/Debugging#/media/File:First_Computer_Bug,_1945.jpg

• The tree in Figure 31.2 is by OpenClipart-Vectors and downloaded from https://pixabay.com/vect
ors/tree-nature-drawing-plant-branches-2027899

• The icons in Figures 33.5, 35.1, 36.1, 37.1, 38.1, and 38.2 are downloaded from www.freepik.com

https://commons.wikimedia.org/wiki/File:QWERTY-home-keys-position.svg
https://commons.wikimedia.org/wiki/File:QWERTY-home-keys-position.svg
https://en.wikipedia.org/wiki/Debugging#/media/File:First_Computer_Bug,_1945.jpg
https://pixabay.com/vectors/tree-nature-drawing-plant-branches-2027899
https://pixabay.com/vectors/tree-nature-drawing-plant-branches-2027899
www.freepik.com

	Text, questions, and art
	Events and favorites
	In a bookstore
	Grocery shopping
	Customizing the burger menu
	Traveling around the world
	Senses, planets, and a house
	My friends' favorite dishes
	At the zoo
	Where are my gloves?
	Cleaning the mailing list
	What a mess at the bookstore!
	Implementing a calculator
	Playing with numbers
	Fortune cookies
	Rock paper scissors
	Do you want more candies?
	Animals, unique numbers, and sum
	And, or, not, not in
	Behind the scenes of comparisons and conditions
	Overview of lists
	More about the for loop
	Lists of lists
	Inventory at the English bookstore
	Trip to Switzerland
	Counting, compressing, and sorting
	Overview of strings
	Printing Thank you cards
	Login database for an online store
	Free ticket at the museum
	Factorials
	How can I reuse functions?
	Birthday presents
	What's more in Python?
	Let's build an online store!
	Securing the online store
	How can I add a book sample?
	Customizing the coupon for electronics

